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Abstract
Purpose  The expression of emotions is essential in human relationships. However, the aging process associated with some 
pathologies such as Alzheimer’s Disease and other dementias can affect our ability to express emotions.
Methods  In this context, we propose a method for automatic recognition of emotions from multimodal data. We based this 
approach on Artificial Intelligence algorithms, as part of the development of a human–machine interface to support the per-
sonalization of therapy for elderly people with dementia. From this tool, emotional feedback can modulate the therapy. By 
doing this we hope to improve the therapeutic results. In this work, the performance of the proposed architectures was evalu-
ated regarding to their ability to recognize emotions in physiological and speech signals and in images of facial expressions.
Results  In the context of physiological and speech signals, we achieved promising results with the use of Random Forest. 
We found an accuracy of up to 99% in classifying emotions from physiological signals and almost 80% with speech signals. 
In the images assessment, we found more than 82% of accuracy when adopting a hybrid architecture.
Conclusion  The good results in the test stage are encouraging and point to the possibility of adopting the method in the analy-
sis of emotions in multimodal data. These findings are even more interesting due to the large amount and variety of emotions.

Keywords  Emotion Recognition · Multimodal Data · Therapy · Dementia · Elderly · Biofeedback

Introduction

Motivation and problem characterization

Emotions are present on many situations in our daily lives. 
They shape our choices, desires, tastes, memories, and other 
human aspects. Throughout human history, the range of 
emotions that can be felt and expressed has always been a 
topic that has attracted the attention of behavioral scientists. 
Even in the 1900s, some studies were conducted in order to 
find patterns to map the different human emotions (Russell 
1980; Izard 1977, 1991).

Nowadays we know that emotions are distinguishable 
from each other and are built from the subjective experi-
ences of each individual. Furthermore, these feelings can 

be interpreted as involuntary physiological responses. How-
ever, emotions are not isolated and easily identified vari-
ables, since they are manifested from combined elements 
such as sensations, changes in voice and facial expressions 
(Oliveira and Jaques 2013). The use of Artificial Intelli-
gence (AI) techniques has contributed to this field of study 
(Santana et al. 2021; Saxena et al. 2020). AI algorithms are 
already successfully applied in the analysis of many com-
plex and non-linear problems of everyday life (Gupta et al. 
2018; Andrade et al. 2020; Oliveira et al. 2020; Santana 
et al. 2020a, 2020b, 2018; Cruz et al. 2018; Barbosa et al. 
2020; Silva and Santana 2020; Gomes et al. 2020; Freitas 
Barbosa et al. 2021). Furthermore, this tool is commonly 
successful in analyzing large volumes of data (Deshpande 
and Kumar 2018).

Facial expression analysis currently is the most common 
way to perform automatic emotion recognition (Santana 
et al. 2021). Despite being a well-explored field of study, 
there are still several gaps associated with this task. The 
development of solutions in this context requires a large 
amount of data, due to the huge human variability, espe-
cially regarding demographic aspects (Lawrence et al. 2015; 
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Reyes et al. 2018). This factor directly interferes with the 
facial expressions and, therefore, needs to be considered. 
The need for many data leads to an increased computational 
costs associated with facial expression data analysis. In addi-
tion, pathologies, injuries and human aging itself commonly 
affect the face and the individual’s ability to express emo-
tions (Lawrence et al. 2015; Harms et al. 2010; Kohler et al. 
2003). These challenges can be overcome by associating 
facial expression data with data from other sources (Silva 
et al. 1997; Abdullah et al. 2021). Therefore, the face is not 
the only source of information for decision making regarding 
the classification of emotions.

From a neurological point of view, human emotions acti-
vate a series of affectivecognitive brain structures. We can 
assess the neuronal activity generated by emotions from 
an electroencephalogram (EEG) (Izard 1977, 1991). EEG 
is one of the main techniques for acquiring human neuro-
physiological activity. Mainly due to its reliability, effec-
tiveness, simplicity, portability and accessibility (Gupta 
et al. 2018; Andrade et al. 2020; Oliveira et al. 2020; San-
tana et al. 2020a; Alarcao and Fonseca 2017). In addition 
to neurophysiological activations, emotions have an effect 
on peripheral physiological signals. We noticed common 
changes through galvanic skin response (GSR), heart rate, 
temperature, and respiratory rate. The association of these 
peripheral and central physiological signals favors the recog-
nition of emotions (Santana et al. 2020a; Doma and Pirouz 
2020; Vijayakumar et al. 2020; Khalili and Moradi 2009; 
Shu and Wang 2017).

Emotions can also be perceived and differentiated from 
patterns of human voice recordings. Changes in the time 
and frequency domains of these signals often appear during 
the expression of different emotions. Several studies have 
been dedicated to the recognition of emotions in speech, 
especially with the aim of incorporating this analysis into 
human–computer interfaces (Santana et al. 2021; Schuller 
et al. 2003; Livingstone and Russo 2018; Issa et al. 2020). 
However, developing models that understand the nuances in 
natural language and speech is still a complex task. There-
fore, there is a tendency to combine this analysis with other 
types of data related to the manifestation of emotions (San-
tana et al. 2021).

One of the main factors that make it difficult to recognize 
emotions is the existence of some pathology. Neurodegen-
erative pathologies such as Alzheimer’s disease and other 
dementias commonly lead to neurological impairments that 
affect both the identification of emotions and their expres-
sion (García-Casal et al. 2017; Behere et al. 2011; McIn-
tosh et al. 2015). In addition, with the current and growing 
process of population aging around the world, we are also 
experiencing an increase in cases of this type of pathologies 
(Mundial and da Saúde 2018; Saúde 2021). According to 
Ferreira and Torro-Alves (2016), emotions are fundamental 

in the regulation of social interactions, as they guide our 
preferences, motivations and decision making (Ferreira and 
Torro-Alves 2016). They are also indispensable to provide 
good verbal and non-verbal communication (Chaturvedi 
et al. 2021; Dorneles et al. 2020). Thus, it is essential to 
develop tools that help in the identification of emotions for 
a dignified and pleasant quality of life.

