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Abstract
Whitefly, Bemisia tabaci (Gennadius) is a cryptic species complex that infests various plant species and act as a vector for many 
plant viruses all over the world. To understand the B. tabaci cryptic species diversity in Bihar more comprehensively, interhost 
and interlocation surveys were conducted during the year 2020-2021. The genetic variability among 29 populations (16 interhost 
and 13 interlocation) was explored using nuclear markers viz. Random Amplified Polymorphic DNA (RAPD), Simple Sequence 
Repeats (SSR) along with mitochondrial marker, mtCOI. The dissimilarity coefficients of 29 populations clustered in a den-
drogram with RAPD and SSR primers showed that interlocation populations were less diverged than the interhost populations. 
Bayesian phylogenetic analysis of 657 bp mtCOI sequences identified the presence of four cryptic species viz. Asia I, Asia II 1, 
Asia II 7 and China 3 belonging to two genetic groups (Asia and China) with high variations in interhost unlike in interlocation. 
Among the four cryptic species, Asia I was the most prevalent in Bihar, establishing 86.20% of all the sequenced samples and 
Asia II 7 and China 3 were reported for the first time in Bihar region. We believe that the information generated in this study is 
important from the perspective of identifying cryptic species diversity and to develop long term pest management strategies.
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Introduction

Silverleaf whitefly, Bemisia tabaci (Gennadius), is a poly-
phagous pest that causes severe damage to more than 600 
plant species, directly by feeding and excreting honeydew 

that causes sooty mould, and indirectly by transmitting more 
than 200 plant viruses (De Lima et al. 2021). In 1889 it was 
first discovered in cotton fields in Greece (Cock 1993), and 
on cotton in Pusa (Bihar, India) during 1905 (Misra and 
Lamba 1929). Due to its remarkable ability to shift, develop, 
adapt, and monopolise in new environments, it is regarded 
as one of the top 100 invasive alien species in the world 
(Ramos et al. 2018). Studies have also revealed the exist-
ence of B. tabaci cryptic species, which are morphologically 
ambiguous but does have distinctive biological, physiologi-
cal, and genetic variations that have caused its prominence to 
shift its nomenclature from biotypes (Costa et al. 1991), to 
races (De Barro et al. 2005), to genetic groups (Boykin et al. 
2007) and species (Tay et al. 2013).

To date, globally 46 cryptic species of B. tabaci with 4% 
genetic divergence have been identified under 11 genetic 
groups (Mugerwa et al. 2018; Lestari et al. 2021; Rehman 
et al. 2021). While 10 cryptic species (Asia I, Asia II 1, 
Asia II 5, Asia II 7, Asia II 8, Asia II 11, Asia IV, China 3, 
China 7 and Middle East Asia Minor 1 (MEAM 1)) have 
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been reported from India. Understanding the genetic varia-
tion and distribution of B. tabaci cryptic species has become 
incredibly important in light of the current climate change, 
increase in the domestic transportation of agricultural prod-
ucts, and the intensive pest control techniques.

Therefore, in the current study we firstly conducted an 
interhost survey and learned that Brinjal host had the highest 
B. tabaci infestation, allowing us to conduct interlocation 
survey in the Brinjal crop of Bihar. Molecular markers viz. 
RAPD, SSR, mtCOI were used to study the genetic variabil-
ity and also for characterizing the morphologically indistin-
guishable B. tabaci cryptic species (Mugerwa et al. 2018).

Materials and methods

Whitefly collection

During the survey, adult whiteflies were randomly collected 
using a handheld aspirator from underside of the leaves from 
different hosts in the Pusa region of Bihar and also from 
brinjal host of different locations in Bihar (Kothia, Pusa, 
Dhrubgama, Mandai Dih, Mirapur, Madhurapur, Jhakra, Ali-
pur Bihta, Faridpur, Charuipar and Dariapur); one location 
each from Telangana (Tadikonda) and Andhra Pradesh (Bap-
atla) states as check to explore the diversity (Table 1; Fig. 1). 
Adults taken from the same host plant at a sampling location 
were kept in the same tube, whilst those taken from different 
host plants were kept in separate tubes with 99.9% ethanol. 
Samples were identified for confirmation of B. tabaci using 
morphological keys (Calvert et al. 2001; Baig et al. 2015).

