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Abstract
Understanding the types of haemocytes involved in the immune response in insects, and the mechanism involved in deter-
mining that response, can provide a scientific reference for developing effective microbial insecticides. Therefore, the 
current study examined haemocytes from Agrotis ipsilon (Hufnagel) larvae infected with Escherichia coli in terms of their 
morphology, total counts, and relative proportions at different time points post-infection by optical microscopy technology. 
The results revealed six types of haemocytes (prohemocytes, plasmatocytes, granulocytes, spherule cells, oenocytoids, and 
cystocytes) in the haemolymph of sixth-instar larvae. Haemocyte deformation, disruption, nuclear changes, and vacuoles 
were recorded after infection with different dosages of E. coli. At each time period post-infection, the total haemocyte count 
was significantly higher than in the controls, peaking at 24 h post-infection and then decreasing by 48 h post-infection. The 
proportion of prohemocytes decreased significantly until 24 h post-infection, and then began to increase. By contrast, the pro-
portions of plasmatocytes, granulocytes, spherule cells, oenocytoids, and cystocytes relatively increased, and peaked by 24 h 
post-infection, and then decreased. This revealed that strong immune response was stimulated in larva of A. ipsilon in a short 
time after infection with E.coli, and the results shed addition light on the cellular immune response of insects to pathogens.
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Introduction

Insects have a complex immune system, including both cellu-
lar immunity and humoral immunity, enabling them to defend 
against pathogenic infections (Ardia et al. 2012; Berger and 
Jurčová 2012; Zdybicka-Barabas and Cytryńska 2013; Zhang 
and Zhang 2019). Haemocytes mainly perform the cellular 
immune functions, with an important role in defending against 
pathogen invasion. Previous studies have shown that haemo-
cytes in the insect haemolymph can be categorized into several 
types, namely prohemocytes, plasmatocytes, granulocytes, 
cystocytes, adipohemocytes, spherule cells, and oenocytoids 
(Jones 1977). However, these types of haemocytes differ both 
among insect species and between developmental and physi-
ological stages within the same insect species (Gillespie et al. 
2000; Giannoulis et al. 2005; Beetz et al. 2008; Ruchita and 
Krishna 2014). Morphological studies of haemocytes can be 

used to investigate the cellular immune response. More than 
100 species of insects have been studied in terms of their 
haemocytes (Ribeiro and Brehélin 2006; Strand 2008; Wu 
et al. 2016; Mahmood et al. 2018; Boguś et al. 2018). The pri-
mary functions of haemocytes are coagulation, phagocytosis, 
encapsulation, detoxification, and the storage and distribution of 
nutritive materials (Siddiqui and Al-Khalifa 2014). Haemocytes 
come into contact with pathogens via the haemolymph, where-
upon they engulf the pathogen, forming nodules that are then 
destroyed by the immune system (Hillyer and Christensen 2002; 
Hillyer et al. 2003; Siddiqui and Al-Khalifa 2014). However, 
during the immune response, pathogens can produce toxins that 
damage the haemocytes, resulting in variation in the morphol-
ogy, quantity and proportion of the different types of haemo-
cytes (Wang et al. 1990; Mazet et al. 1994; Vilcinskas et al. 
1997; Griesch and Vilcinskas 1998; Perveen and Ahmad 2017; 
Mahmood et al. 2018; Boguś et al. 2018). Such interactions can 
affect the efficacy of biological control approaches against pests. 
Therefore, studying the immune function of haemocytes, and 
the mechanism involved, will provide a theoretical reference for 
biological control of the pests. However, because the haemo-
cytes and mechanism involved can differ among insect species 
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(Wang et al. 1990; Feng et al. 2011; Ruchita and Krishna 2014), 
further studies on the cellular immune responses of additional 
insects species are necessary.