In the therapeutic context, automatic emotion recogni-
tion tools are important to improve interventions in the most 
diverse audiences. Some studies demonstrate that emotional 
response can be used to improve patient engagement in the 
therapy process (Marinoiu et al. 2018; Schipor et al. 2011; 
Sourina et al. 2012; Delmastro et al. 2018; Aranha et al. 2017; 
Arroyo-Palacios and Slater 2016). It is important to highlight 
that greater engagement tends to increase the effectiveness of 
these therapeutic interventions (Lenze et al. 2011).

Therefore, this study proposes a method for recogniz-
ing emotions from multimodal data. This method will be 
incorporated as the core of a human–machine interface to 
support the therapy of elderly people with dementia. The 
aim is to contribute to the personalization and consequent 
optimization of the therapeutic process. We base the pro-
posed method on artificial intelligence algorithms to deal 
with data from physiological parameters, facial expressions 
and speech signals.

We organize the article as follows. In the next section 
we present some recent and relevant studies of emotion 
recoginition from these type of data. After this section, we 
detail our approach in the Materials and Methods topic, fol-
lowed by the results and discussion sections. Finally, we 
draw some conclusions, highlighting the main findings and 
future possibilities.

Related Works

Nowadays, automatic recognition of emotions has strong 
relevance in the therapeutic scenario. The emotional 
response of patients has already been used to shape the 
therapeutic experience, so that interventions become 
more appropriate to achieve the particular goals of each 
individual. Different therapy modalities can benefit from 
emotion recognition tools. Some studies are already carried 
out in the context of physical therapy for motor rehabilitation 
(Aranha et  al. 2017), in speech therapy (Schipor et  al. 
2011), in music therapy (Sourina et al. 2012), in addition 
to cognitive behavioral therapies (Marinoiu et al. 2018; 
Arroyo-Palacios and Slater 2016).

Aranha et al. (2017) proposed a serious game adapta-
tion approach for motor rehabilitation. From the imple-
mented framework, physical therapists can use the affective 
response of patients to adapt the commands of a game. The 
recognition of emotions was performed from the analysis 
of the user’s facial expression. With this, it was possible 
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to achieve the goals of rehabilitation more effectively. An 
increase in the effectiveness of the therapeutic process was 
also identified by (Schipor et al. 2011), but now in the con-
text of speech therapy. Since speech quality is also influ-
enced by the individual’s emotional condition, the authors 
implemented an emotion recognition module in a Computer 
Based Speech Therapy System (CBST) to assess the quality 
of word pronunciation in the context of speech therapy in 
children. The results were promising and point to the close 
relationship between the human voice and emotional states.

Music therapy sessions can also be favored by assessing 
the affective state of the patient. (Sourina et al. 2012) built 
a tool to identify the emotional state of the user in real time 
and use it to adjust the songs used during music therapy. 
This approach classifies emotions into fear, frustrated, sad, 
happy, pleasant, and satisfied from EEG signals. Thus, using 
perceived emotion, the system automatically selects the most 
appropriate music to meet the patient’s needs.

Marinoiu et al. 2018) investigated the expression of emo-
tions in the context of robot-assisted therapy of children with 
Autism Spectrum Disorder (ASD). The authors performed 
emotion recognition in 3D videos collected with a Kinect 
system. After analyzing the data, they realized that emo-
tional state identification has great potential to improve 
human–machine interaction and, consequently, improve 
therapeutic intervention in these individuals.

In order to modulate the cognitive-behavioral state of the 
participants, (Arroyo-Palacios and Slater 2016) proposed a 
virtual reality scenario to identify and modulate the affec-
tive state of the user. In the proposed interface, participants 
were represented by virtual dancers and had to control the 
rhythm of the dance by modulating their own mood. Thus, 
people who were agitated should make the avatar move more 
calmly. In the opposite way, people who were more relaxed 
should make the character dance more frantically. Partici-
pants’ mood were identified from the physiological signals 
of skin conductance, heart rate and respiratory rate. Only 
by modulating these parameters it was possible to control 
the avatar’s activity. The authors concluded that by using 
this game, participants were able to emotionally awaken in 
when in the activation condition and relax in the relaxation 
condition.

In order to contribute to the development of studies 
related to emotional response, (Soleymani et al. 2011) gave 
rise to the MAHNOB-HCI database. The base was built to 
acquire information about different manifestations of affec-
tive responses to audiovisual stimuli. This acquisition was 
performed from multimodal data that, among other infor-
mation, includes records of physiological signals from the 
central nervous system (EEG) and peripheral nervous system 
(electrocardiogram (ECG), GSR, respiratory amplitude and 
skin temperature). Given the vast amount of information, 
this database has been used in several studies for emotion 

recognition. The authors of the database themselves con-
ducted a promising preliminary study of automatic recogni-
tion of emotions from this data. For this analysis, the authors 
extracted spectral and statistical features from the physiolog-
ical signals. In total, 318 attributes were extracted, 20 from 
the GSR signal, 64 from the ECG, 14 from the breathing 
pattern, 4 from the skin temperature and 216 from the EEG 
signal. After feature extraction, the authors evaluated the 
performance of a Support Vector Machine (SVM) model 
with a radial basis function (RBF) kernel to classify data in 
terms of valence and arousal. The proposed model was able 
to classify peripheral physiological signals with an accuracy 
of 46.2% for the arousal class and 45% for valence. In the 
classification of EEG signals, the method obtained slightly 
better accuracies, 52.4% for arousal and 57% for valence.

