
Vol.:(0123456789)1 3

https://doi.org/10.1007/s42690-021-00685-3

ORIGINAL RESEARCH ARTICLE

Toxicological behavior of entomopathogenic fungi with insecticides: 
in vitro growth efficacies and conidial processes on mite cuticle

Neha Sharma1  · Neelam Joshi1

Received: 15 September 2021 / Accepted: 30 October 2021 
© African Association of Insect Scientists 2021

Abstract
The Crop protection system is dominated by the use of synthetic insecticides however incorporation of fungal biocontrol 
agents (FBA) at lower doses is considered to consolidate the integrated pest management (IPM) program. The success of IPM 
is delimited and relies on the understanding of how its performance is affected by adverse effects on FBA by agrochemicals 
deployed for its management as well as of other pests and diseases. In this study, laboratory grade actives of three different 
insecticides used for the control of Tetranychus urticae were tested at different concentrations to determine their effects on 
germination, mycelial growth and sporulation of eight entomopathogenic fungal isolates under in vitro conditions. The fungal 
isolate with the most adverse effects on the biological index was further studied for underlying reasons of antagonism. This 
paper reports for the first time changes in conidial surface morphology, its germination and penetration capacity on mite 
cuticle, post insecticide treatment. Bioassays showed that all insecticide actives at their lowest concentration (12.5% MC) 
were most toxic to Beauveria bassiana P isolate. Ethion and chlorpyriphos were compatible with Hirsutella thompsonii 
PDBC-1 at 12.5% MC while propargite showed compatibility with B. bassiana MTCC 6097, Metarhizium anisopliae MTCC 
4104 and Cordyceps fumosorosea MTCC 4636 at the same concentration. Further, SEM studies showed that post-insecticide 
treatments, there were structural deformations on the conidial surface with a decrease in its germination and germ tube pen-
etration capacity on the cuticle of T. urticae. Future studies in this area will help in improving IPM along with overcoming 
insecticide resistance problems.
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Introduction

In India, a large proportion of the population (56.7%) is 
associated with agriculture and is under exposure to insec-
ticides at large (Banerjee et al. 2014; Gupta 2004). Harmful 
effects of insecticides are not unprecedented and include 
residue problems in food products and water sources, del-
eterious effects on livestock and microbial control agents 
(MCA), resistance in pest insects (Johnsen et  al. 2001; 
Aktar et  al. 2009; Widenfalk et  al. 2008; Saxena et  al. 
2002). Among pest insects, Tetranychus urticae has been 
reported as ‘most resistant’ with > 500 cases of insecticide 
resistance and against 94 active substances (Michigan State 

University 2017; IRAC 2017). T. urticae is a polyphagous 
mite which infects > 900 different plant types (Mondal and 
Ara 2006) and the injudicious use of synthetic insecticides 
for its control has led to the development of uncontrolled 
resistance (Yucel 2021). Nevertheless, pest management 
operations rely largely on the extensive use of insecticides 
as other practices might not lead to instant results as desired 
by farmers (Sharma et al. 2019; Koli and Bhardwaj 2018; 
Tawfiq and Isra 2013; Kumral et al. 2010).

