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Abstract
Purpose This work proposes a protocol to be used in a Brain-Computer Interface (BCI) for hand and finger movement
rehabilitation aimed at post-stroke patients. This strategy is based on Electroencephalography (EEG) and uses concepts of
both Static Visual Stimuli (SVS) of the own subject’s hand (OwnSVS) and Kinesthetic Motor Imagery (KMI) to improve the
motor task recognition of the same limb.
Methods The protocol proposed here takes into account several aspects, such as physical rehabilitation strategies, Active
Hand Orthosis (AHO) — represented by a robotic glove —, and the acquisition of the EEG signal over the brain motor
area. Power Spectral Density (PSD) and Riemannian Geometry (RG) are used for feature extraction in this work, considering
Mu (μ, 8–12 Hz), Low-Beta (Low-β, 13–17 Hz) and High-Beta (High-β, 18–24 Hz) frequency bands. Moreover, a feature
selection stage using Pair-Wise Feature Proximity (PWFP) is also used before input to a Machine Learning (ML) classifier.
Here, Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbors (kNN), and Decision Tree
(DT) are compared.
Results As results, evaluated in 10 healthy subjects, features using PSD-PWFP and kNN achieved a maximum ACC of
89.81% (with AHO movements), improving by 3% the standard protocol (without AHO movements).
Conclusions The findings of this work indicate that AHOmovement assistance can improve the recognition of hand opening
and closing MI tasks, which can be implemented in the design of robotic BCI controllers for hand and finger movement
neurorehabilitation in stroke patients.
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Introduction

Neurorehabilitation constitutes the systematic retraining of
the brain to enhance or restore impaired communication and
motor functions, based on the premise that motor learning
can facilitate motor recovery (Kitago and Krakauer 2013).
The main objective of neurorehabilitation is to implement
strategies to stimulate the brain to create and reorganize neu-
ral connections (Kleim and Jones 2008; Binks et al. 2023).

In the brain, the Primary Motor Cortex (M1), the Supple-
mentaryMotor Area (SMA), and the Pre-Motor Area (PMA)
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are activated during motor mental tasks. M1 is directly
responsible for the coordination of voluntary movements,
whereas PMA supports the movements generated by M1 of
both hemispheres, allowing Motor Imagery (MI) or “Mental
Practice” tasks (Padfield et al. 2022).

A stroke can affect several regions of the brain, depending
on the location of the disrupted blood flow, with the symp-
toms being different according to the affected hemisphere.
When affecting hand movements, the effects of a stroke vary
between left-handed (about 10%of the population) and right-
handed individuals (about 90% of the population) (de Kovel
et al. 2019). Thus, if the affected person is right-handed,
a stroke occurring in their brain’s right hemisphere would
impact the non-dominant left side of their body. In this case,
adapting to weakness on the non-dominant side is generally
easier, as the dominant side can often compensate (de Kovel
et al. 2019). Nonetheless, even affecting the non-dominant
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side, a stroke can still have a substantial impact on perform-
ing essential Activities of Daily Living (ADLs) due to the
provoked hemiparesis.

Scientific evidence indicates that Brain-Computer Inter-
faces (BCIs) can be used successfully for neurorehabilita-
tion in people affected by stroke (Tsiamalou et al. 2022).
Specifically, BCIs act as an alternative non-muscular com-
munication channel between the user’s brain and a computer
to contribute to motor rehabilitation (Vavoulis et al. 2023;
Tabernig et al. 2018). Several studies have shown that BCIs
can be applied as part of a high-level control system in
active orthoses, robotic exoskeletons, or robotic wheelchairs
to enable training methods and interventions in neuroreha-
bilitation. For this reason, the use of a BCI may also be an
important factor for hand function recovery, which is one
of the most challenging topics in the rehabilitation of post-
stroke patients (Yue et al. 2017; Basteris et al. 2014).

When used for upper limb rehabilitation, BCI-based
MI can enhance conventional therapy. Several BCI devel-
opments have used MI-based protocols in rehabilitation
intervention (Tabernig et al. 2018; Frolov et al. 2017; Simon
et al. 2021). Furthermore, the literature also reports that the
combination of twomental practice techniques, such as Static
Visual Stimuli (SVS) and MI can enhance the neurorehabili-
tation of post-stroke patients (Binks et al. 2023). In SVS, the
subject observes a static image on a screen as a cue, which
indicates the mental action he/she must execute. In fact, a
recent study has shown that SVS combined with MI evokes
neuronal reorganization that corresponds to the effects of
physical practice, improving plasticity from cortical levels to
the patient’s spinal circuits (Binks et al. 2023). This effectwas
even confirmed using functional Magnetic Resonance Imag-
ing (fRMI) (Nagai and Tanaka 2019), which has reported a
significant difference when comparing SVS+MI with only
SVS. Interestingly, Taube et al. reveal that the use of SVS
from one hand (termed OwnSVS) generates a stronger μ-
Event-Related Desynchronization (μ-ERD) response in the
frequency range from 8 to 12 Hz in the sensorimotor area
compared to the non-SVS hand (Taube et al. 2015). In addi-
tion, our previous study mentioned the importance of using
AOH in a protocol for hand opening and closing, where ERD
decreased more when using the robotic glove rather than
using only the hand movement performed by healthy sub-
jects (Blanco-Díaz et al. 2023).