Genomic DNA extraction

Genomic DNA was extracted based on the method given by 
Frohlich et al. (1999) with several modifications. Individual 
adult whitefly from each population (interhost and inter-
location) were selected randomly and inserted into 1.5 μL 
eppendorf tube and a total of 100 μL of 2% cetyltrimethyl 
ammonium bromide (CTAB), 10 μL of 20% sodium dodecyl 
sulphate (SDS), 10 μL of 0.1% 2-mercaptaethanol and 10 μL 
of proteinase K were added and homogenized using the 
plastic rods. After being homogenized 400 μL of 2% CTAB 
was added and incubated at 65 °C for 45 min. After the 
incubation phenol: choloroform: isoamyl alcohol (25:24:1) 
was added and shaken gently for 10 sec and centrifuged for 
10 min at 14000 rpm. A total of 400 μL of supernatant was 
taken, transferred into a new tube and added equal volume of 
chilled Isopropanol and put in a −20 °C for 1 hr. After that, 
it was centrifuged at 12000 rpm for 8 min. The supernatant 
was then discarded, added 400 μL of 70% chilled ethanol 
and centrifuged at 12000 rpm for 5 min. The supernatant 
was then discarded and dried at room temperature, added 

50 μL of TE buffer and stored at −4 °C until used as tem-
plate for PCR amplification.

DNA amplification

Thermocycler was executed with a 20 μl reaction mixture 
comprising of 2 μl template DNA (100 ng), 1.5 μl of for-
ward and reverse primers, 8 μl of Taq mixture and 8.5 μl of 
nuclease free water. The following conditions were used to 
run the thermo cycler: initial denaturation at 95°C for 2.30 
sec, 35 cycles of denaturation at 94°C for 45 sec, annealing 
at (Supplementary 1) for 30 sec and extension at 72°C for 
5 min followed by final extension of 72°C for 10 min. The 
PCR results were then electrophoresed using a 2% agarose 
gel suspension in TAE buffer with 5 µL ethidium bromide at 
100 V for 30 min and PCR products were visualized under 
UV light by Syngene gel documentation system.

Amplicon scoring and data analysis of RAPD and SSR 
primers

Gel images acquired with the Syngene gel documentation 
system were employed to score the data matrix (one and zero 
for the presence and absence of bands, respectively) with 
AlphaView SA software. The scored marker data matrix was 
further used to generate a dendrogram (Sneath and Sokal 
1973) based on genetic dissimilarity in DARwin 6 software 
(Perrier et al. 2003). As a result, total amplified bands, 
number of polymorphic bands, Percentage of Polymorphic 
Bands (PPB), Polymorphism Information Content (PIC) 
(Anderson et al. 1993); Resolving Power (RP) (Prevost and 
Wilkinson 1999); Effective Multiplex Ratio (EMR) (Kumar 
et al. 2009); Marker Index (MI) (Powell et al. 1996) for each 
RAPD and SSR marker were computed to determine the 
informativeness of primers. The genetic variations among 
interhost and interlocation B. tabaci populations analyzed 
using RAPD and SSR primers (1st tier) were promoted to 
the  2nd tier (Universal primer: mtCOI analysis).

Sequencing and phylogenetic analysis

The PCR products (mtCOI) were purified using a QIA quick 
PCR purification kit (Qiagen Inc. Valencia, CA and USA) 
and then directly sequenced by ABI 3130XL genetic analyzer 
at Eurofins Genomics Bengaluru, Karnataka. The obtained 
sequences (657 bp) were aligned in Molecular Evolutionary 
Genetic Analysis Version X (MEGA X) using ClustalW to 
look for duplicates, gaps, indels and pseudogenes (Tamura 
et al. 2011). By performing maximum likelihood fits of  
24 different nucleotide substitutions, the best model for 
phylogenetic tree construction was estimated with help of  
Bayesian Information Content (BIC) value (Felsenstein 
1981). Further, estimates of evolutionary divergence between 
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sequences and maximum composite likelihood of nucleotide 
substitution pattern were computed in MEGA X. To ensure 
proper reading frame, the sequences were translated into 
their corresponding amino acids using ExPASy translate 
(Gasteiger et  al. 2003), then aligned with ClustalW to 
observe for conserved, semi-conserved, and fully conserved 
regions (Sievers et al. 2011). Neutrality tests, such as Fisher's 