Entomopathogenic fungi have shown immense potential 
over the years in controlling many economically crucial 
insect pests of the agro-ecosystem (Dolinski and Lacey 
2007; Lacey and Shapiro-Ilan 2008; Lacey et al. 2015; 
Qasim et al. 2018, 2021b). Previous studies have recom-
mended higher inoculation rates of fungal biocontrol agents 
(FBA) for the control to be efficacious (> 90%) (Younas 
et al. 2017; Rivero-Borja et al. 2018; Meyling et al. 2018). 
However, the use of FBA at lower inoculation rates in 
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combination with low doses of synthetic insecticides (SI) 
has replaced the sole use of either two to protect the envi-
ronment as well as conservation of beneficial insects in 
the agro-ecosystem (Khun et al. 2021). This combinatorial 
process makes the insect pest more vulnerable for fungal 
attachment and penetration via various mechanisms viz. 
incapacitation of target pest mobility by paralysis, weak-
ening of insect cuticle or removal of fungal conidia from 
pest body surface via grooming behaviour or gustatory 
and olfactory signals (Yanagawa et al. 2018; Brito et al. 
2008). Workers have reported many insecticides as com-
patible with EPF (Younas et al. 2017; Rivero-Borja et al. 
2018; Meyling et al. 2018) while others have been shown 
to be antagonistic (Alves et al. 2016; Asi et al. 2010; Akbar 
et al. 2012). To our knowledge, the underlying cause of this 
antagonism has not been studied or identified so far. How-
ever, few studies have demonstrated the role of some com-
ponents from emulsifiable concentrates (toluene and similar 
aromatic solvents) as responsible agents for such adverse 
effects on bacterial (Morris 1977) and fungal entomopatho-
gens (FE) (Anderson and Roberts 1983) while limited pre-
liminary studies on active ingredients (AI) of pesticides as 
causative agents for antagonism is documented in the litera-
ture (Khun et al. 2021; Chakravarty and Sidhu 1987). In this 
study, we evaluated the impact of the active ingredient of 
three insecticides (used against T. urticae) on the germina-
tion, mycelial growth and sporulation of entomopathogenic 
fungi and sought to identify the underlying cause of antago-
nistic effects on fungal growth parameters by identifying 
changes in conidial structure. Also the effect of insecticide 
actives on conidial germination and germ tube penetration 
of the mite cuticle were observed.

Materials and methods

Strains and preparation of entomopathogenic 
fungal strains

The fungal isolates viz. Beauveria bassiana (MTCC 6097, 
MTCC 6291), Metarhizium anisopliae MTCC 4104, 
Cordyceps fumosorosea (Paecilomyces fumosoroseus) 
MTCC 4636, Akanthomyces lecanii (Lecanicillium lecanii) 

MTCC 956 and Cladosporium cladosporioides MTCC 
3872 were obtained from Microbial Type Culture Collec-
tion (MTCC), Chandigarh, India. Beauveria bassiana P 
isolate was isolated from the cadavers of T. urticae while 
Hirsutella thompsonii PDBC-1 was isolated in the labora-
tory previously.

B. bassiana isolates were cultured on malt extract agar 
(MEA) while all other isolates were cultured on Sabouraud 
dextrose agar (Sigma Ltd.) supplemented with yeast extract 
(1% w/v) [SDAY]. These culture media are routinely used 
for culturing the entomopathogenic fungi and the isolates 
used in the present study grew best on them, ensuring appro-
priate response to the insecticide supplemented media in 
the in vitro study while taking all precautionary measures 
to avoid any negative effects due to suboptimal media. All 
these isolates were incubated at 25 ± 1 ºC in the dark. From 
14 days old sporulating cultures, conidia were harvested 
for experimentation. The viability of conidia was evaluated 
at > 90% RH, and exceeded 90% for all isolates (Zhang et al. 
2014, 2016).

Response of eight fungal isolates to insecticide‑ 
supplemented media (ISM)

Among the insecticides used for the control of T. urticae, 
the tested insecticides in the present study are listed in 
Table 1. These insecticides were chosen at random among 
the large number of insecticides used in the pest manage-
ment operation against the mite. In this study, the protocols 
were adopted from pre-established methods for determin-
ing the effects of insecticides on EPF (Coremans Pelseneer 
1994). Commercial formulations of insecticides were not 
used in order to determine that the effect produced is due 
to the active ingredient in the insecticide. Analytical stand-
ards (Laboratory-grade) of propargite, ethion and chlor-
pyriphos were obtained from Sigma-Aldrich and all these 
had purity levels in the range of 96.3% to 99.9%. These 
active ingredients (AI) at 12.5%, 25%, 50% and 100% of 
their respective mean concentrations (MCs) along with 
negative control (no insecticide) and vehicle control (0.5% 
acetone) were analyzed for their response against the eight 
EPF isolates. Five replications were maintained for the 