It is worth mentioning that the relationship between SVS
and motor function has already been demonstrated in stud-
ies conducted with post-stroke patients, using the traditional
technique of Mirror Therapy (MT) implemented by Occu-
pational Therapists (de Freitas Zanona et al. 2023). MT is a
technique in which the patient positions their functional limb
on the reflective side of a mirror, and the limb affected by

hemiplegia is hidden on the opposite side. The less affected
limb is visible to the patient, whereas the hemiplegic limb
is hidden from view. Hence, the mirror reflects the image of
the functional limb, and consequently, the patient perceives
the mirrored image as his/her hemiplegic limb (Denslow
2023). This setup enables the patient to mentally simulate
movements in the hemiplegic limb while actively moving
the functional limb (Taube et al. 2015). Therefore, MT-
based strategies have also been considered in recent BCIs
(Rungsirisilp and Wongsawat 2022).

It is known that when MI is performed, it evokes changes
in ERD and Event-Related Synchronization (ERS) patterns
associated with μ and β rhythms. ERD/ERS are phenomena
that produce decreasing/increasing power changes in specific
frequencies of brain signals, such as Electroencephalogra-
phy (EEG) signals (Pfurtscheller et al. 2003; Pfurtscheller
2001). It is worth mentioning that the act of imagining or
executing a complex hand movement can enhance motor
learning (Heena et al. 2021) and neural plasticity (Ruffino
et al. 2017). This may be significant for post-stroke patients’
rehabilitation owing to imaging complex tasks requires more
concentration from the patient and more cognitive control to
generate discriminative patterns between classes (Guerrero-
Mendez et al. 2023a). In addition, the imagination of complex
hand movements can help provide greater usability, control-
lability, and reliability for rehabilitation systems based on
BCIs.

The BCI principle for upper limb rehabilitation systems
is widely based on the classification of the user’s intention
of hand KMI by EEG (Wang et al. 2023). Commonly, most
upper limb-based BCIs aim at the recognition of right and
left-hand KMI or between resting and MI of movements
(Meng et al. 2016; Wang et al. 2023). BCIs with robotic
end-effectors have demonstrated promising results under this
concept for the rehabilitation of people with disabilities. As
a limitation, binary classification-based systems have also
been associated with limited degrees of freedom, which can
affect the human–machine interaction, and with this, the BCI
usability (Padfield et al. 2022). Therefore, systems should be
able to discriminate different handmovements from the same
limb using EEG. In this context, open or closed-hand pos-
tures do not appear to be a highly complex task, as explored in
Guerrero-Mendez et al. (2023a), but it continues to be a high
challenge considering the different factors that affect the BCI
performance, such as inter-subject variability, concentration,
among others (Lee et al. 2019). Moreover, the current reso-
lution of low-cost EEG systems poses a challenge for easily
measuring deep cortical brain activity, which gives an oppor-
tunity for computational strategies to discriminate activity
related to the same limb, such as hand opening and closing
(Tavakolan et al. 2017; Alazrai et al. 2019).
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In order to improve existingBCIs, a recent review reported
that Kinesthetic Motor Imagery (KMI) produces neural sig-
nals that are easily classified through EEG (Simon et al.
2021). This occurs because of motor cortical regions are
strongly activated during KMI, since, in this case, the sub-
ject is asked to imagine movements, also feeling sensations
elicited by a robotic glove, rather than just visualizing these
movements, as occurs with visual MI (Nagai and Tanaka
2019). In fact, studies conducted by Frolov et al. (2017) show
that adding BCI control to robot-assisted physical therapy
through KMI to open/close both hands improves post-stroke
rehabilitation outcomes. The literature shows that the power
changes of the sensorimotor rhythms can differ according
to handedness, significantly affecting the performance of MI
tasks (Zapała et al. 2021). Moreover, when using MI, vari-
ous physiological and non-physiological artifacts impact the
weak amplitude of EEG signals, complicating the recogni-
tion of this type of imagination pattern (Padfield et al. 2022),
which underscores the difficulties inherent in this research.