The black cutworm moth, Agrotis ipsilon (Hufnagel) (Lepi-
doptera: Noctuidae) is a pest of a variety of crops in many areas 
of the world (Gesraha and Ebeid 2021), and has become one of 
the most important pests on vegetables and crops throughout 
China (Ding et al. 2018). Several studies have investigated the 
biological characteristics of the pest and its control measures 
(Gemeno and Haynes 2000; Amin et al. 2019; Sobhy et al. 
2020; Gesraha and Ebeid 2021). In the previous study, five 
types of haemocytes in fourth-larval instars of A. ipsilon were 
reported, changes in the haemocytes and a reduction in the total 
haemocyte count of A. ipsilon larvae after infection with insec-
ticide dimilin and Bacillus thuringiensis was also observed (El-
Aziz and Awad 2010). However, given that haemocyte types 
can vary among developmental stages of the same insect spe-
cies, and under different ecological and physiological condi-
tions (Gillespie et al. 2000), as well as in terms of infection 
with different pathogens (Wang et al. 1990; Feng et al. 2011), 
there is a need to understand the effects of pathogens on the 
morphology of haemocytes across the developmental stages 
of the Chinese population of A. ipsilon.

In this study, we investigated the haemocytes of A. ipsi-
lon in terms of their morphology, total number and relative 
proportion of count numbers in A. ipsilon larvae at different 
time points following infection with Escherichia coli. The 
results will be useful to further understanding of the types 
of haemocytes involved in the immune response and the 
mechanisms involved in their immune functions, providing 
a scientific reference for the development of more effective 
microbial insecticides.

Materials and Methods

Insects

Larvae of A. ipsilon were collected from Leshan tobacco-
planting areas around Zunyi in Guizhou province, China in 
March 2015. The larvae were reared in the laboratory at 
25 ± 1℃ and 70 ± 7 relative humidity (RH) under a 14:10 
(L:D) hours photoperiod until the third instar stage. There-
after, they were reared individually to avoid cannibalism. 
Larvae were fed on Chinese cabbage leaves, Brassica peki-
nensis. Four generations of larvae were reared, and the sixth-
instar larvae from each generation were used in the study.

Preparation of bacterial suspension

Escherichia coli was purchased from Shanghai Luwei Tech-
nology company, China, and cultivated on Luria–Bertani 

(LB) medium at 37 °C. After centrifugation at 2, 000 rpm 
for 10 min, the bacteria were collected and diluted with 
normal saline to give six concentrations: 1 ×  103, 1 ×  104, 
1 ×  105, 1 ×  106, 1 ×  107, and 1 ×  108 cells/mL. Concentra-
tions of bacteria were determined using a hemocytometer 
under the optical microscope. First, the number of bacteria 
in each small square of hemocytometer was measured, and 
then converted into the number of bacteria in each milli-
liter of bacterial solution. So, the bacteria number in 1 mL 
of bacterial suspension = the average number of bacteria in 
each square (n) × coefficient (k) × dilution ratio of bacterial 
suspension (d).

Morphological observations on haemocytes 
of larvae

Ten sixth-instar larvae of A. ipsilon were collected and washed 
with sterile water. The abdomen of each larva was punctured 
with a dissecting needle, and a small amount of haemo-
lymph was extracted and placed on a microscope slide with 
a pipette, forming a blood film. Three drops of Wright’s dye 
was added to the blood film, followed, 2 min later, by three 
drops of Giemsa stain and a phosphate buffered solution (PBS, 
pH7.2). The slides were left for 30 min, washed with tap water, 
and allowed to dry at room temperature. Each slide was then 
observed under a light microscope. The haemocytes observed 
were classified according to the classification standard sug-
gested by Jones, who identified the commonest seven types of 
haemocytes in insects haemolymph, namely prohemocytes, 
plasmatocytes, granulocytes, cystocytes, adipohemocytes, 
spherule cells, and oenocytoids (1977).

Variations in morphology and counts of haemocytes 
infected by E. coli

To study the variation in morphology and counts of haemo-
cytes from larvae infected by E. coli, 3 μL of a bacterial 
suspension was injected into the abdomen of larvae using a 
microinjector. The larvae were then transferred to an artificial 
climate box and fed on Chinese cabbage leaves. Haemolymph 
of larvae was collected at 6, 12, 24, 48 h post-injection. The 
total haemocyte counts (THCs) in each sample of haemo-
lymph was determined using a hemocytometer filled with 
anticoagulant buffer (Leonard et al. 1985). The haemolymph 
samples were each placed on a microscope slide, and dyed 
using three drops of Wright’s-Giemsa stain. Each slide was 
then examined under a light microscope(640 ×) and haemo-
cyte counts and variation in haemocyte morphology were 
recorded. Photographs of haemocytes were captured with a 
digital camera (Canon, EOS-200D). To accurately measure 
the counts of haemocytes, the haemolymph was thoroughly 
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mixed with the anticoagulant buffer to disperse the haemo-
cytes. For each treatment,45 larvae / time point / dosage were 
used, and three replicates were conducted. A control experi-
ment was also run using larvae treated with normal saline.