(Fisher 1935) and Tajima's (Tajima 1989) were employed 
to determine whether the COI fitted to the neutrality 
requirements. The mtCOI generated sequences were found to 
be 100% identical to B. tabaci and were submitted in National 
Center for Biotechnology Information (NCBI) GenBank 
database (Altschul et al. 1997) and accession numbers were 
retrieved for all the populations (Table 1).

Table 1  Details of interhost and interlocation survey conducted during the year 2020-2021

Sl. No Accession 
number

Host plant/
Location 
name

Survey 
location

District State Date of 
survey

Latitude Longitude Altitude/m

1 MZ148550 Congress 
grass

Pusa Samastipur Bihar 05-10-2020 25°59'05.4"N 85°40'50.5"E 53.04 m

2 MZ148551 Indian jujube Pusa Samastipur Bihar 05-10-2020 25°59'05.4"N 85°40'50.5"E 53.04 m
3 MZ148552 French bean Pusa Samastipur Bihar 07-10-2020 25°59'05.4"N 85°40'50.5"E 53.04 m
4 MZ148553 Tomato Pusa Samastipur Bihar 07-10-2020 25°59'05.4"N 85°40'50.5"E 53.04 m
5 MZ148554 Potato Pusa Samastipur Bihar 07-10-2020 25°59'05.4"N 85°40'50.5"E 53.04 m
6 MZ148555 White fig Pusa Samastipur Bihar 12-11-2020 25°59'05.4"N 85°40'50.5"E 53.04 m
7 MZ148556 Chinese 

hibiscus
Pusa Samastipur Bihar 12-11-2020 25°59'05.4"N 85°40'50.5"E 53.04 m

8 MZ148557 Common 
jasmine

Pusa Samastipur Bihar 01-10-2020 25°59'05.4"N 85°40'50.5"E 53.04 m

9 MZ148558 Black 
nightshade

Pusa Samastipur Bihar 01-10-2020 25°59'05.4"N 85°40'50.5"E 53.04 m

10 MZ148559 Barberton 
daisy

Pusa Samastipur Bihar 01-10-2020 25°59'05.4"N 85°40'50.5"E 53.04 m

11 MZ148560 Mexican 
marigold

Pusa Samastipur Bihar 01-10-2020 25°59'05.4"N 85°40'50.5"E 53.04 m

12 MZ148561 Cluster fig Pusa Samastipur Bihar 12-11-2020 25°59'05.4"N 85°40'50.5"E 53.04 m
13 MZ148562 Pointed 

gourd
Pusa Samastipur Bihar 19-02-2021 25°59'05.4"N 85°40'50.5"E 53.04 m

14 MZ148563 Cucumber Pusa Samastipur Bihar 19-02-2021 25°59'05.4"N 85°40'50.5"E 53.04 m
15 MZ148564 Dolichos 

bean
Pusa Samastipur Bihar 19-02-2021 25°59'05.4"N 85°40'50.5"E 53.04 m

16 MZ148565 Okra Pusa Samastipur Bihar 01-10-2020 25°59'05.4"N 85°40'50.5"E 53.04 m
17 MZ148566 Brinjal Kothia Samastipur Bihar 01-10-2020 25°51'17.7"N 85°37'03.5"E 20.42 m
18 MZ148567 Brinjal Madhurapur Samastipur Bihar 05-10-2020 25°58'37.6"N 85°44'09.1"E 26.74 m
19 MZ148568 Brinjal Dhrubgama Samastipur Bihar 05-10-2020 25°58'11.4"N 85°47'41.1"E 44.63 m
20 MZ148569 Brinjal Pusa Samastipur Bihar 01-10-2020 25°59'05.4"N 85°40'50.5"E 53.04 m
21 MZ148570 Brinjal Mirapur Muzaffarpur Bihar 04-10-2020 26°01'42.8"N 85°33'57.6"E 54.16 m
22 MZ148571 Brinjal Mandai Dih Vaishali Bihar 01-10-2020 25°50'16.2"N 85°30'04.6"E 51.53 m
23 MZ148572 Brinjal Jhakra East 