Table 1  Insecticide treatments 
used against Tetranychus 
urticae and evaluated in the 
study

MC: Mean concentration of commercial product for application in 100 L of water per acre, EC: Emulsifiable 
concentrate, ppm: parts per million

Trade Name Active
Ingredient

Formulation Chemical
Group

MC (ml) ppm

Omite Propargite 57% EC EC Organosulfite 300 3000
Fosmite Ethion 50% EC EC Organophosphate 400 4000
Classic Chlorpyriphos 20% EC EC Organophosphate 1000 10,000
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experiment at 24 h interval and from each of the five plates 
of replication for each isolate, conidial suspensions were 
prepared independently.

The methods used in the study of Oliveira and Neves 
(2004) were slightly modified and used in the present 
study. Acetone (3% v/v) has been reported to have a nega-
tive impact on EPF (Anderson and Roberts 1983). So in 
the present study, acetone at lower concentrations was 
tested for its impact on EPF in preliminary studies prior to 
evaluation of laboratory-grade analytical standards. Each 
of the AI was dissolved in acetone (HPLC grade, ≥ 99.8%, 
Sigma-Aldrich) to prepare 200X MC stock solution (SS). 
It was further diluted in sterile distilled water to achieve 
50X of its MC. This diluted SS was filter-sterilized and 
added to the warm media at 1/400, 1/200, 1/100 and 1/50 
times of the total media volume in order to obtain AI con-
centrations of 12.5%, 25%, 50% and 100% of its MC in the 
ISM. The acetone concentration was only 0.25%, 0.125%, 
0.0625% in the ISM with 50%, 25% and 12.5% of its MC 
respectively, so acetone (25%) was added in each of these 
to obtain a uniform concentration of acetone (0.5%) in 
each treatment.

From 14 days old sporulating cultures, conidia were 
harvested from the plates using a sterile spatula and were 
dispersed in sterile distilled water containing 0.05% tween 
20 (Sigma-Aldrich). It was vortexed for 5 min to obtain a 
homogenized suspension. The conidial concentration was 
determined using a haemocytometer (Bright-Line™ Hem-
acytometer, Sigma-Aldrich) and compound microscope 
(Olympus BX53, 400X) equipped with a digital camera 
(DP74, Olympus). The concentration of the conidial sus-
pension was adjusted to 1 ×  104 conidia  mL−1 using Tween 
20 (0.05% v/v).

To determine mycelial growth, conidial suspension (10 
µL, 1 ×  104 conidia  mL−1) was inoculated in the centre of 
ISM. The petri-plates were doubled sealed with parafilm M 
(Sigma-Aldrich) and incubated (25 ± 2 °C; 15 days). Veg-
etative growth in terms of two orthogonal diameters was 
recorded for 7 days (Neves et al. 2001).

For sporulation, the mycelial mat was harvested from 
the entire surface of the colony with a sterile spatula. The 
conidia were dispersed in sterile distilled water with Tween 
20 (0.05% v/v) and vortexed (5 min) for homogenisation. 
Using a haemocytometer, conidial concentration was deter-
mined as described previously.

To determine conidial germination, a uniform spread 
of conidial suspension (20 µL, 1 ×  104 conidia  mL−1) on a 
SDAY or MEA block (4  cm2) on a sterile glass slide was 
made. The slides of each treatment and replication were 
placed in separate moistened filter paper-lined sterile petri 
plates and incubated (25 ± 2 °C) for 18 h under dark condi-
tions. With 100–200 conidial counts on each slide, conidial 
germination (%) was determined. If the germ tubes were 2X 

the diameter of the propagule, the conidia were regarded as 
germinated.

Rearing of red spider mite, Tetranychus urticae

Brinjal (Solanum melongena) nursery was established and 
French beans (Phaseolous vulgaris Linn.) seeds were sown 
in earthen pots and maintained at 25 ± 2 °C, 60 ± 10% RH, 
and 16 h light photoperiod in screen house at the Department 
of Entomology, PAU. The leaves (5–6 leaf stage onwards) 
of these crops were used for rearing Tetranychus urticae 
adults, collected from various P. vulgaris fields. The mite 
culture obtained after the second generation was used for 
experimentation.