A few years after the development of this database, 
(Wiem and Lachiri 2017) used peripheral physiological sig-
nals from the MAHNOB-HCI database to propose a method 
for classifying emotions. Initially, the authors removed arti-
facts and noise using Butterworth filters. Then, 169 statisti-
cal attributes were extracted from each signal. Finally, the 
authors evaluated the performance of 4 SVM configurations 
for signal classification. SVM algorithms with linear, poly-
nomial, sigmoid and gaussian kernels were evaluated. These 
different configurations showed similar results to each other. 
The use of ECG signals resulted in the best classification 
performances, with accuracies around 65% for arousal and 
60% for valence using SVM with linear kernel. This same 
SVM configuration reached accuracies between 53 and 63% 
in the classification of affective states using the other periph-
eral physiological signals. However, when the physiological 
signals were combined, SVM algorithm with polynomial 
kernel showed a better performance in classifying arousal 
levels, with an accuracy of 64.23%. In the case of valence, 
the SVM with Gaussian kernel presented the best perfor-
mance, with an accuracy of 68.75%.

Another relevant work that uses the physiological 
signals of the MAHNOB-HCI base is that of (Wei et al. 
2018). In this study, the authors sought to perform emotion 
recognition from EEG, ECG, respiration amplitude, and 
GSR signals. For the feature extraction, the authors used 
a combination of attributes from the time and frequency 
domains. After extracting attributes, the authors submit-
ted the data for classification with an SVM algorithm with 
RBF kernel. The hyperparameters of this algorithm (C 
and γ) were optimized by the grid search method. The 
authors evaluated the algorithm’s performance in rating 
5 emotions: Sadness, Happiness, Disgust, Neutral, and 
Fear. The classification was made separately for each of 
the physiological signals. Thus, an accuracy of 74.52% 
was obtained using EEG signals, 68.75% with ECG sig-
nals, 54.33% using respiration amplitude, and 57.69% with 
GSR signals. Subsequently, the authors also evaluated the 



616	 Research on Biomedical Engineering (2023) 39:613–638

1 3

performance from the combination of the four physiologi-
cal data, reaching an accuracy of up to 84.62%.

Still in the efforts to find of strategies to perform auto-
matic emotion recognition, Livingstone and Russo (2018) 
proposed the Ryerson Audio-Visual Database of Emotional 
Speech and Song (RAVDESS) (Livingstone and Russo 
2018). The database has voice and video recordings of 
professional actors expressing 8 emotions: calm, happy, 
sad, angry, fearful, surprise, disgust, and neutral. In this 
study, the authors also validated the database based on the 
analysis of 72 human evaluators. This evaluation showed 
that emotions are better identified using audio associated 
with video or simply video than using audio alone. Over-
all, the authors reported accuracies between 58 and 67% 
in classifying emotions through speech. These results are 
associated with Kappa between 0.41 and 0.52. The “neu-
tral” and “angry” states were the most easily identified. 
The highest amount of misclassification was associated 
with “sad” emotion.

In 2020, (Issa et al. 2020) proposed a method for clas-
sifying emotions from voice signals. Part of the method 
evaluation was done using the RAVDESS database. The 
proposed architecture consists of extracting honeyfre-
quency cepstral coefficients, chroma-gram, honey-scale 
spectrogram, Tonnetz representation, and spectral contrast 
features from sound files. After the feature extraction, the 
data were classified by a convolutional neural network 
(CNN) with a rectified linear activation function (ReLU). 
This model correctly classified 71.61% of the data from 
the RAVDESS database. Better rating performances were 
obtained for stronger emotions like “angry”. There was 
greater confusion in the classification of emotions closer 
to each other such as “calm” and “sad” or “happy” and 
“surprised”.

The following year, (Luna-Jiménez et al. 2021) proposed 
the use of a CNN architecture for emotion recognition with 
the RAVDESS database. Pre-trained CNN architectures 
with AlexNet were used for feature extraction. The authors 
obtained better results with RBF kernel SVM as the clas-
sifier. The best evaluated model resulted in an accuracy of 
76.58% in the identification of the 8 emotions in the data-
base. Emotions “angry” and “disgust” were ranked higher. 
Higher error rates were associated with the “sad” class, com-
monly confused with “calm” and “fearful”.

The FER facial expressions database was developed by 
(Goodfellow et al. 2013). This database has 35,887 images, 
all resized to 48 × 48 pixels and converted to grayscale, 
covering 7 types of emotions: Anger (4.593), Disgust 
(547), Fear (5.121), Happy (8.989), Neutral (6.198), Sad 
(6.077) and Surprise (4.002). The authors used CNN and 
SVM to extract attributes and classify images of facial 
expressions. The method proposed by them reached 71.2% 
accuracy in the test set.

The FER database was also used by (Ng et al. 2015). In 
their approach, the database was used to train a CNN model. 
Initially, the images were cropped and adjusted for better 
visualization of the facial expression. Then, they were used 
to refine the training of a CNN, given the size and diversity 
of the dataset. Finally, the trained architecture was used to 
classify the images from the EmotiW database. The accura-
cies found by them were median, assuming values between 
42 and 56%. It is important to mention that the authors did 
not report the execution of class balancing steps. Since the 
base is originally unbalanced, the lack of balance may have 
negatively affected the results. This balance makes CNN 
learn the patterns of some classes better than others, skewing 
the result. Five years later, (Kusuma et al. 2020) conducted 
an emotion recognition study using a pre-trained VGG-16 
model. ImageNet image dataset was used to train the model. 
Then, the authors used the model to classify the images from 
the FER-2013 database. Finally, their method was able to 
differentiate 7 distinct emotions with an accuracy of 69.40%.