Statistical analysis

All data were analyzed by SPSS version 11.5 software (SPSS 
Inc., Chicago, IL, USA). Comparisons between the mean of 
groups at different treatment times and bacterial dosages were 
analyzed using one-way analysis of variance (ANOVA) and two-
way analysis of variance (ANOVA), where the differences among 
means were compared with the Tukey’s multiple comparison 
method at P < 0.05 level that the test results are false, reject.

Results

Morphology of larval haemocytes

Six types of haemocytes were found in the haemolymph of A. 
ipsilon sixth-instar larvae: prohemocytes (PRs), plasmatocytes 
(PLs), granulocytes (GRs), spherule cells (SPs), oenocytoids 
(OEs), and cystocytes (CYs). The total haemocyte count was 
18,897.33 indiv./mL in the haemolymph, prohemocytes were 
the most abundant haemocytes with the count of 8,999.45 
indiv./mL, followed by plasmatocytes (2,758.66 indiv./mL), 
granulocytes (2,346.71indiv./mL), spherule cells (2,122.05 
indiv./mL) and cystocytes (1,514.26 indiv./mL), oenocytoids 
were the least abundant (1,156.20 indiv./mL) (Fig. 1A), the 
difference among them reached significant level (df1 = 6, df2 
=13, F = 1703.82, P < 0.0001). Each cell type in the total 
haemocyte count accounted for 47.62%, 14.60%, 12.42%, 
11.23%, 8.01% and 6.12% respectively (Fig. 1B). Healthy 
haemocytes had well-developed cell membranes and nuclei.

Prohemocytes

Prophemocytes were identified as small haemocytes (10.
25 ~ 12.13 μm × 7.34 ~ 8.81 μm) in the haemolymph of A. 
ipsilon sixth-instar larva. They were circular or ovate in 
shape with a clear outline, a nucleus in the center of cell, 
and a high nuclear:cytoplasmic ratio. The cytoplasm was 
relatively homogeneous, without any obvious granular mate-
rials (Fig. 2A).

Plasmatocytes

Plasmatocyte, also called protogonocytes, occurred in different 
shapes and sizes (16.13~17.65μm × 8.87~10.29μm). There 
was a single nucleus in the center of the cell, accounting for 
half of the overall volume of the cell; the cytoplasm was rela-
tively homogeneous, without any granules (Fig. 2B).

Granulocytes

Granulocytes were common in the haemolymph of A. ipsi-
lon sixth-instar larva, and were circular, ovate, or irregular 
in shape with different sizes (19.23 ~ 29.41 μm × 8.85 ~ 14
.71 μm) (Fig. 2C). The nucleus was circular or ovate, and 
centrally located. There were heterogeneous lysosome-like 
materials present in the cytoplasm, enabling these cells to 
be distinguished from plasmatocytes.

Spherule cells

Spherule cells were circular haemocytes of medium-large 
size, in the range of 13.53 ~ 16.67 μm × 9.86 ~ 14.17 μm, and 
contained many pearl-like inclusions forming a circle within 
the cells (Fig. 2D). It was difficult to locate the nucleus.

Fig. 1  Haemocyte counts 
and percentages of A. ipsilon 
larva. A:Haemocyte counts; 
B:Haemocyte percentages. The 
letters on the column are the 
results of Tukey’s multi com-
parison, the different lowercase 
letters(a,b,c,d,e,f) represent 
statistically significant differ-
ences in cell counts or percent-
age among different haemocyte 
type at P < 0.05 level. The error 
bars represent the standard error 
(SE)
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Oenocytoids

Oenocytoids were irregular in shape, with a small, circular 
nucleus. The cell sizes were 17.68 ~ 20.39 μm × 12.92 ~ 15.8
3 μm. The cytoplasm was dense and homogeneous (Fig. 2E).