This work presents a novel protocol of EEG acquisition of
open/close hands based on KMI and SVS. In this protocol,
the participant is asked to observe a static image of their own
hand (either open or closed) on a screen, while concurrently
perceiving themovement of their hand facilitated by anAHO.
Our protocolwas evaluatedwith healthy subjectswhoseEEG
signals were processed and classified. We believe that this
protocol can be used to design BCIs for the rehabilitation
of hand and finger movements of post-stroke patients. As an
additional contribution of this study, it is worth noting that
the protocol proposed here is different from the commonly
conducted, in which the subject only imagines their left and
right-hand movements.

Materials andmethods

EEG preparation and acquisition

In our protocol, EEG signals are captured through a cap with
16 Ag-Cl electrodes, positioned according to the Interna-
tional 10/20 System. A biosignal acquisition system com-
posed of two boards: Cython and Daisy (OpenBCI, US),
acquire the subject’s EEG signals. This system is controlled
through aGraphicalUser Interface (GUI) installed in a laptop
connected only to the battery itself. The connection between
the laptop and the signal acquisition boards is wireless, tak-
ing place through a dongle connected to the laptop’s USB
port. For this study, we modified the original location of
the OpenBCI EEG cap, so that the electrodes used in our
research were grouped close to the SMA, M1, and PMA of
the brain, as shown in Fig. 1A, which shows the specific cor-
tex area responsible for hand movements (area of interest for
our research).

During the MI task, the initial cognitive activity that man-
ifests the intention to perform movement tasks originates
in the frontal cortex, propagating toward the motor area
(Padfield et al. 2022). Thus, based on this knowledge, the
electrode locations for our research were defined as FP1,
FP2, F3, F4, FC3, FCz, FC4, C5, C3, C1, C2, C4, C6,
CP3, CPz, and CP4, as shown in Fig. 1B, with reference
electrodes (A1 and A2) placed on the earlobes. According to
the literature, this electrode positioning has demonstrated the
most relevant power changes and covers the most significant
sensorimotor areas to discriminate MI tasks (Alazrai et al.
2019).

The EEG signals are recorded at a sampling rate of 125
Hz, and the impedance of the electrode skin was kept below
20 k�. This impedance value close to 20 k� allows us to
have a faster process of wearing the EEG cap on the sub-
ject’s head (about 15 min), preventing post-stroke patients
fromgiving up rehabilitation therapy,which is very common,
according to our experience. However, very high impedance
values affect the reliability of the EEG signals, increasing
the level of outliers. It is worth commenting that in our pre-
viouswork (Romero-Laiseca et al. 2020), we have conducted
experiments with a lower electrode-skin impedance (10 k�).
However, this process required more preparation time (more
than 30 min), causing discomfort and boring the subjects.

Protocol design

Figure2 shows the timing diagram of the experiments for
EEG signal acquisition using the experimental design based
on KMI+SVS. The protocol includes user training and
recording of the EEG signals based on their own SVS in
first person and KMI with AHO, represented by a robotic
glove. The actions (or classes) contemplated in our proto-
col are Open Hand KMI (OH-KMI) and Closed Hand KMI
(CH-KMI). AGUIwas developed usingOpenViBE software
(Inria, FR), which is compatible with Python and displays
the SVS synchronized with the robotic glove to generate the
protocol sequences. The stimuli are displayed on a 15.6-inch
computer screen, 60cm away from the participants.

The first phase of our protocol corresponds to 16s of base-
line, which is a black screen displayed to the participant.
Subsequently, the screen shows figures representing the hand
actions (two classes: OH-KMI or CH-KMI). The AHO used
here is a pneumatic robotic glove (Model ML-115A from
Gendoing, CN), powered by 5 V/2 A, with a pressure range
from -58 kPa to 120 kPa. An electronic circuit based on a
generic 6V solenoid valve, a voltage source, and a microcon-
troller board Arduino Mega 2560 (Arduino, IT), is used to
inflate the glove pneumatic bags, opening the AHOs, accord-
ing to the proposed protocol.

Each subject completed a session of ten trials for MI con-
duction (Fig. 2), with a total of 150 trials per class. Between
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Fig. 1 A Location of the brain
motor area: M1, SMA, and
PMA; B electrode locations
used in this work

each trial, the subject rested for 30 s to preventmental fatigue.
The total duration of the protocol was approximately 65 min
(approximately 5 min for instructions on how to perform the
protocol; 15min for fitting the cap on the subject’s head, plac-
ing the gel, and obtaining electrode-skin impedance below20
k�; and 45 min for the acquisition of EEG signals following
the protocol).