Champaran
Bihar 04-10-2020 26°33'27.9"N 84°57'51.6"E 64.09 m

24 MZ148573 Brinjal Alipur Bihta Patna Bihar 03-01-2021 25°27'19.1"N 85°27'43.4"E 41.11 m
25 MZ148574 Brinjal Faridpur Sheikhpura Bihar 02-10-2020 25°10'58.5"N 85°46'32.1"E 45.11 m
26 MZ148575 Brinjal Charuipar Nalanda Bihar 03-01-2021 25°17'10.1"N 85°27'30.6"E 54.41 m
27 MZ148576 Brinjal Dariapur Lakhisarai Bihar 02-10-2020 25°13'01.3"N 86°04'19.7"E 26.42 m
28 MZ148577 Brinjal Tadikonda Mahbubnagar Telangana 23-11-2020 16°38'59.9"N 78°00'36.7"E 425.7 m
29 MZ148578 Brinjal Bapatla Guntur Andhra 

Pradesh
23-01-2021 15°56'03.7"N 80°29'42.2"E 121.21 m
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Results and discussion

RAPD analysis (1st tier)

RAPD polymorphism

The genetic variation of B. tabaci populations was explored 
with 11 RAPD primers, which were amplified with poly-
morphism ranging from 90 to 100% and produced 110 bands 
altogether with mean number of total bands and polymorphic 
bands per primer was 10.00 and 9.09 respectively. Higher 
PIC (0.81) in F2 and higher EMR (14.00), MI (10.42) and 

RP (8.07) in F12 primers revealed there greater informa-
tiveness and low EMR (7.00), RP (2.82) in OPA-15; low 
PIC (0.49), MI (4.45) in OPA-5 revealed there lesser infor-
mativeness in examining variation of B. tabaci populations 
(Table 2). Among all the primers, OPA-11 was identified 
as a potential genetic marker owing to its single monomor-
phic band with 90% polymorphism, because if there was no 
monomorphic band, then population would be deliberated as 
a distinct species (Maurya et al. 2020). Queiroz et al. (2017) 
observed more than 70% polymorphism in OPA-05 (70.0), 
OPA-10 (77.9), OPA-11 (73.8), OPA-13 (77.3), OPA-15 
(70.8) and these observations are in line with our findings. 

Fig. 1  Survey during the year 2020-2021

Table 2  Details on 
amplification of RAPD region 
in genomic DNA of 29 B. 
tabaci populations

T (oC) Annealing temperature, TB Total Band, PB Polymorphic Band, MB Monomorphic Band, PPB 
(%) Percentage of Polymorphic Band, PIC Polymorphism Information Content, EMR Effective Multiplex 
Ratio, MI Marker Index, RP Resolving Power

Sl. No Primers T(oC) TB PB MB PPB (%) PIC EMR MI RP

1 OPA-02 37.3 12 12 00 100.00 0.63 12.0 7.61 5.86
2 OPA-04 37.3 09 09 00 100.00 0.67 09.0 6.06 5.79
3 OPA-05 37.3 09 09 00 100.00 0.49 09.0 4.45 4.62
4 OPA-10 37.3 09 09 00 100.00 0.50 09.0 4.52 4.90
5 OPA-11 37.3 10 09 01 90.00 0.61 08.1 4.93 3.69
6 OPA-13 37.3 11 11 00 100.00 0.72 11.0 7.87 5.02
7 OPA-15 37.3 07 07 00 100.00 0.69 07.0 4.89 2.82
8 OPA-20 37.3 09 09 00 100.00 0.61 09.0 5.41 5.59
9 OPR-07 37.3 09 09 00 100.00 0.81 09.0 7.28 4.61
10 F2 37.3 11 11 00 100.00 0.82 11.0 9.02 4.75
11 F12 37.3 14 14 00 100.00 0.74 14.0 10.42 8.07

Total - 110 109 - - - - - -
Mean - 10.0 9.09 - - 0.663 108.1 6.586 5.06
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Similarly, Hameed et al. (2012) and Hopkinson et al. (2020) 
employed RAPD primers to identify variations in B. tabaci 
populations.