In Table 1 we present the main information from these 
related studies, such as their main goal, the computation 
techniques used and their main findings. At the last line of 
this table is our method, proving that our proposal is well 
contextualized in the state-of-the-art.

Material and Methods

Theoretical background

Affective Computing, a burgeoning field at the intersection 
of computer science and psychology, is concerned with the 
development of computational systems endowed with the 
ability to perceive, interpret, and respond to human emotions 
(Bota et al. 2019; Cambria et al. 2017). It encompasses a 
diverse array of methodologies, including signal processing, 
machine learning, and human–computer interaction, which 
collectively enable machines to discern and appropriately 
react to human affective states (Picard 2000; Hasnul et al. 
2021; Calvo and D’Mello 2010; Kołakowska et al. 2020). 
Of particular significance is the domain of healthcare, where 
emotion recognition assumes a crucial role. The recogni-
tion and comprehension of emotions in healthcare settings 
have profound implications for patient care, facilitating the 
early detection of mental health disorders and fostering tai-
lored interventions (Picard 2000; Kołakowska et al. 2020; 
Sinha 2021). For instance, in the realm of mental health, 
emotion recognition systems can be employed to monitor 
the emotional well-being of individuals with conditions 
such as depression or anxiety, enabling timely interven-
tion and personalized treatment strategies (Picard 2000; 
Kołakowska et  al. 2020; Sinha 2021). Furthermore, in 
domains like telemedicine and remote patient monitoring, 
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emotion recognition technologies hold the potential to assess 
patients’ emotional states during virtual consultations, thus 
providing a comprehensive understanding of their needs and 
experiences (Picard 2000; Hasnul et al. 2021; Kołakowska 
et al. 2020; Sinha 2021).

The paramount importance of emotion recognition in 
healthcare extends beyond patient care to the well-being of 
healthcare practitioners (Pujol et al. 2019). Professionals in 
highstress occupations, including doctors, nurses, and car-
egivers, confront significant emotional challenges that can 
profoundly impact their mental health and job performance 
(Pujol et al. 2019). Here, emotion recognition systems offer 
an avenue for assessing the emotional states of healthcare 
workers, enabling timely intervention and support. For 
example, wearable devices equipped with sensors can con-
tinuously monitor physiological signals, such as heart rate 
variability and skin conductance, thereby providing valu-
able insights into emotional states such as stress or burnout 
(Hasnul et al. 2021; Kołakowska et al. 2020; Saganowski 
et al. 2020; Marcos et al. 2021; Ayata et al. 2020; Dhuheir 
et al. 2021). Such information can be utilized to deliver real-
time feedback and interventions to healthcare professionals, 
thereby ensuring their well-being and overall job satisfaction 
(Hasnul et al. 2021; Kołakowska et al. 2020; Saganowski 
et al. 2020; Marcos et al. 2021; Ayata et al. 2020; Dhuheir 
et al. 2021). Moreover, the integration of emotion recogni-
tion technologies has the potential to foster the development 
of intelligent systems that respond empathetically to the 
emotional needs of healthcare providers, thereby cultivat-
ing a supportive work environment and augmenting their 
overall work experience (Hasnul et al. 2021; Kołakowska 
et al. 2020; Saganowski et al. 2020; Marcos et al. 2021; 
Ayata et al. 2020; Dhuheir et al. 2021).

Alzheimer’s disease and other forms of dementia impose 
a significant burden on individuals worldwide (Cobos and 
Rodríguez, M.d.M.M.  2012; Olanrewaju et al. 2015; Castro 
et al. 2021; Livingston et al. 2017; Shafqat 2008). The preva-
lence of these conditions has reached alarming levels, with 
an estimated 50 million people currently affected globally 
(Zhang et al. 2021; Barnes and Yaffe 2011). Alzheimer’s 
disease, in particular, is the most common form of dementia, 
characterized by progressive cognitive decline and memory 
loss (Cobos and Rodríguez 2012; Olanrewaju et al. 2015; 
Castro et al. 2021; Livingston et al. 2017; Shafqat 2008). 
Patients with Alzheimer’s experience a range of symptoms, 
including impaired thinking, disorientation, language diffi-
culties, and changes in behavior and mood. These debilitat-
ing effects severely impact the quality of life of patients and 
their families, leading to a decline in functional abilities, loss 
of independence, and diminished social engagement (Cobos 
and Rodríguez 2012; Olanrewaju et al. 2015; Castro et al. 
2021; Livingston et al. 2017; Shafqat 2008). Moreover, the 
global impact of Alzheimer’s and dementia extends beyond 

the individual level, placing an immense strain on health-
care systems, economies, and society as a whole (Cobos and 
Rodríguez 2012; Olanrewaju et al. 2015; Castro et al. 2021; 
Livingston et al. 2017; Shafqat 2008). Several works have 
faced the problem of providing in vivo diagnosis for Alzhei-
mer’s disease and other dementias by using image diagnosis 
optimized by machine learning and evolutionary computing 
(Souza et al. 2021; Santos et al. 2008a, 2009a, 2008a, 2009b, 
2008b; Silva et al. 2019). Given the profound consequences 
of these diseases, there is an urgent need for interventions 
that can alleviate symptoms and enhance the well-being of 
patients (Sörensen et al. 2006; Haan and Wallace 2004).