Cystocytes

Cystocytes were usually medium-sized haemocyte (14.32 ~ 
25.11 μm × 13.33 ~ 23.53 μm), with a circular or oval shape. 
The outline was relative smooth, and the cytoplasm con-
tained some refractive granules of different sizes (Fig. 2F).

Morphological variations in haemocytes from A. 
ipsilon larvae infected by E. coli

The infection of A. ipsilon by E.coli induced haemocytes to 
adhere to each other to form aggregates (Fig. 3A), of which 
most of the haemocytes were plasmatocytes and granulo-
cytes. Six hours after infection, some haemocytes showed 

considerable structural changes. For example, plasmatocytes 
lost their smooth outline and complete profile, developing a 
pleated or distorted outer membrane. The nucleus appeared 
displaced to one side of the cells with presence of vacu-
oles of various sizes (Fig. 3B). The granulocytes appeared 
deformed with many vacuoles in the cytoplasm (Fig. 3C). 
The membranes of cystocytes became uneven, and ruptured 
in some cells, which resulted in the out-flowing of cytoplasm 
content including nucleus (Fig. 3D).

Variation in total haemocytes counts in A. ipsilon 
larva infected by E. coli

Infection of sixth-instar larva of A. ipsilon with different 
dosages of E. coli led to significant increases in the number 
of THCs after 6, 12, 24, and 48 h post-infection (Fig. 4), with 
the number of THCs increasing significantly with increasing 
bacterial dosage (df1 = 6, df2 = 21, F = 34.945, P < 0.0001). 
The number of THCs in each bacterial dosage group peaked 
at 24 h post-infection (Fig. 4). Overall, infection of A. 

Fig. 2  Haemocytes isolated 
from the haemolymph of sixth-
instars of A. ipsilon larva. A: 
Prophemocytes (640 ×); B: 
Plasmatocyte (640 ×); C: Gran-
ulocytes (640 ×); D: Spherule 
cells (640 ×); E: Oenocytoids 
(640 ×); F: Cystocytes (640 ×). 
N, nucleus; LLM, lysosome-like 
materials; PLI, pearl-like inclu-
sions; RG,refractive granules

Fig. 3  Morphology variation in 
larval haemocytes of A. ipsilon 
infected with E. col. A: Aggre-
gation of haemocytes (100 ×); 
B: Plasmatocytes (640 ×); C: 
Granulocytes (640 ×); D: Cysto-
cytes (400 ×). V, vacuoles
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ipsilon with different dosages of E. coli (1 ×  103, 1 ×  104, 
1 ×  105, 1 ×  106, 1 ×  107, and 1 ×  108 cells/mL.) increased the 
number of THCs by 82.46%, 97.64%, 111.29%, 126.35%, 
139.27%, and 155.39% as compared to the control after 24 h 
post-infection, respectively. After 48 h post-infection, the 
number of THCs declined, although the differences among 
the different treatment time remained significant (df1 = 3, 
df2 = 20, F = 2.498, P < 0.0001). Two-way analysis of vari-
ance showed that the interaction of dosages of E. coli and 
treatment time had a significant influence on the number of 
THCs in sixth-instar larva of A. ipsilon (df = 15, F = 7.835, 
P < 0.0001).

Proportions of haemocyte types of A. ipsilon larva 
infected by E. coli

Variations in the relative proportion of the six haemocyte 
types in A. ipsilon sixth instar larva were observed at dif-
ferent time points post-infection with E. coli (Fig. 5). The 
percentage in number of prohemocyte decreased signifi-
cantly relative to the control with increasing bacterial dosage 
(df1 = 6, df2 = 21, F = 7.586, P < 0.0001) and time post infec-
tion up until 24 h post-infection (df1 = 3, df2 = 20, F = 14.317, 
P < 0.0001) (Fig. 5A), which decreased 22.78%, 26.98%, 
29.10%, 31.06%, 33.15%, and 35.10% than control, sepa-
rately. Whereupon it began to increase.