Protocol execution

The protocol was carried out in ten healthy subjects (seven
men and one woman right-handed, and two left-handed
women, 28.4±11.6years). The subjects voluntarily accepted
to participate in the experiment and were fully informed
of the tasks to be performed. In addition, they signed the
Free and Informed Consent Form, in accordance with the
Declaration of Helsinki. The protocol used in this research
was approved by the Ethics Committee of the Federal Uni-
versity of Espírito Santo (Brazil) under the CAAE number:

39410614.6.0000.5060. In each experiment, only each sub-
ject and the researcher were present in an isolated room to
avoid interference from other people. Figure3 shows images
of the ten participants performing the protocol.

During the experiment (see Fig. 2), the participant was
seated in a comfortable chair and asked to imagine the move-
ment of the hand while the image of a figure representing
the movement appeared on the screen in front of him/her.
This was done to reinforce the MI and generate visual feed-
back to the subject. In addition, subjects could observe their
own hand (worn with the AHO) in front of the screen. Syn-
chronously, the AHO moved according to the image of the
hand displayed on the screen. Thus, the concepts of SVS of
the subject’s own hand (OwnSVS) and KMI were applied.
Participants were instructed to avoid eye movements during
the protocol. Before obtaining EEG signals, subjects used the
AHO to familiarize themselves with both the device and the
tactile sensations transmitted to the hand and its five fingers,
which they had to mentally simulate during MI.
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Fig. 2 Protocol for KMI paradigm based on SVS and a robotic glove. Notice C refers to close hand, while O refers to open hand

Fig. 3 Experimental protocol carried out by all subjects for open- and closed-hand KMI with SVS
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EEG processing and classification

Figure 4 shows the strategydeveloped to process theEEGsig-
nals and recognize the action performed: hand opening and
closingMI. The complete process starts with the EEG acqui-
sition followed by a pre-processing stagewith the application
of a 5th order zero-phase Butterworth filter and a Common
Average Reference (CAR) filter. Then, the feature extraction
process based on Power Spectal Density (PSD) and Rieman-
nian Geometry (RG), and feature selection using Pair-Wise
Feature Proximity (PWFP) are executed. Note that for the
RG method, the CAR filter was not implemented, in order
not to overlap spatial filters and avoid loss of EEG infor-
mation. Subsequently, these features are the input of four
classifiers: Linear Discriminant Analysis (LDA), Support
Vector Machine (SVM), k-Nearest Neighbors (kNN), and
Decision Tree (DT). Finally, two evaluation metrics (ACC
and F1 score) were used to determine the algorithmic perfor-
mance to classify the two classes mentioned above.

EEG signals pre-processing

Initially, the signals are segmented for each experiment to
perform a better generalization of the algorithms and increase
the size of the examples, avoiding under- or over-fitting. In
this study, the 300 total trials per subject are split into 80%

and 20%, randomly, where the first 80% of the EEG data are
used to train and validate the data, whereas the remaining
20% of the trials are used to evaluate the algorithms. This
strategy was implemented to fit the models in a way that can
identify unknown data, which would allow a generalization
of the classification strategy (Delisle-Rodriguez et al. 2019).
Then, each trial is segmented into 1-s time windows with
50%overlap. Subsequently, aCARfilterwas applied to reject
the common noise between channels (not applied for RG).
Subsequently, the Butterworth filter is implemented in the μ

and β centered frequency bands between 8 and 30 Hz.

Feature extraction

• Power Spectral Density (PSD)
PSD is normally used in MI-based BCIs (Blanco-Díaz
et al. 2023; Padfield et al. 2022), as PSD allows mitigat-
ing fluctuations in energy values observed during theMI.
PSD value is calculated by considering three filter banks:
Mu (μ, 8–12 Hz), Low-Beta (Low-β, 13–17 Hz), and
High-Beta (High-β, 18–24 Hz), using the Fast Fourier
Transform (FFT) on each set of signals. This methodol-
ogy is performed according to Algorithm 1.
The algorithm represents the feature extraction based on
PSD for the pre-processed EEG signals for each filter
bank. Once PSD is calculated, data normalization is per-

Fig. 4 Block diagram of the methodology used in this work for the recognition of hand opening/closing MI
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Algorithm 1 Feature extraction based on PSD.
Input: SA, SE ∈ R

t×s×c � where SA and
SE are the pre-processed EEG signals for the training and testing set,
respectively; t is the number of examples, c is the channels number,
and s is the number of samples.