Music therapy and other art-based interventions have 
shown promising potential in assisting individuals with 
Alzheimer’s disease, particularly in the early stages of the 
illness. Music, with its ability to evoke emotional responses 
and retrieve memories, holds a unique position in therapeu-
tic approaches for dementia patients. Engaging in music 
therapy sessions can stimulate various cognitive functions, 
including memory recall and emotional processing, leading 
to the emergence of positive affective memories (Matzi-
orinis and Koelsch 2022; Brotons and Marti 2003; Guess 
2017; Steen et al. 2018; Leggieri et al. 2019). The power of 
positive affective memories evoked through music therapy 
is significant, as it can enhance the overall quality of life for 
Alzheimer’s and dementia patients. These memories may 
evoke emotions, trigger reminiscence, and foster connections 
with personal experiences, promoting a sense of identity 
and emotional well-being (Steen et al. 2018; Blackburn and 
Bradshaw 2014; Guetin et al. 2013). By leveraging the emo-
tional and memory-related benefits of music therapy, indi-
viduals with Alzheimer’s can experience improved mood, 
reduced agitation, enhanced communication, and increased 
social interaction. Importantly, these effects can extend 
beyond the duration of therapy sessions, creating a positive 
impact on daily life and social interactions for patients and 
their caregivers (Steen et al. 2018; Blackburn and Bradshaw 
2014; Guetin et al. 2013).

Furthermore, the integration of emotion recognition tools 
in music therapy holds great potential for improving its effi-
cacy (Kim and André 2008). With a multimodal approach, 
several different datasets, provided by different information, 
can be used to improve emotion recognition by machine 
learning. It is possible to combine video, audio, face, and 
physiological signals to improve emotion recognition accu-
racy, generating a precise way to estimate emotions in a bio-
feedback-based approach (Santana et al. 2021; Muyuan et al. 
2004). By providing biofeedback to therapists, these tools 
can assist in assessing the emotional responses and levels of 
engagement of patients during music therapy sessions. This 
feedback enables therapists to fine-tune their interventions, 
tailoring the therapeutic approach to optimize the emergence 
of positive affective memories. With real-time information 
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on the effectiveness of the therapeutic techniques employed, 
therapists can adjust the selection of music, tempo, or deliv-
ery method to maximize the desired emotional responses in 
patients (Sourina et al. 2012; Kim and André 2008; Muyuan 
et al. 2004; Lin et al. 2009; Yang et al. 2009). The incorpora-
tion of emotion recognition tools in music therapy enhances 
its precision and efficiency, ultimately leading to more tar-
geted and personalized interventions, and potentially slow-
ing the progression of Alzheimer’s disease while improving 
the well-being and quality of life of patients (Sourina et al. 
2012; Kim and André 2008; Muyuan et al. 2004; Lin et al. 
2009; Yang et al. 2009).

Proposal

Considering the importance of emotion recognition in the 
therapeutic context (Marinoiu et al. 2018; Schipor et al. 
2011; Sourina et  al. 2012; Aranha et  al. 2017; Arroyo-
Palacios and Slater 2016), we propose an emotion recog-
nition approach from multimodal data. It will be part of 
a human–machine interface (HMI) to support therapy of 
elderly people with dementia. Overall, the interface works as 
a biofeedback of emotions. This way, a therapist may change 
the intervention based on the patient’s emotional response. 
In this context, we conducted some experiments to find the 
classification model that will integrate the system. We used 
public available databases of EEG and peripheral physiolog-
ical signals, speech signals, and images of facial expressions.

Figure 1 illustrates the operation of the HMI. Data from 
3 different sources (EEG, speech, and facial expression) are 
acquired from the patient. This data is then processed in 
the pre-processing and segmentation steps. These steps are 

followed by extracting features from the data. Then, we sub-
mit the feature vector to the classification step. The goal in 
classification is to identify the emotion felt by the patient. 
Finally, the therapist may assess this emotional response and 
use it to adapt the intervention applied to the patient.

Considering the EEG and audio signals, the pre-process-
ing consists of applying a notch filter, to minimize the influ-
ence of the electrical network frequency (60 Hz or 50 Hz, 
depending on the country) and a bandpass filter, to keep the 
signals within the expected range. Then, the signals were 
segmented into windows, for later attribute extraction. As 
we use public databases, these two signal filtering steps had 
already been performed. Considering the images of facial 
expressions, the only preprocessing used was face segmenta-
tion, using the Haar-Cascade classifier. However, since pub-
lic image databases were used, this step had already been 
performed, so we used the complete image of the face as 
available.

Therefore, this system seeks to improve the therapy of 
elderly people affected by dementia. It will provide emo-
tional feedback for customized therapeutic interventions. 
The next sections present the tools and methods adopted to 
achieve this goal. The experiments and the findings shown 
here consist on a proof of concept for the development of 
the proposed HMI.

Datasets

During this study we used 3 different databases, all seeking 
to relate human data to their respective emotions. The first 
one has peripheral and central physiological signals, which 
are associated with 6 different classes of emotions. In the 

Fig. 1   General proposal of the HMI system used in this study. First, the EEG, speech, and facial expressions. After processing, the therapy is 
modulated according to the emotion recognition results. The patient is then benefited by the personalized therapeutic intervention
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second database, speech signals from people expressing 8 
different emotions were acquired. Finally, the third database 
consists of images of 7 emotions expressed in faces.