Treatment of Tetranychus urticae with Beauveria 
bassiana P isolate

Under laboratory conditions, petri dishes containing mul-
berry leaves were sprayed with 2.5 mL of conidial suspension 
(1 ×  106 conidia  mL−1) of B. bassiana P isolate (obtained 
from ISM plates) in a laminar airflow cabinet. Control leaves 
were treated with Tween 20 (0.3% v/v). The adult mites were 
released on mulberry leaves damped underneath with moist 
cotton wool and the petiole of the leaf remained immersed 
in damped cotton to remain hydrated. The leaf disc was sur-
rounded by a Tanglefoot® barrier to prevent mites from 
escaping to the lower side of the leaf. The petri dishes were 
incubated at 25 ± 2 °C, 70 ± 5% RH and observed daily for 
seven days for mite mortality. All the treatments were repli-
cated thrice, with 20 mites in each replication. In preliminary 
experiments (data not shown), the infectivity of B. bassiana 
P isolate (obtained from untreated media plates) at the same 
conidial concentration against T. urticae was determined and 
showed high mortality (Dash et al. 2018).

Effect of insecticides

Scanning electron microscopy (SEM)

SEM studies were used to observe the morphological 
changes in the conidia and also to determine the tendency 
of the conidia to germinate and penetrate the cuticle of T. 
urticae, post insecticide treatment.

Conidial surface morphology of Beauveria bassiana P 
isolate

Dried conidial samples from control (untreated) and all the 
treatments were covered with evaporated platinum. Possible 
morphological changes on the conidial surface were observed 
under SEM (SEM; Hitachi S4800, Ibaraki, Hitachi) (Shan 
et al. 2010).
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Germination and penetration capacity of Beauveria 
bassiana P isolate conidia

Adult mites were treated with B. bassiana P isolate suspen-
sion (2 mL; 1 ×  106 conidia  mL−1) for 5 s and each replication 
was reared separately by the method described above. After 
12, 24, 36, 48 and 60 h, the treated mites were removed and 
fixed with glutaraldehyde (10%) and dehydrated using gradi-
ent series of ethanol and hexamethyldisilazane. Under a high 
vacuum evaporator, dried samples were sputter-coated with 
gold and observed under SEM (Zhang et al. 2018).

Statistical Analysis

The compatibility study between EPF and laboratory-grade ana-
lytical standards of insecticides was determined using the bio-
logical index (BI), as proposed by Rossi-Zalaf et al. (2008) and 
used by Ribeiro et al. (2012), da Silva et al. (2013), Alves et al. 
(2016) and Khun et al. (2021) in their studies, calculated as:

where VG, SP and GER represent radial growth of fungal col-
ony (%), colony sporulation (%) and conidia germination (%), 
respectively. Compatibility level is indicated by the value of 
BI, where the value of 0–41, 42–66 and > 66 indicates toxic, 
moderately toxic and compatible, respectively. All subsequent 
analyses were performed in Minitab version 19.2020.2.0.

Analysis of the biological indices for the entomopathogenic 
fungal isolates

For the determination of normality and homogeneity of variance, 
the Anderson–Darling test (Anderson 2011) and Levene’s test 
(Erjavec 2011) using Minitab version 19.2020.2.0 were applied, 
respectively. As the data observed conformation to the assump-
tion of normality, two-way analysis of variance (ANOVA) using 
a general linear model from Minitab version 19.2020.2.0 was 
used. Significant differences between treatments were deter-
mined with Tukey adjustment for multiple comparisons using 
the Lsmeans (Least-Squares means) (Lenth 2016) using Minitab 
19.2020.2.0.