Output: FA, and FE � where FA and FE are the feature matrices
for training and testing.

for each trial ti in SA and SE do

Fti ← fft(si ) � Compute the FFT for the segment for all channels

Powerti ← |Fti |2 � Compute the Power value

Pμti = ∫
μ
Powerti d f � μ is the mu frequency band (8-13 Hz)

Plβti = ∫
lβ Powerti d f � lβ is the low-beta frequency band

(13-17 Hz)
Phβti = ∫

hβ
Powerti d f � hβ is the high-beta frequency band

(18-24 Hz)
PSDti = concat(Pμti , Plβti , Phβti ) � Concatenating the

features of each frequency band
end for

FA = PSDA

FE = PSDE

formed using z−score before the feature selection stage,
considering training and evaluation data sets.

• Riemannian Geometry (RG)
RG has attracted considerable attention in recent stud-
ies reported in the literature, especially when it comes
to identifying mental activities such as MI (Delisle-
Rodriguez et al. 2019). RG relies primarily on unsu-
pervised techniques, including temporal filtering and
estimation of covariance. A notable advantage of this
method is its ability to minimize prevalent interference
while amplifying the difference in variance among EEG
trials derived from various motor activities. Interested
readers can explore more deeply the computational algo-
rithms associated with RG in Delisle-Rodriguez et al.
(2019). The Algorithm 2 specifically elucidates how RG
extracts EEG features when used in binary classification
scenarios.
Although the application of RG for MI has emerged
as a powerful and promising technique, this technique
focuses on the intrinsic structure of data spaces, allowing
capture and analysis of the variability and essential fea-
tures ofEEGsignals.A significant challenge encountered
in the implementation of this methodology is the high
dimensionality inherent in the resultant data (Barachant
et al. 2012). This high dimensionality may be counter-
productive, as it can significantly reduce the precision of
identifying specific patterns in EEG signals (Barachant
et al. 2012, 2013). Furthermore, the presence of irrelevant
or redundant features can introduce noise into the analy-
sis, leading to misinterpretations or the failure to detect

Algorithm 2 Feature extraction based on RG.
Input: XA, XE ∈ R

t×s×ch � EEG signals
for training and testing set, respectively. t is the number of trials, ch
is the EEG channel, and s is the number of samples

Output: YA, and YE � Feature matrices for training and testing,
respectively

CA = covariances(XA) � Covariances matrices for training set

Cref = mean_covariances(CA, ‘riemann′) � Covariance mean
with Riemmenian distance

CE = covariances(XE ) � Covariances matrices for testing set

YA = tangent_space(CA,Cref )
T � Projection onto the reference

matrix.

YE = tangent_space(CE ,Cref )
T � Projection for the testing set

Note: T corresponds to the transpose

subtle but critical patterns. Therefore, it is imperative to
employ feature selection methods that allow the filter-
ing and retention of only those attributes that are truly
relevant to the task. These methods not only improve
the accuracy of the analysis but also optimize computa-
tional time, allowingmore efficient real-time applications
(Barachant et al. 2010). In summary, while RG offers
robust tools for the study of MI through EEG, it is essen-
tial to complement it with appropriate feature selection
techniques to ensure optimal results, which are discussed
below.

Feature selection

The PWFP method has been established as an effective tool
for feature selection (Happy et al. 2017; Romero-Laiseca
et al. 2020). Thus, PWFP is used after the feature extraction
stage for both PSD and RG. PWFP focuses on evaluating the
proximity or distance between individual features in a high-
dimensional space. Usually, this proximity ismeasured using
the Euclidean distance. For EEG, where features can have
complex shapes and non-linear relationships, the appropriate
choice of a distance metric is essential (Happy et al. 2017;
Delisle-Rodriguez et al. 2019). However, to maintain a low
computational cost, the Euclidean distance is used here as the
selection metric. Once these distances are computed, PWFP
selects those pairs of features that have significant proximity,
indicating that they are relevant and complementary features
for EEG class discrimination (Happy et al. 2017). In doing
so, this method allows for reducing the dimensionality of
the data by preserving only the most informative features,
improving accuracy and efficiency in the subsequent analysis
(Romero-Laiseca et al. 2020). The singularity of PWFP lies
in its exploitation of the k-NearestNeighbors (kNN)principle
(Happy et al. 2017), as instead of only considering pairs of
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features, PWFP evaluates the proximity of a given feature
to its kNN in feature space. The method could be applied as
follows.

– Distance Computation: The distance between two fea-
tures ( fi and f j ) can be calculated using the Euclidean
distance:

d( fi , f j ) =
√√
√
√

n∑

i=1

( fi,k − f j,k)2, (1)

where i the individual dimension of the features.
– Selection based on kNN: Once the distances have been
calculated, for each feature fi , its k-nearest neighbors are
identified and their average distance is stored. In this case,
five near neighbors are used, according to the suggestions
made in Delisle-Rodriguez et al. (2023).