Further information regarding each databases are at the 
following topics. All three databases were initially submit-
ted to a stage of splitting the data into trainingvalidation 
and test subsets. At this point, the original amount of data 
was randomly divided into 70% for the set used for training 
and validating the models and 25% for the test set. In the 
validation stage, to find the best ranking configuration, we 
use tenfold cross-validation. After defining the best clas-
sifier architecture, the entire database from the validation 
stage was used in the test stage as a training set to train the 
chosen model and test it in the previously separated test set. 
Figure 2 illustrates this sets’ preparation. We left 5% of the 
datasets out to ensure there is no intersection between train-
ing/validation and test sets. Furthermore, it is important to 
emphasize that the test set did not participate in the training 
of any model, being used to assess the performance of the 
best model found in the training and validation stage. It is 
also worth mentioning the importance of designing these 
training-validation and test sets. This step ensures that they 
present the same statistical behavior even though being made 
of different instances.

Physiological data

The database used for emotion assessment from physiologi-
cal signals was the Multimodal Database for Affect Recog-
nition and Implicit Tagging (MAHNOB-HCI), developed 
by (Soleymani et al. 2011). The database has central and 
peripheral physiological data collected using a multimodal 
approach. Among the collected data there are Electroen-
cephalogram (EEG), Electrocardiogram (ECG), Galvanic 
Skin Response (GSR), respiration amplitude, and skin tem-
perature. All these data were used in our approach.

The instrumental arrangement for data collection was as 
follows. For GSR data, the authors used two electrodes in 
the distal phalanges of the middle and index fingers (Soley-
mani et al. 2011). To acquire ECG information they placed 3 
electrodes at the upper right and left corners of the chest and 
abdomen. EEG was recorded from 32 active silver chloride 
electrodes, including 2 references, positioned according to 
the international 10–20 system. Finally, they measured skin 
temperature from a skin sensor. The authors started acquir-
ing data from 30 volunteers with different cultural back-
grounds and of both male and female genders. However, 6 
subjects did not participate in all acquisition steps.

Emotional response to visual and auditory stimuli in 
MAHNOB-HCI was carried out in two stages. At the first 
one they played 20 short videos to evoke emotions while 
recording the physiological response of each participant. At 
the end of each video a neutral clip was played to minimize 

the emotional bias activated by the previous video and ease 
participants self-assessed after watching the videos. The 
emotional evaluation was performed using a discrete scale 
with values between 1 to 9 (where 1 is the most pleasant 
emotion and 9 is the most unpleasant). This assessment 
was based on five different questions: i) What emotion was 
presented?; ii) What level of pleasure?; iii) What level of 
activation?; iv) What level of dominance? and v) What is 
the level of predictability?. To classify the videos, the 3D 
model of inferences of affective states PAD (Pleasure-Acti-
vation-Dominance) was used and to answer which emotion 
each video is supposed to evoke. Then, the participants 
had to rate the stimuli in a scale from 1 to 9, correspond-
ing to the following emotional states: neutral, anxiety, fun, 
sadness, happiness, disgust, anger, surprise, and fear. The 
data employed in our methodology was obtained during 
the acquisition phase. Although the authors have meticu-
lously devised the MAHNOB-HCI database to encompass 
data pertaining to nine distinct classes of emotions, it is 
worth noting that specific data for joy, fun, and fear classes 
was not made available. Consequently, we leveraged the 
dataset comprising the remaining six emotions to fulfill our 
research objectives.

Additionally, at the second acquisition stage participants 
were asked to perform a digital content labeling tasks based 
on their emotional responses. During this second stage the 
authors acquired the reactions expressed on the face from 
video cameras. Data from this step were not used in our 
current study.

Therefore, the database we use here has 285 signals, 
being 55 related to Hapiness emotion, 14 to Sadness, 84 to 
Neutral, 40 to Disgust, 65 to Amusement, and 27 to Anger. 
Each signal originally has 47 channels, however, 9 were 
empty and 38 had some information. Among these chan-
nels, 1 to 32 had EEG signals. On channels 33, 34 and 35 
were the ECG. Channel 41 was dedicated to GSR, channel 
45 to respiration rate, and channel 46 to skin temperature.

Speech data

To perform the recognition of emotions through voice 
we used the Ryerson AudioVisual Database of Emotional 
Speech and Song (RAVDESS) (Livingstone and Russo 
2018). This is a Canadian base composed of the voices of 
24 professional actors, in English with an American accent. 
This database has 7356 audio and video files, totaling 25 GB 
of data. The amount of participants is equally divided in 12 
men and 12 women.

During the recordings, each individual introduced him-
self speaking the following expressions in English: “Kids 
are talking by the door” and “Dogs are sitting by the door”. 
They spoke these phrases in order to represent 8 emotions: 
neutral, calm, joy, sadness, anger, fear, surprise and disgust. 
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Likewise, they recorded the 2 phrases in singing tones to 
represent 6 emotions: neutral, calm, joy, sadness, anger and 
fear. The idea behind this method was to get as close as pos-
sible to the desired expression, in an induced way. For this, 
each actor used different techniques in order to achieve the 
final goal. They recorded each sentence at 2 different levels 
of intensity: normal and strong, plus neutral expressions. In 
the end, each contracted actor recorded, on average, for 4 h, 
with a microphone placed 20 cm in front of him.

As we would not use video signals and the focus of the 
work was not the singing, we selected the portion of files 
containing only spoken excerpts. This reduced our base to 
a set of 1440 exclusively audio files in.WAV format, with 
48 kHz and 16bit.

The files are originally named according to Table 2, fol-
lowing the order of identification: modality, channel, emo-
tion, intensity, declaration, repetition and actor. Thus, each 
label is composed of 7 numbers of 2 digits each (eg 02–01-
06–01-02–01-12.wav).

Originally the database is divided by the actor/actor. 
However, as our objective is to classify emotions, we used 
this labeling of the files to reorganize the base according 
to emotion classes. Thus, we created 8 folders containing 
each emotion class. In this way, we can work better with 

the files in their characteristic groups, unlike the previous 
way, separated by actors.