UPGMA clustering and dendrogram

The data were clustered using the methodology of the 
Unweighted pair-group method with arithmetic averages 
(UPGMA) in a dendrogram, the dissimilarity coefficients 
of 29 populations. There were ten distinct clusters in the 
interlocation population, with Bapatla (cluster IV) hav-
ing the highest dissimilarity coefficient of 46% and Mad-
hurapur and Mirapur (cluster I) having the closest rela-
tionships with a dissimilarity coefficient of 30%. Interhost 
populations of Okra and Dolichos bean (cluster VI) are 
most closely related with a dissimilarity coefficient of 36% 
and Common jasmine (cluster X) populations shared higher 
dissimilarity coefficient of 57%. Cluster I of interlocation 
population viz. Madhurapur, Mandai Dih, Mirapur, Dhrub-
gama, Jhakra and Kothia (Northern Bihar) (Fig. 2) and 
cluster II of Charuipar, Faridpur and Dariapur (Southern 
Bihar) demonstrates that populations were differentiated 
based on their geographical locations. Cluster V of inter-
host populations belong to the Solanaceae family shared a 
lesser dissimilarity coefficient (37%). Results clearly dem-
onstrated that interlocation populations were less diverged 
than the interhost populations, due to the fact that they 
were primarily collected from the same host viz. brinjal. 
Similar pattern studies were conducted with RAPD primers 
in B. tabaci (De Barro and Driver 1997); Myzus persicae 
(Zitoudi et al. 2001); Helicoverpa armigera (Lopes et al. 
2017); Leucinodes orbonalis (Murali et al. 2021).

SSR analysis (1st tier)

SSR polymorphism

The genetic diversity of B. tabaci populations was investi-
gated using nine SSR primers, which amplified with 100% 
polymorphic bands and generated a total of 60 bands, 
with 6.66 mean number of total bands and polymorphic 
bands. Higher PIC (0.878), EMR (9.0), MI (7.902) and 
RP (5.79) in Btls1-2 revealed there greater informative-
ness and low PIC (0.664) in Bta1; EMR (4.00) and MI 
(3.196) in Btls 1-6 and RP (1.238) in Bta 11 revealed less 
informativeness in examining the variability of B. tabaci 
populations (Table 3). Similar to our studies, De Barro 
et al. (2003), Simón et al. (2007), Gauthier et al. (2008) 
and Ben Abdelkrim et al. (2017) used these primers for 
examining genetic variability among B. tabaci popula-
tions. Contrarily, Valle et al. (2012) observed lowest pol-
ymorphism percentage in Bta11 primer, which showed 
100% in our study.

UPGMA clustering and dendrogram

The UPGMA technique was used to cluster the data into 
a dendrogram using the dissimilarity coefficients of 29 
populations. There were ten distinct clusters in the inter-
location population, with Alipur Bihta, Dhrubgama, and 
Mirapur (cluster V) having the highest dissimilarity coeffi-
cient of 42% (cluster VIII) and being the most closely con-
nected with a dissimilarity value of 30%. However, inter-
host populations of Cucumber and Potato (cluster I) are 
most closely related, sharing a dissimilarity coefficient of 

Fig. 2  Dendrogram deduced 
from matrix of pair wise dis-
tances in RAPD analysis of B. 
tabaci interhost and interloca-
tion using UPGMA
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38%, while, Common jasmine was the most divergent with 
higher dissimilarity coefficient of 56% (Fig. 3). According 
to Fakrudin et al. (2004), this augmented genetic variabil-
ity might aid species in evolving and adapting to new envi-
ronment more quickly. The lower dissimilarity coefficient 
observed between B. tabaci populations from interlocation 
can be enlightened by the certainty that they were all col-
lected from the same host (Brinjal), whereas the higher 
dissimilarity coefficient observed among B. tabaci popula-
tions from interhost could be due to their collection from 
different hosts. Similar pattern of differentiation studies 
were conducted by Valle et al. (2012) and Reddy et al. 
(2022) using SSR primers in Bemisia tabaci and Helicov-
erpa armigera populations, respectively.