The percentages in number of plasmatocyte (df1 = 6, df2 = 14, 
F = 4.80, P = 0.007), granulocyte (df1 = 6, df2 = 14, F = 4.162, 
P = 0.013), spherule cell (df1 = 6, df2 = 14, F = 2.518, P = 0.072), 
oenocytoid (df1 = 6, df2 = 14, F = 3.242, P = 0.033), and cysto-
cyte (df1 = 6, df2 = 14, F = 5.343, P = 0.005) all increased rela-
tive to the control at 6 h post-infection, and with increasing 
bacterial dosages, peaking at 24 h post-infection (Fig. 5B−F). 

For each dosage, the percentage in number of plasmatocyte 
increased 5.39%, 6.21%, 6.85%, 7.44%, 8.05%, and 8.44%, 
separately, granulocyte increased 4.70%, 5.52%, 6.11%, 
6.83%, 7.49%, and 7.87%, spherule cell increased 3.90%, 
4.72%, 5.04%, 5.20%, 5.51%, and 5.65%, oenocytoid increased 
4.01%, 4.56%, 5.04%, 5.18%, 5.50%, and 5.64%, and cystocyte 
increased 4.78%, 5.97%, 6.06%, 6.41%, 6.60%, and 7.50%. The 
difference between different treatment times were not signifi-
cant in plasmatocyte (df1 = 3, df2 = 20, F = 12.987, P = 0.955), 
granulocyte (df1 = 3, df2 = 20, F = 12.35, P = 0.995), spher-
ule cell (df1 = 3, df2 = 20, F = 13.926, P = 0.509), oenocytoid 
(df1 = 3, df2 = 20, F = 14.159, P = 0.306), and cystocyte (df1 = 3, 
df2 = 20, F = 17.978, P = 0.59). Thereafter, the percentages in 
number of the five haemocytes had begun to decrease by 48 h 
post-infection.

Two-way analysis of variance showed that the interac-
tion of dosages of E. coli and treatment time had no sig-
nificant influence on the percentage in number of prohemo-
cyte (df = 15, F = 1.048, P = 0.427), plasmatocyte (df = 15, 
F = 0.014, P = 1.00), granulocyte (df = 15, F = 0.012, 
P = 1.00), spherule cell (df = 15, F = 0.087, P = 1.00), oeno-
cytoid (df = 15, F = 0.112, P = 1.00), and cystocyte (df = 15, 
F = 0.149, P = 1.00) in sixth-instar larva of A. ipsilon.

Discussion

Haemocytes are the main cells involved in vital physi-
ological activities in insects, for example, prohemocytes 
are putative stem cells that involved in division of haemo-
cytes; plasmatocytes are the main capsule formation cells 
that involved in forming of capsule (Jones 1977; Schmidt 
et al. 2001; Lavine and Strand 2002; Hillyer et al. 2003; 
Castillo et al. 2006). Studies shows that granulocytes are the 
professional phagocytes that involved in phagocytizing the 
pathogens, and they also participated in nodule formation 
and envelopment (Jones 1977; Schmidt et al. 2001; Lavine 
and Strand 2002; Hillyer et al. 2003; Castillo et al. 2006). In 
addition, spherule cells are potentially a source of cuticular 
components that involved in secretions and storage; oeno-
cytoids are a source of phenoloxidases, and coagulocytes 
are involved in clotting (Jones 1977; Schmidt et al. 2001; 
Lavine and Strand 2002; Hillyer et al. 2003; Castillo et al. 
2006). However, the proportions and types of haemocytes 
vary among insect species. Our results revealed six types of 
haemocytes in the haemolymph of sixth instar larva of A. 
ipsilon (prohemocytes, plasmatocytes, granulocytes, spher-
ule cells, oenocytoids, and cystocytes). Prohemocytes are 
by far the most abundant cell type, followed by plasmato-
cytes and granulocytes, and oenocytoids comprise the least 
proportion of total haemocyte population. These haemocyte 
types have already been described in diverse species, includ-
ing Lepidoptera, Orthoptera, Diptera, Blattaria, Coleoptera, 