As for the distribution of instances among the 8 classes 
of emotions, the base is unbalanced. Each emotion has a 
total of 192 files. However, Neutral emotion has only 96 
audio files (Livingstone and Russo 2018).

Facial expressions

For the emotion recognition experiment in facial expres-
sions, we used the Facial Expression Recognition 2013 
(FER-2013) database, introduced in the ICML 2013.

Challenges in Representation Learning (Goodfellow 
et al. 2013). The FER-2013 database consists of 35,887 
images, all resized to 48 × 48 pixels and converted to 
shades of gray, covering 7 types of emotions, namely: 
Anger (4,593), Disgust (547), Fear (5,121), Happy 
(8,989), Neutral (6,198), Sad (6,077) and Surprise (4,002). 
This database is currently considered the largest publicly 
available facial expression database for researchers who 
want to train machine learning models, mainly Deep Neu-
ral Networks (DNNs). Figure 3 shows examples of images 
from this database.

Fig. 2   General design of 
datasets
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Processing and Classification

For data processing we used an approach to deal with 
physiological and voice signals and another approach 
to images of facial expressions. For the signals, features 
regarding their temporal, frequency and statistical distri-
butions were extracted. As for the images, we propose an 
architecture for feature extraction and classification based 
on deep networks and the Random Forest algorithm. The 
procedures adopted for each database are detailed below.

Signal data

The recognition of emotions through physiological and 
speech signals was performed following the steps shown in 
the diagram in Fig. 4.

Initially, we submit the signals to a feature extraction step. 
In this step, we used the GNU/Octave mathematical comput-
ing software, version 4.0.3 (Eaton et al. 2015), to extract the 
34 features mathematically described in the Table 3. In this 
way, each instance of the signal is represented by some of 
its statistical characteristics and in the time and frequency 

domains. Such attributes proved to be relevant and effective 
in the representation of EEG and peripheral physiological 
signals in previous studies with physiological and voice sig-
nals (Santana et al. 2020a; Espinola et al. 2021a, 2021b).

Statistical information was extracted by the attributes in 
the left column of the Table 3: mean, variance, standard 
deviation, root mean square, average amplitude changes, 
difference absolute deviation, integrated absolute value, 
logarithm detector, simple square integral, mean absolute 
value, mean logarithm kernel, skewness, kurtosis, maximum 
amplitude, and 3rd, 4th, and 5th moments.

The attributes related to the time–frequency domain of 
the signals are the right column of the Table 3: waveform 
length, zero crossing, slope sign changes, Hjorth param-
eters (activity, mobility, and complexity), mean frequency, 
median frequency, mean power, peak frequency, power 
spectrum ratio, total power, variance of central frequency, 
Shannon’s entropy, and 1st, 2nd, and 3rd spectral moments.

During the process of extracting attributes from the periph-
eral and central physiological signals, we perform the window-
ing of these signals. We used a 5 s window with 1 s overlap 
between windows. This procedure aims to increase the spectral 
characteristics of the sample. From this windowing, we gener-
ate an unbalanced dataset with 8.097 instances. The Happiness 
class now has 1.704 instances, 1.114 in the Neutral class, 500 
in Sadness, 1.222 in Disgust, 2.650 in Fun and 907 in Anger. 
Finally, each of the 38 channels of these instances was sub-
jected to the extraction of the 34 attributes in the Fig. 3.

Since voice signals are shorter than physiological ones and 
it is important to analyze them in all their context, we did not 
perform windowing on these signals. However, some of the 
audios were mono (1 channel) and others stereo (2 channels), 
so, to avoid any kind of incompatibility, we duplicated the 
mono signals to the equivalent stereo. Finally, we extract the 
features in Fig. 3 from each channel of the signals.

After extracting attributes, we designed the training/
validation and test sets as illustrated in Fig. 2. This step 
was performed for both the physiological and speech signal 

Table 2   Description of RAVDESS filenames. The 7 identifier and 
respective codes

Identifier, Coding description of factor levels

Modality 01 = Audio–video, 02 = Video-only, 03 = Audio-only

Channel 01 = Speech, 02 = Song
Emotion 01 = Neutral, 02 = Calm, 03 = Happy, 04 = Sad, 

05 = Angry, 06 = Fear, 07 = 
Disgust, 08 = Surprised

Intensity 01 = Normal, 02 = Strong
Statement  = "Kids are talking by the door",

 = "Dogs are sitting by the door"
Repetition 01 = First repetition, 02 = Second repetition
Actor 01 = First actor, …, 24 = Twenty-fourth actor

Fig. 3   Samples of images from FER-2013 database. The image shows two examples for each class on the database
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databases. The test sets (25%) were set aside to be used after 
finding the most suitable model for the classification of each 
type of signal. Therefore, the steps described below were 
performed only with the training/validation set, which cor-
responds to 70% of the instances of each database.

As mentioned before, for both physiological and speech 
signals, there is an unbalanced distribution of instances in 
the respective classes. If not adjusted, this class imbalance 
can generate biased learning, favoring classes with more rep-
resentatives (instances). To avoid this unfair learning, we 
performed a class balancing step. Here we balanced classes 
by adding synthetic instances to minority classes using the 
Synthetic Minority Over-sampling Technique (SMOTE) 
(Blagus and Lusa 2013; Chawla et al. 2002). This algorithm 
creates synthetic instances based on the real instances of a 
given class. Minority classes are balanced by taking each 
instance and adding synthetic samples along the line seg-
ments joining their k nearest neighbors. In our approach, 
we configure SMOTE with k = 3 neighbors. For this step, 

we used the Waikato Environment for Knowledge Analysis 
(Weka) software, version 3.8 (Witten and Frank 2005).