– Percentile-based approach: After obtaining the average
distances for each feature with respect to its k-nearest
neighbors, we set a threshold based on percentiles. For
example, if the 90th percentile is selected,we retain those
features whose mean distances are in the top 10%, sug-
gesting that they are the most distinctive. In this case, the
75th percentile is used as a criterion for the selection of
the features.

In this way, RG and PSD were obtained after performing
this step, considering a time window of 1 s with 50% over-
lap. All recorded EEG channels were used, with the PWFP
method as the feature selector.

Classification

Four conventional classifiers were used to recognize both
MI tasks (opening/closing hand), such as LDA, SVM using
a polynomial kernel, kNN with a k = 1, and Decision Tree
(DT). To derive a robust and generalized model, a 10-fold
cross-trial validation methodology was employed, ensuring
that the data used in the training were not present in the
evaluation of the methods.

Evaluation methodology

• Topographic representations
To observe the spatial effects of power around the brain,
power changes are located for each channel and recorded
on topographic maps, where power changes are deter-
mined by the calculation made in the methodology. The
power effects are compared for two situations: the sub-
ject using AHO with movements (i.e., an AHO moves
the subject’s hand) and the subject using AHO without
movements (the AHO does not move the subject’s hand)

during the MI. In this study, ERD/ERS was not used for
signal analysis because the objective here is to analyze
the spatial power variations that occur during the cog-
nitive process by comparing the absolute power effects
when either the AHOmoves the subject’s hand and when
it does not move the subject’s hand.

• Evaluation metrics
Accuracy (ACC) and F1 scores were used to assess the
performance of the proposed classification strategies.
From the 80% EEG data split before, a 10-fold cross-
validation was performed. Each implemented fold was
randomized, where 90% of the data set were used to
train the models, whereas the remaining 10% were used
to validate the algorithms. Additionally, the two feature
extraction methods (PSD and RG) were implemented
with the four classifiers and also considering the feature
selection stage to analyze the response with and with-
out this stage. Subsequently, classification methods were
evaluated in the remaining 20% of total data.

Results

General topographic maps

Figure5 illustrates the power effects obtained from the exper-
iments, which show the location and intensity of brain
activation in theμ, Low-β, andHigh-β bands for themean of
all subjects. All subjects followed the protocol with SVS (in
which subjects observe figures of an open or closed hand on a
screen) and KMI (the subject receives kinesthetic sensations
and movements from the AHO, represented by the robotic
glove). It is noteworthy to highlight the difference between
brain activations for the open- and closed-hand tasks in AHO
use and non-use. Here, low power values are represented by
blue color and high values by red color. Thus, it is possible
to observe that the use of AHO evokes more differentiated
power changes compared to the non-use of AHO. For each
of the tasks using AHO, the power increases were presented
in the μ band with ipsilateral behavior, where in the C1,
C3, C5, and FCz channels the power increase is centered as
shown in Fig. 5A and B. For non-use AHO, no differential
power changes were presented for the μ band, maintaining
low power around the entire motor cortex of the brain. Fur-
thermore, power changes occurred in the Low-β band using
AHO, presenting a contralateral behavior for the opening
task, which is associated with left-hand motor movements
(Rungsirisilp and Wongsawat 2022; Sadaghiani and Klein-
schmidt 2016). For the closing task, a decrease in power was
presented in the same band; however, thiswas localized in the
fronto-central area, as shown in Fig. 5E and F. For High-β,
contralateral behavior was present in the opening task, which
is marked by a decrease in power centered on C4, and for
the closing task, contralateral and ipsilateral behavior was
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Fig. 5 Topographic maps (average of all subjects) of EEG signals for
both conditions: with and without AHOmovements forμ (A–D), Low-
β (E–H), and High-β bands (I–L). The blue color indicates low power

values, meaning that the power of the frequency band decreases during
KMI, whereas Red indicates the power increase during the KMI period

presented, with C3 presenting greater power than C4. As
mentioned above, the non-use of AHO, does not cause a spe-
cific or centered power variation in any channel, as shown in
Fig. 5C, D, G, H, K, and L, where the use of AHO causes a
greater power variation, which may be more associated with
an ease of discriminating closing and opening hand KMI
tasks.