Fig. 4  Total haemocyte counts of A. ipsilon larva infected by E. coli. 
The letters on the column are the results of Tukey’s multi comparison 
between different time points at the same dosage, the different low-
ercase letters(a,b,c,d) represent statistically significant differences in 
total cell counts among different time points post-infection at P < 0.05 
level. CK is the control treatment, the error bars represent the stand-
ard error (SE)
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Hymenoptera, Hemiptera, and Collembola (Jones 1977; 
Lavine and Strand 2002; Hillyer et al. 2003; Ribeiro and 
Brehélin 2006; Castillo et al. 2006; Boguś et al. 2018). How-
ever, five types of haemocytes were found in the haemo-
lymph of fourth-instar larvae of A. ipsilon (prohemocytes, 
plasmatocytes, granulocytes, spherule cells, and adipohemo-
cytes) (El-Aziz and Awad 2010). These differences further 
demonstrated that haemocytes differ among developmental 
stages of the same insect species (Gillespie et al. 2000; Beetz 
et al. 2008). Furthermore, different foods eaten by the insect 
and different collection methods of haemocytes may also 

greatly affect the number and types of haemocytes obtained 
from the haemolymph (Castillo et al. 2006).

Cellular immunity depends on the phagocytosis, aggregation 
and encapsulation of haemocytes to pathogens. Plasmatocytes, 
granulocytes, and oenocytoids are the main haemocytes that 
involved in the procedure of cellular immunity (Hillyer et al. 
2003). Our study shows that plasmatocytes and granulocytes 
of A. ipsilon adhere to each other to form aggregations after 
infection with E.coli. These unstructured aggregations may be 
encapsulated by other haemocytes. Given the role of haemo-
cytes in the cellular immune response against pathogens, it can 

Fig. 5  Percentages of count 
number of haemocytes of A. 
ipsilon larva infected by E. coli. 
A. Percentages of prohemocyt; 
B. Percentages of plasmatocyte; 
C. Percentages of granulocyte; 
D. Percentages of spherule cell; 
E. Percentages of oenocytoid; 
F. Percentages of cystocyte.
The letters on the column are 
the results of Tukey’s multi 
comparison between differ-
ent time points at the same 
dosage, the different lowercase 
letters(a,b,c,c,d) represent sta-
tistically significant differences 
in percentages of count number 
of haemocytes among different 
time points post-infection at 
P < 0.05 level. CK is the control 
treatment, the error bars repre-
sent the standard error (SE)
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be hypothesized that pathogen invasion is enhanced by changes 
in morphology and quantity of the haemocytes in affected 
insects. In our study, haemocytes from sixth-instar larva of A. 
ipsilon infected by E. coli underwent considerable structural 
changes, including deformation, membrane disruption, changes 
in the position of the nucleus, and occurrence of vacuoles. This 
showed that larva of A. ipsilon rapidly elicited strong immune 
responses against inoculated bacteria. These results are in 
concordance with those of El-Aziz and Awad, who reported 
that the infection of A. ipsilon with B. thuringiensis induced 
several pathological detribitons in haemocytes, the contents of 
the granules seem to swell giving the cells an extremely vacu-
olated appearance (El-Aziz and Awad 2010). And in other 
species, such as Plodia interpunctella and Musca domestica, 
many haemocytes also showed considerable structural changes 
after infection with bacteria, including occurrence of vacuoles 
(Wang et al. 1990; Yan et al. 2009; Boguś et al. 2018).

Bacterial infection has also caused a significant increase in 
number of THCs of sixth-instar larva of A. ipsilon relative to 
the control (P < 0.05), at 6, 12, and 24 h post-infection. The 
number of THCs increased with the treatment time extended, 
and reached highest at 24 h, then it began to decrease after 
48  h post-infection. This revealed that strong immune 
response was stimulated in larva of A. ipsilon in a short time 
after infection with E.coli, and large numbers of haemocytes 
were produced and rapidly released into the haemolymph to 
phagocytose and encapsulate the bacteria. Similar results were 
obtained in other species, for example, the number of THCs 
in Manduca sexta larvae showed a marked increase after 
injected with Pseudomonas aeruginosa (Horohov and Dunn 
1982). In another study, injection of Enterobacter cloacae 
also caused a sharp increase in the number of THCs of Rhod-
nius prolixus up to 7 days post-infection, followed by a decline 
in the number of THCs after this time (De Azambuja et al. 
1991). Previous studies have showed that the development of 
hematopoietic organs, the proliferation of haemocytes, and 
the release of immobilized haemocytes all cause an increase 
in the number of THCs of insects (Feng et al. 2011). How-
ever, the speed of hematopoietic organs development and the 
proliferation of haemocytes were relatively slow, making it 
difficult to produce large numbers of haemocytes over a short 
period of time (Feng et al. 2011). Thus, we hypothesize that 
the immediate increase in the number of THCs in A. ipsi-
lon larvae after infection with E. coli resulted from the rapid 
release of immobilized haemocytes into the haemolymph after 
invasion, and that the increase in the number of THCs seen 
at later times during the post-infection period could result 
from the development of hematopoietic organs and the pro-
liferation of haemocytes. With increasing time post-infection, 
the number of haemocytes that be destroyed also increased, 
resulting in a decrease in the number of THCs (Feng et al. 
2011). However, our results were in contrast to the findings 
of El-Aziz and Awad, who reported a significant decrease in 