Results

Response of entomopathogenic fungal isolates 
to ISM

The biological index of the tested insecticides was found to 
vary in all the fungal treatments (P < 0.05, Table 2). These 
differences were primarily due to the species/strain of EPF, 
chemical nature of the insecticide and concentration of 

BI =
(47 ∗ VG) + (43 ∗ SP) + (10 ∗ GER)

100

the insecticide tested. Propargite at 12.5% of its MC was 
compatible with B. bassiana MTCC 6097, M. anisopliae 
MTCC 4104 and C. fumosorosea MTCC 4636. Ethion was 
compatible with H. thompsonii PDBC-1 at 12.5% and 25% 
of its MCs. Similar to ethion, chlorpyriphos recorded com-
patibility with H. thompsonii PDBC-1 at 12.5% and 25% 
of its MCs. An increase in the concentration of insecti-
cides in the media from 12.5% to 100% of their respective 
MCs showed a resultant decrease in their biological index 
and it was true for all the tested insecticides (P < 0.05). 
Propargite, ethion and chlorpyriphos even at their lowest 
concentration were very toxic to B. bassiana P isolate, A. 
lecanii MTCC 956 and C. cladosporioides MTCC 3872; 
B. bassiana P isolate and A. lecanii MTCC 956; B. bassi-
ana MTCC 6097, B. bassiana P isolate and C. cladospori-
oides MTCC 3872, respectively (Table 2). This signifies 
differential antagonistic behaviour of fungal strains in 
response to the same chemical stress. The maximum was 
recorded by B. bassiana P isolate among all the insecti-
cides at their minimal concentration tested (12.5% MC).

Effect of insecticides on the structure and infectivity 
of fungal conidia

The surface morphology of EPF conidia and its penetration into 
the mite cuticle after exposure to insecticides was measured as a 
function of the mortality of the exposed mites. Intriguingly, SEM 
observations showed that insecticide-treated conidia of B. bassi-
ana P isolate were deformed or having structural aberrations 
(Fig. 1B–D) in comparison to the control conidia (Fig. 1A). In 
all the treatments, most of the conidia shrivel and shed from the 
surface of conidia within 48 h. This might be due to the reason 
that following insecticide treatment, and their cell walls become 
more fragile and vulnerable. Further in control, the conidia ger-
minated on the cuticle of T. urticae and germ tube penetration 
of the cuticle was also observed (Fig. 1E). However, compared 
to control, propargite pre-treated conidia showed germination on 
the conidial surface but didn’t penetrate the cuticle after 24–36 h 
(Fig. 1F). Ethion pre-treatment led to larger conidia formation 
in comparison to control and non-penetration of the cuticle was 
also observed by these larger conidia (Fig. 1G), while hollow 
tubular structures were observed in chlorpyriphos pre-treated 
conidia. Also, miniature germ tubes erupted in the latter, which 
did not show cuticle penetration after 48 h (Fig. 1H).

Discussion

The present study emphasises the importance of interaction 
between agrochemicals and fungal biocontrol agents (FBA) 
as well as its impact on the latter, for their use in the soil 

1642 International Journal of Tropical Insect Science (2022) 42:1639–1647



1 3

Table 2  Summary of 
the responses of eight 
entomopathogenic fungal 
isolates to laboratory- grade 
insecticides used against 
Tetranychus urticae. Data are 
biological index (BI). MC, 
Mean concentration. Pink 
cells, highly toxic (BI ≤ 41); 
Yellow cells, moderately toxic 
(BI = 42–66); green cells, 
compatible (BI ≥ 66)