Classifier performance

Figure 6 shows the average performance of each classifier
in terms of ACC and F1 score for all subjects perform-
ing the protocol with and without AHO movements. In

Fig. 6A, it is possible to see that the PSD-PWFP reached
the highest ACC in comparison to RG-PWFP, obtaining
81.04±3.49%, 85.36±3.14%, and 67.92±3.56% against
71.17±3.18%, 75.48±4.07%, and 64.90±4.16%, for SVM,
kNN, and DT classifiers, respectively, with AHO move-
ments. Likewise, Fig. 6B leaves evidence that PSD-PWFP
obtained higher ACC compared to RG, with values of
82.62±3.42%, 84.07±3.86%, and 67.87±3.52% against
66.98±5.48%, 72.10±5.39%, and 58.45±4.21% for SVM,
kNN, and DT classifiers, respectively, without AHO move-
ments. For the LDAclassifier, theRGmethod presents higher
results compared to PSD for both with and without AHO
movements.
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Fig. 6 Performance metrics of all classifiers considering all subjects. A ACC using AHO, B ACC without AHO, C F1 score using AHO, and D F1
score without AHO

Considering the F1 score, the results are proportional
to ACC, where it is possible to observe higher values
for PSD-based feature extraction compared to RG. For
instance, PSD-PWFP with kNN achieved an F1 score close
to 85±4% and 83±5% with AHO and without AHO move-
ments, respectively. The RG-PWFP values were 75±3% and
71±7% for the same conditions (see Fig. 6C andD). Further-
more, these findings allow inferring that the performance of
kNN outperforms LDA, SVM, and DT, considering the fea-
ture selection method. For example, it is possible to observe
for PSD that the mean F1 score is 85.36% and 84.07%
with PWPF, whereas without feature selection this metric
is around 73.01% and 68.39% for the conditions without and
with AHO movements, respectively. Similarly, the feature
selection method improves the RG performance, where a F1
score close to 75.46% and 72.10% is obtained, and with-
out using PWFP, values of 54.60% and 53.41% are obtained
using kNN for with and without AHO movements, respec-
tively.

Analysis about the use of SVS and KMI

One of the objectives of this study corresponds to improving
the identification ofMI tasks of the same hand, such as open-
ing and closing, using image-based SVS and KMI induced
by AHO movements. Thus, considering that the PSD-kNN
method using PWFP was the one with the highest scores,
Fig. 7AandB represent the results of the performancemetrics

for each subject in the two situations: execution of the pro-
tocol using only SVS (without AHO movements) and SVS
with AHO movements. Here, it is possible to observe that
S1 represents the best performance with AHO movements
(ACC = 89.81% and F1 score = 90%), while S9 shows bet-
ter results without AHOmovements (ACC = 89.74% and F1
score = 89%). In general, performance metrics with AHO
movements reached higher values compared to those with-
out AHO movements, highlighting an ACC of 85±3.14%
over 83.10±3.86% for PSD-PWPF, and 75.48%over 72.10%
for RG-PWPF, indicating an increase of approximately 3%.
However, this increase was not significant, according to the
application of the two-sample t-test, as a p-value equal to
0.37 was obtained for ACC, and 0.21 was obtained for F1
score.

Discussion

This work presents the cortical and performance effects
of using a novel protocol employing AHO with and with-
out movements to classify hand opening/closing KMI tasks.
Regarding the classification results obtained in this research,
it is worth commenting that the literature reports the use
of different classifiers to recognize MI tasks, reaching ACC
close to 75%, based on different signal features (Vourvopou-
los et al. 2022; Guerrero-Mendez et al. 2023b). However,
most studies only present results when performing MI tasks
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Fig. 7 Performance metrics per subject carrying out the protocol with glove and without glove movements, considering RG and kNN classification
strategy A ACC, B F1 Score

in the right and left hands, which could limit the usability and
design of BCIs based on upper limbs (Padfield et al. 2022).
Furthermore, considering that the cortical effects in the brain
during tasks of the same hand, such as opening and clos-
ing, may be similar, the identification of these types of tasks
becomes challenging (Guerrero-Mendez et al. 2023a). In this
context, some authors have focused on classifying MI tasks
on the same hand, where ACC values close to 73% have
been reported (Alazrai et al. 2019; Tavakolan et al. 2017).
However, those studies implemented more complex algo-
rithms, such as Artificial Neural Networks (ANNs), which
may increase BCI calibration times and consume more com-
putational resources. In this way, it is important to highlight
the methodology implemented in our study, which achieved
an ACC close to 85% (maximum 89%) and a F1 score close
to 85% (maximum 90%) using PSD-kNNwith feature selec-
tion to identify hand opening/closing KMI, improving by 3%
the identification of tasks compared to without AHO move-
ments. In this context, it is also important to highlight the
role of the feature extraction and selection stages, where it
was possible to determine that, unlike previous studies, PSD-
based methods were more discriminant than RG, which may
be related to the fact that frequency informationmay bemore
useful than time domain information for the identification of
upper limb tasks from the same limb (Barachant et al. 2010,
2012, 2013; Alazrai et al. 2019; Tavakolan et al. 2017).