mtCOI analysis (2nd tier)

To construct a B. tabaci cryptic species phylogenetic tree, 
we first collected 29 mtCOI sequences from interhost and 
interlocation of Bihar along with Andhra Pradesh (Bap-
atla) and Telangana (Tadikonda) produced an amplicon 
of 657 bp mtCOI region (Supplementary 1). The phyloge-
netic tree was built based on Hasegawa-Kishino-Yano with 
Gamma distribution model (HKY+G) for 29 sequences 
along with 44 reference sequences and Bemisia atriplex, 
Bemisia afer and Trialeurodes vaparorium as out groups 
(Fig. 4) (Supplementary 2).

It was noted that four cryptic species viz. Asia I, Asia 
II 1, Asia II 7 and China 3 were found to cluster with 29 

Table 3  Details on 
amplification of SSR region in 
genomic DNA of 29 B. tabaci 
populations

T (oC) Annealing temperature, TB Total Band, PB Polymorphic Band, MB Monomorphic Band, PPB 
(%) Percentage of Polymorphic Band, PIC Polymorphism Information Content, EMR Effective Multiplex 
Ratio, MI Marker Index, RP Resolving Power

Sl. No Primers T(oC) TB PB MB PPB (%) PIC EMR MI RP

1 Btls1-2 50.0 09 09 00 100.00 0.88 09 7.90 5.79
2 Btls1-6 50.0 04 04 00 100.00 0.79 04 3.19 1.38
3 Bta1 51.0 09 09 00 100.00 0.66 09 5.98 4.38
4 Bta4 51.0 06 06 00 100.00 0.69 06 4.19 3.45
5 Bta11 50.0 05 05 00 100.00 0.82 05 4.08 1.24
6 Bta12 51.0 06 06 00 100.00 0.68 06 4.11 3.73
7 BEM 12 53.0 06 06 00 100.00 0.84 06 5.03 2.27
8 BEM 23 53.0 07 07 00 100.00 0.84 07 5.91 1.58
9 BEM 37 51.0 08 08 00 100.00 0.86 08 6.86 4.41

Total - 60 60 - - - - - -
Mean - 6.66 6.66 - - 0.79 6.66 5.25 3.13

Fig. 3  Dendrogram deduced 
from matrix of pair wise 
distances in SSR analysis of B. 
tabaci interhost and interloca-
tion using UPGMA
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B. tabaci populations (Fig. 5). The sequences of interhost 
(Okra, Dolichos bean, Pointed gourd, Tomato, Potato, 
Mexican marigold, Cucumber, French bean, Indian jujube, 
Congress grass, White fig, Cluster fig and Common jas-
mine); interlocation (Pusa, Bapatla, Dariapur, Charuipar, 
Faridpur, Mirapur, Jhakra, Mandai Dih, Dhrubgama, Ali-
pur Bihta, Madhurapur, Kothia) clustered with Asia I was 
found to be the major cryptic species accounting for 25 of 
the 29 (86.20%) B. tabaci populations. And therefore, Asia 
I had a greater potential to inflate and adapt in Bihar among 
four reported cryptic species. Similarly, Roopa et al. (2015) 
sequenced 71 B. tabaci samples and found Asia I cryptic 

species to be the most predominant accounting for 44 out of 
the 71 samples (61.97%).

Asia II is a genetically diverse group consisting of 13 sub 
cryptic species, Asia II (1–13) (Kanakala and Ghanim 2019) 
among them, only Asia II 1 and Asia II 7 were detected from 
the collected B. tabaci samples. Interestingly, Black night-
shade and Chinese hibiscus collected from single location 
(Pusa region) clustered with Asia II 1 and Asia II 7, respec-
tively shows that cryptic species add a impact on host plant 
selection. Roopa et al. (2015) discovered Asia II 7 cryptic 
species on Chinese hibiscus, which supports with our find-
ings. Chowda-Reddy et al. (2012) stated that Asia II 7 was 

Fig. 4  Phylogenetic tree inferred from 657 bp sequences of 29 mtCOI genes, 44 cryptic species of B. tabaci and three out groups
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primarily found in Southern and Western India, which is in 
contrast to our results as Asia II 7 cryptic species was found 
in Bihar (Eastern India). Moreover, Barberton daisy grouped 
with China 3 (Fig. 4) has been discovered for the first time in 
Bihar, which borders West Bengal and is where Ellango et al. 
(2015) first discovered the China 3 cryptic species.