Insecticide Concentrations

Insecticide Isolates
12.5% of MC 

± SE

25% of MC ± 

SE

50% of MC ± 

SE

100% of MC ± 

SE

Propargitea

Beauveria bassiana

MTCC 6097

70.98 ± 5.36 

aB

51.64 ± 6.82 

bC

48.93 ± 2.20 

cAB

42.55 ± 1.91 

dB

B. bassiana 

P isolate

36.04 ± 5.85 

aG

32.11 ± 11.09 

bF

27.06 ± 6.77 

cF

24.54 ± 5.45 

dE

B. bassiana 

MTCC 6291
58 ± 5.58 aD

47.79 ± 3.52 

bD

42.45 ± 3.12 

cC

35.73 ± 2.63 

dC

Metarhizium anisopliae

MTCC 4104

67.37 ± 8.78 

aC

57.42 ± 1.83 

bB

47.63 ± 1.51 

cB

34.42 ± 1.09 

dC

Cordyceps fumosorosea

MTCC 4636

74.51 ± 7.27 

aA

63.83 ± 1.97 

bA

50.48 ± 1.56 

cA

46.84 ± 5.42 

dA

Akanthomyces lecanii

MTCC 956

39.07 ± 3.90 

aF

37.43 ± 1.92 

abE

36.88 ± 6.92 

bD

33.33 ± 1.71 

cC

Cladosporium

cladosporioides

MTCC 3872

40.34 ± 2.92 

aF

36.36 ± 8.36 

bE

31.63 ± 5.14 

cE

28.26 ± 7.30 

dD

Hirsutella thompsonii

PDBC-1

49.76 ± 6.64 

aE

37.51 ± 1.57 

bE

22.57 ± 9.37 

cG
21.46 ± 6.34 cF

Ethionb

B. bassiana

MTCC 6097

54.73 ± 12.31 

aD
32.3 ± 9.08 bG

27.07 ± 10.21 

cD

25.72 ± 6.39 

cD

B. bassiana 

P isolate

30.57 ± 6.51 

bF

35.62 ± 6.67 

aF

25.66 ± 7.11 

cD

20.19 ± 4.65 

dE

B. bassiana

MTCC 6291

57.07 ± 6.67 

aC

54.06 ± 4.80 

bC

51.97 ± 7.20 

bA

48.49 ± 7.44 

cA

M. anisopliae

MTCC 4104

53.01 ± 5.07 

aD

50.73 ± 4.85 

bD

46.49 ± 4.44 

cB

44.53 ± 4.26 

dB

C. fumosorosea

MTCC 4636

79.36 ± 7.34 

aA

70.38 ± 4.92 

bA

53.88 ± 3.76 

cA

42.96 ± 3.00 

dB

A. lecanii

MTCC 956

39.89 ± 8.03 

aE

37.97 ± 3.96 

abE

36.61 ± 6.39 

bcC

35.79 ± 6.85 

cC

C. cladosporioides

MTCC 3872

41.22 ± 6.88

aE

36.36 ± 3.49 

bEF
25.4 ± 2.44 cD

23.03 ± 2.21 

dDE

H. thompsonii

PDBC-1

68.04 ± 10.40 

aB

59.61 ± 7.95 

bB

37.36 ± 5.68 

cC

33.38 ± 6.26 

dC

Chlorpyriphosc

B. bassiana

MTCC 6097

30.94 ± 6.76 

aF

30.36 ± 12.40 

aE

27.65 ± 6.72 

bE

25.72 ± 6.92 

bC

B. bassiana 

P isolate

36.18 ± 9.51 

aE

30.71 ± 5.57 

bE

29.03 ± 6.75 

bE

24.26 ± 4.54 

cC

B. bassiana 

MTCC 6291

51.97 ± 7.11 

aC

42.92 ± 3.81 

bC

35.49 ± 9.18 

cD
29 ± 6.34 dB

M. anisopliae

MTCC 4104

59.21 ± 7.58 

aB

50.24 ± 4.80 

bB

45.84 ± 4.38 

cB
38 ± 3.63 dA

C. fumosorosea

MTCC 4636

46.84 ± 7.29 

aD

38.59 ± 2.69 

bD

35.19 ± 2.46 

cD

31.31 ± 2.18 

dB

A. lecanii

MTCC 956
45.9 ± 7.33 aD

42.89 ± 4.48 

bC

40.71 ± 4.25 

bcC

38.52 ± 7.32 

cA

C. cladosporioides

MTCC 3872

38.48 ± 6.11 

aE

37.48 ± 9.29 

aD

30.26 ± 4.84 

bE

19.67 ± 5.57 

cD

H. thompsonii

PDBC-1
79.8 ± 8.10 aA

70.27 ± 5.44 

bA

58.66 ± 4.54 

cA

37.67 ± 8.56 

dA
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ecosystem. The fungi are ubiquitous, and most of them are 
largely studied as biocontrol agents and are imperative compo-
nents of integrated pest management (IPM) programs (Yadav 
et al. 2019). The agro-chemicals in the agro-ecosystem, either 
used in integration with FBA or elsewhere, greatly influence 
fungi and their functions (Meena et al. 2020; Aktar et al. 2009). 
This signifies to determine the most suitable FBA to be used 
in combination with synthetic agro-chemical(s) against insect 
pest(s) in Integrated Pest Management (IPM). Also, the under-
lying reasons for fungal antagonism when used with these 
chemical pest control agents becomes imperative to understand 
the better protection and sustainability of the environment as 