the number of THCs of forth instar larva of A. ipsilon rela-
tive to the controls at 12, 24, and 48 h post-infection with B. 
thuringiensis (El-Aziz and Awad 2010). In addition, a reduc-
tion in haemocyte counts of Trichoplusia ni was found after 
exposure to B.thuringiensis subsp.kurstaki (Btk) and after 
injection with E.coli (Ericsson et al. 2009). Infection with 
Conidiobolus coronatus also caused a significant drop in the 
number of haemocyte types in Galleria mellonella (Boguś 
et al. 2018). These variations in the number of THCs might 
result, in part, from the unusual resistance of different insects 
to different bacterial pathogens.

After infection with E.coli, the relative proportion of the six 
haemocyte types all changed. The percentage in number of pro-
hemocyte decreased until 24 h post-infection, and then began 
to increase. However, the percentages in number of plasmato-
cyte, granulocyte, spherule cell, oenocytoid, and cystocyte all 
increased, peaking at 24 h post-infection, and then decreased. 
The reasons may be that the prohemocyte was activated and 
differentiated into other haemocyte types during early post-
infection periods, caused the percentage in number of prohemo-
cyte to decrease and the percentages in number of plasmato-
cyte, granulocyte, spherule cell, oenocytoid, and cystocyte to 
increase. At later post-infection period, the plasmatocyte, granu-
locyte, spherule cell, oenocytoid, and cystocyte were destroyed, 
and the differentiation capacity of prohemocyte declined, caused 
the percentage in number of prohemocyte to increase and the 
percentages in number of other haemocyte types to decrease in 
the THCs. However, these results are in disagreement with those 
of Musca domestica, the percentages in number of plasmato-
cytes and granulocytes in the larva of M. domestica increased 
significantly at 4, 6, 8 h post-infection with E.coli, the percent-
age in number of spherule cells decreased, and the percentages 
in number of prohemocytes and oenocytoids did not change 
significantly (Yan et al. 2009). Also, bacterial injection into M. 
sexta larvae caused a significant increase in percentage in num-
ber of spherule cells and significant decrease in percentages in 
number of granulocytes and plasmatocytes (Horohov and Dunn 
1982). No significant changes in the number of oenocytoids 
were detected. In addition, the infection of Parasarcophaga 
surcoufi third-instar larvae with nematode decreased the per-
centages in number of plasmatocytes and granulocytes at 40 h 
of injection (Ayaad et al. 2001). These discrepancies further 
highlighted that the types and counts of haemocytes revolved 
in the immune response differed among insect species when 
infected with different microorganisms.

In conclusion, after infection with E.coli, the morphology, 
quantity and proportion of the haemocytes in sixth-instar larva 
of A. ipsilon all varied, revealing a particular pattern of cellu-
lar immune response in these larvae. In the immune response 
procedure, plasmatocyte, granulocyte, and cystocyte showed 
significant morphological variation, and their percentage varia-
tions was higher than other haemocytes in haemolymph. These 
indicate that plasmatocyte, granulocyte, and cystocyte are the 
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main participants in immune response of sixth-instar larva of A. 
ipsilon. The results shed addition light on the cellular immune 
response of insects to pathogens. Haemocytes are not only 
responsible for cellular immune response, they also provide 
humoral immunity factors, e.g. they often release a variety of 
hydrolases and antioxidase by degranulation during the phago-
cytosis, which are involved in clearing the pathogen. Further 
studies on the relationship between haemocytes and humoral 
factors in immune response are needed.
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