In contrast to the prior data given by Misra and Lamba 
(1929), Chowda-Reddy et al. (2012), Roopa et al. (2015) and 

Rangaswamy et al. (2019), it was evident that among the four 
cryptic species (Asia I, Asia II 1, Asia II 7, and China 3); Asia 
II 7 and China 3 were reported for the first time in the Bihar 
region. Given the wide-spread occurrence of numerous cryptic 
species, the abundance of suitable hosts, climate change, the 
overall domestic transportation of agricultural products, and 
intensive pest control strategies, B. tabaci has a high likelihood 
of acquiring an adaptive advantage in various parts of the nation.

Fig. 5  Phylogenetic tree 
inferred from 657 bp sequences 
of 29 mtCOI genes, four cryptic 
species of B. tabaci and three 
out groups
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Multiple sequence alignment

Multiple alignment of 29 B. tabaci nucleotide sequences 
revealed 305 completely conserved residues (Supplemen-
tary 5) and 105 Single Nucleotide Polymorphisms (SNPs). 
Furthermore, in multiple alignment of amino acid sequences 
75 fully conserved residues, 46 conserved residues and 23 
semi conserved residues were identified (Supplementary 
6). This greater level of nucleotide similarity indicates that 
they evolved from a common origin. Similarly, Wosula et al. 
(2017); Kunz et al. (2019) found 7453 SNPs and 125 con-
served amino acid residues, respectively with amplification 
of mtCOI region of B. tabaci.

Pair wise genetic distance

The pair wise genetic distance of B. tabaci populations ranged 
from 0.00 to 0.47 (Supplementary 4) with an over mean dis-
tance of 0.08. Similarly, Dinsdale et al. (2010) reported zero to 
34% genetic distance among 198 B. tabaci populations.

Patterns of nucleotide substitution in mtCOI

As nucleotide composition is a crucial aspect of nucleic acids, 
the study revealed that thiamine (T) (43.37%) and guanine (G) 
(19.00%) had the highest and lowest numbers of nucleotide 
bases, respectively. Similarly, Roopa et al. (2015) observed high-
est nucleotide base in thiamine (43.10%) and lowest in guanine 
(13.22%) with B. tabaci mtCOI sequences. Furthermore, the 
base composition of mtCOI gene fragment was biased towards 
Adenine (A) and Thymine (T) with an overall 67.54% which 
was a universal feature of nucleotide diversity (Lynch 2008).

Neutrality tests

The negative Tajima's D = -0.726310 (Table 4) and Fisher’s 
exact test with P value <0.05 (Common jasmine, Congress 
grass, Chinese hibiscus, Black nightshade, Cucumber, 
Kothia, Madhurapur, Dhrubgama, Alipur Bihta, White fig, 
Chinese hibiscus and Tadikonda) (Supplementary 7) indi-
cated excess of low frequency polymorphisms. Thus, both 
tests supported the neutral theory of evolution and these 
findings were supported by Tocko-Marabena et al. (2017) 
who concluded that B. tabaci was found to be significant 
with Tajima's D (-2.45317).

Conclusion

In the present study, we were able to confirm the existence of 
four B. tabaci cryptic species (Asia I, Asia II 1, Asia II 7, and 
China 3) in Bihar. In particular, Asia II 7 and China 3 were 
discovered for the first time in the Bihar region, while Asia 
I cryptic species dominated all interhost and interlocation 
populations. Overall, this study contributes to the charac-
terization of various B. tabaci cryptic species for assessing 
ongoing changes in genetic diversity, evolutionary history, 
and potential spread that enable effective pest management 
while avoiding overuse of insecticides and lowering environ-
mental pressure.
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tary material available at https:// doi. org/ 10. 1007/ s42690- 023- 01004-8.
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