a whole.

The agrochemicals, which tend to either have a positive or 
least effect on the growth parameters of entomopathogenic 
fungi, should be adopted for their use in IPM (Oliveira et al. 
2003; Qasim et al. 2021a). The use of azadirachtin inhibited 
the growth of Glomus etunicatum strain while carbendazim, 
hampered colonization as well as community structure of 
indigenous arbuscular mycorrhizal fungi (Ipsilantis et al. 
2012). The application of organophosphate insecticides 
has been reported to impact various soil fungal populations 
and nitrogen mineralization rates (Pandey and Singh 2004). 
These findings suggest that these chemicals depreciated 
fungal growth efficacy and functions and resulted in struc-
tural aberrations in the EPF. There might be a possibility 
that if their use remained uncontrolled and injudicious, the 

deformations in the fungal structure might become inherent 
with generations and affect its pest infectivity rate over time.

To the best of our knowledge, no literature is found 
on the direct effect of insecticide active ingredients 
on the structure and infectivity of insecticide-treated 
conidia against T. urticae. However, preliminary com-
patibility studies of different insecticides against several 
pests have been reported (Wari et al. 2020; Abidin et al. 
2017; da Silva et al. 2013; Mikunthan and Manjunatha 
2010; Oliveira et al. 2003). Our results found agreement 
with Khun et al. (2021), who reported high toxicity of 
diazinon active ingredient to germination and growth of 
M. anisopliae QS155 and B. bassiana B50 at all tested 
concentrations, except 25% of full-field concentration for 
later. Yadav et al. (2019) also found that tolfenpyrad, spiro-
tetramat, fipronil were highly toxic to B. bassiana (Bals.) 
and significantly reduced its vegetative growth and conidia 
production while emamectin benzoate (@ 0.5, 1 and 1.5FR 
[field recommendation] dose), imidacloprid (@ 0.5FR 
and 1FR dose), clothianidin (@ 0.5FR and 1FR dose) and 
buprofezin (@ 0.5FR and 1FR dose) showed high com-
patibility. Pelizza et al. (2018) reported that B. bassiana 
LPSC 1067 grown in the presence of gamma-cyhalothrin 
(52 ppm), showed 83.13% reduction in conidia production. 
In contrast, a study by Rashid et al. (2010) reported that 
tested insecticides inhibited conidial germination of M. 
anisopliae DEMI 001 independent of their concentrations. 

Table 2  (continued) a F (7, 64) = 47.19, P < 0.001 (for isolate factor),  F(3,64) = 68.63, P < 0.001 (for concentration factor), 
 F(21,64) = 3.06, P > 0.001 (for interaction). Means followed by different uppercase letters in columns and 
lowercase letters in rows indicate significant differences (LSMEANS test with Tukey adjustment, α = 0.05)
b F (7, 64) = 36.28, P < 0.001 (for isolate factor),  F(3,64) = 43.49, P < 0.001 (for concentration factor), 
 F(21,64) = 2.76, P > 0.05 (for interaction). Means followed by different uppercase letters in columns and low-
ercase letters in rows indicate significant differences (LSMEANS test with Tukey adjustment, α = 0.05)
c F (7, 64) = 35.50, P < 0.001 (for isolate factor),  F(3,64) = 33.34, P < 0.001 (for concentration factor), 
 F(21,64) = 1.90, P > 0.05 (for interaction). Means followed by different uppercase letters in columns and low-
ercase letters in rows indicate significant differences (LSMEANS test with Tukey adjustment, α = 0.05)