On the other hand, the literature also presents studies with
results based on public datasets, which could be a disad-
vantage for real-time implementations (Vourvopoulos et al.
2022), while in our study the complete dataset was developed
and analyzed by ourselves. Our data set plays an impor-
tant role in the field of BCI, considering that, to the best
of our knowledge, the literature does not report the inclu-
sion of SVS of the own subject’s hand (OwnSVS) and KMI
together. Furthermore, studies, such as those presented by
Rungsirisilp and Wongsawat (2022), indicate that the use
of SVS+MI (not using KMI) may be an alternative strategy
to improve the effectiveness of BCIs for post-stroke reha-

bilitation. However, incorporating movement as part of KMI
represents a new approach to EEG-basedBCI training, which
may improve neuroplasticity, considering mental tasks and
the sensory feedback produced by AHO (Frolov et al. 2017).
For this reason, in our experimental design, the movements
assisted by the AHO are present throughout the protocol,
which can be pivotal in therapeutic interventions for patients
experiencing hemiparesis as a result of neurological condi-
tions.

One possible explanation for the observed better perfor-
mance of the kNN classifier in our classification tasks could
be related to the use of the same technique during the feature
selection stage. By employing kNN in both feature selection
and classification, it is plausible that the selected features are
inherently optimized for this classifier, resulting in improved
performance. However, it is important to note that in our
studywe conducted cross-validations and comparedmultiple
methods to ensure the robustness of our findings. We eval-
uated the performance of several classifiers with the same
selected features and observed that kNN consistently out-
performed other methods. This suggests that the superior
performance of kNN is not only due to the use of the same
technique in feature selection but also to its suitability to the
structure of our data.

Crucially, the execution of voluntary motor activities
induces localized desynchronization within the upper-alpha
and lower-beta frequency bands in proximity to the sensori-
motor cortex. However, in post-stroke patients, ERD during
MI or movement execution is commonly reduced or absent
in the affected hemisphere, due to damaged neurons (Ramos-
Murguialday et al. 2019;Moslehi et al. 2020). This fact needs
to be considered to adapt our protocol for post-strokepatients.
There are some limitations in this study due to MI instruc-
tions explained by the researchers are not always the same
as that performed by the subjects. One of the reasons for this
mismatch is the difficulty of MI, especially KMI, as veri-
fied in a previous study (Igasaki et al. 2018). In addition, it
should be noted that among subjects there were both right-
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handed and left-handed. This latter group represents about
10% of humans (de Kovel et al. 2019). However, research
has predominantly centered on the right-handed population
(Willems et al. 2014). On the other hand, in terms of process-
ing signals, a hyperparameter study was not performed. This
way, fixed parameters were chosen to recognize opening and
closing hand tasks. Therefore, innovative solutions, such as
signal analysis techniques, hyperparameter selection study,
and user training methodologies should be formulated with
a foundation in the attributes of this specific group and to
generalize the classification system.

Finally, to confirm the advantage of our protocol in terms
of improving the efficacy in post-stroke rehabilitation, future
works will focus on performing a hyperparameter selection
to indicate the best classifier performance as well as studying
the effects of our methodology in real time for the develop-
ment of an AHO-based BCI controlled by MI.

Conclusion

The findings of this research may be a very useful comple-
ment for neurorehabilitation of post-stroke patients, as well
as for controlling robotic devices for assistance and reha-
bilitation. However, such as aforementioned, ERD during
MI or during movement execution is commonly reduced or
absent in the affected hemisphere of post-stroke patients, due
to damaged neurons, which will require the adaption of our
protocol to be applied to this group of people. Four classi-
fiers (LDA, kNN, SVM, and DT) and a PWPF-based feature
selection stage were used for the recognition of open- and
close-hand tasks using PSD and RG feature extraction meth-
ods. The frequency bands of μ, Low-β, and High-β were
extracted from subjects who carried out the protocol with
or without AHO movements. As a results, the feature using
PSD-PWPF achieved amaximumACCof 89%with the kNN
classifier and a mean ACC close to 85%. Furthermore, the
F1 score values with PSD were considerably higher than
using the RG-based method. Regarding the protocol carried
out with AHO movements, the mean ACC was 3% higher
compared to without AHO movements. Despite the limited
number of subjects (ten), we believe that the findings of this
research may be useful for the rehabilitation of hand and
finger movements in post-stroke patients, and providing a
contribution to the field of BCI designed for the rehabilita-
tion of people with disabilities.
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