Fig. 1  SEM views of the surface changes of treated Beauveria bassi-
ana P isolate conidia. A. No insecticide and acetone (Control); B-D. 
Insecticide treated conidia (B. Propargite; C. Ethion; D. Chlorpy-
riphos). Scale bars = 0.5  µm. Conidial attachment, germination and 

penetration of B. bassiana P isolate on the cuticle of Tetranychus 
urticae post treatment with, E. No insecticide and acetone (control); 
F. Propargite (24–36 h); G. Ethion (48 h); H. Chlorpyriphos (48 h). 
Scale bars = 10.0 µm
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At the concentration of 50 ppm, 100%, 28.2% and 3.31% 
conidial germination reduction were found with hexaflu-
muron, fipronil and pyriproxyfen. Contrary, the work of 
Niassy et al. (2012) showed that there was no deleterious 
effect of imidacloprid on vegetative growth and conidia 
production of M. anisopliae ICIPE 69. Imidacloprid used 
with M. brunneum showed similar results during the stud-
ies of Paula et al. (2011). This synergistic growth effect is 
due to the potential of certain fungi to metabolize specific 
compounds and use them as secondary nutrients (Moino 
and Alves 1998).

Limited studies have reported adverse effects of chemi-
cals besides pesticides on the structure of EPF. Shan et al. 
(2010) observed that rodlet layers on the conidial surface 
of B. bassiana Bb2860 and M. anisopliae Ma456 were 
removed after treatment with formic acid (FA) and trif-
luoroacetic acid (TFA). They reported that hydrophobins, 
the proteins associated with adhesion, antigenicity and 
morphogenesis of the conidial surface, got dissociated 
after exposure to FA and TFA. These chemicals tend to 
neutralize hydrophobicity and thus binding of conidia to 
insect cuticle (Boucias et al. 1988). Exposure to detergents 
and other chemicals which alters pH sensitize the process 
of conidial attachment to insect cuticle and inhibits adhe-
sion by 80–90% and 30%, respectively (Holder and Keyhani 
2005). The biochemical basis of insecticides killing fungi 
has been documented by certain workers. NADH oxido-
reductase complex-I has been reported to be inhibited by 
the action of Tolfenpyrad (List FC 2018). Toxicity of Spiro-
tetramat to M. brunneum (Petch) and B. bassiana (Bals.) 
(Yadav et al. 2019) is attributed to its potential to inhibit 
acetyl CoA carboxylase, which affects lipid synthesis in 
fungi (IRAC 2018).

Conclusions

Obtained results showed that propargite, ethion and chlor-
pyriphos all significantly altered the infectivity potential of 
Beauveria bassiana P isolate towards Tetranychus urticae. 
So, there is an urgent need to monitor the potential antago-
nistic effects of agrochemicals on microbial control agents 
(MCA), especially in the industries where crop protection 
programs are reformed by the integration of entomopatho-
gens with synthetic agrochemicals. The development of crop 
protection calendars will further consolidate these programs, 
which will not only provide data on interactions between dif-
ferent agrochemicals and MCA but timely profile of chemi-
cals usage in the fields also. More detailed studies need to 
be conducted concerning the mortality response of T. urti-
cae to the combination treatment of EPF and insecticides 
that have the potential for efficient mite control together 
with the reduction in adverse effects on EPF and amounts 

of insecticide usage as well as prevention or delay in the 
development of insecticide resistance. Future studies can be 
explored to advance formulation engineering of insecticide 
active ingredients to obtain more compatibility with EPF.
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