In the physiological signals database, the balancing of 
the classes resulted in 2.649 instances in the Sadness class, 
2.658 in the Happiness class, 2.651 in the Disgust and Neu-
tral classes, 2.650 in the Fun class and the Anger class with 
2.658 instances. Therefore, this set started to have a more 
balanced distribution of the instances in the classes.

In the context of speech signals, it was still necessary to 
apply SMOTE to expand the total number of instances of each 
class by 50%. We performed this procedure after balancing 
the classes in order to improve the distribution of the number 
of instances along the set, since there is a large number of 
classes in this problem (8). This expansion was an adjustment 
in the dimensionality of the set, that is, better balancing the 
relationship between the number of instances, attributes and 
classes. Thus, each emotion now has 288 instances.

Finally, the balanced sets of both databases were submit-
ted to the training/validation stage. In this step, we evaluated 

Fig. 4   General proposal for 
signal data assessment. We 
submitted MAHNOB-HCI e 
RAVDESS signal databases 
to the following steps: feature 
extraction; class balancing; 
training and validation with 
intelligent models; and results 
assessment
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the performance of 3 classic classifier algorithms: Random 
Forest, Support Vector Machine (SVM) and Extreme Learn-
ing Machine. Random Forest is an algorithm structured by 
a committee of decision trees. Individually, these trees act 
as experts in identifying the patterns associated with the 
problem (Breiman 2001; Jackins et al. 2021; Pal 2005). 
SVM is a method that stands out for its good generalization 
performance in classification problems (Platt 1998; Cortes 
and Vapnik 1995; Zeng et al. 2021). It is based on the mod-
eling of hyperplanes that serve as decision boundaries for 
problem solving. ELM stands out for its great generaliza-
tion power and its reduced training time due to the random 
initialization of the input layer weights and the analytical 
calculation of the subsequent weights (Santana et al. 2018; 
Huang et al. 2004; Silva and Krohling 2016).

We investigated SVM because it is a well-established 
classification architecture in the context of biomedical sig-
nal and image classification. Additionally, ELM was used 
because it can also be considered as a fast algorithm for 
two-layer multilayer perceptron networks, another classic 

approach to biomedical problems. We also investigated 
Random Forest for its potential good performance in prob-
lems where generalization is difficult. Due to its ensemble 
behavior, Random Forest is robust to class imbalance and 
can deal well with problems that are expressed through mul-
tiple rules, unlike SVM and ELM which, in turn, look for 
general rules in the form of combinations of polynomials 
and other mathematical functions.

We tested different models for each of these methods, vary-
ing their main hyperparameters in the configurations presented 
in Table 4. It is worth mentioning that the k-fold cross-vali-
dation method with k = 10 was used during the experiments 
to avoid overfitting (Jung and Hu 2015). In this method, the 
dataset was randomly divided into k subsets, with k − 1 used 
for training and the remaining subset used for validation. In 
this way, successive training steps are performed until the per-
formance is validated for all k sets. Furthermore, in order to 
obtain statistical information regarding the performance of the 
algorithms, each configuration was evaluated for 30 repetitions. 
These experiments were also conducted in Weka, version 3.8.

Table 3   List of the 34 features 
with their mathematical 
representations
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The Weka environment was chosen because it is easy to 
prototype, separating the choice of the machine learning 
model from the final prototyping in the application, thus 
allowing users to build complex machine learning models 
for different applications. Weka also allows the chosen mod-
els to be saved in a file, for later application in the final emo-
tion recognition solution.

Image data

For the recognition of emotions through images of facial 
expressions we propose a new architecture based on deep 
network with a Random Forest classifier in the output. As 
illustrated in the Fig. 5, in this architecture we use a transfer 
learning approach to extract attributes from images from the 

Table 4   Experimental settings 
for the classifiers applied to 
signal data

Classifiers Settings

Random Forest trees: 10, 20, 50, 100, 150, 200, 250, 300, and 350 maxDepth: unlimited num-
DecimalPlaces: 2 numExecutionSlots: 1

SVM Kernel functions: linear, polynomial (d = 2, d = 3, and d = 4), RBF
(γ = 0.50)
C = 1.0

ELM Kernel functions: linear, polynomial (d = 2, d = 3, and d = 4), RBF and sigmoid
Neurons in the hidden layer: 500

Fig. 5   General proposal for 
image data assessment. We 
submitted FER2013 image 
database of emotion driven 
facial expression to the follow-
ing steps: feature extraction; 
class balancing; training and 
validation with random forest; 
and results assessment
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FER2013 database. For this, we applied a pre-trained LeNet 
network with the MNIST dataset, composed of a training set 
of 60.000 images of handwritten digits (Deng 2012). LeNet 
was one of the first Convolutional Neural Networks. It was 
proposed by (LeCun et al. 1998) and has 7 layers, being 
3 convolutional layers, 2 downsampling layers, and 2 fully 
connected layers. The convolution filters are used to extract 
spatial features from the images. Therefore, this network 
extracted 500 features from each image from the database.

After extracting attributes, we designed the training/vali-
dation and test sets (Fig. 2). The test set was only used after 
finding the most suitable model for image classification. 
Therefore, the steps described below were performed only 
with the training/validation set, which corresponds to 70% 
of the instances.

Since the database we used has a notable imbalance 
between classes, we also submit the feature vectors of this 
set to the SMOTE (Chawla et al. 2002) method for balanc-
ing. As for the data from the other databases, we configured 
SMOTE with k = 3 close neighbors. Balancing increased 
the pool to 62269 instances. These instances became better 
distributed among the classes happy (8.989), fear (8.961), 
neutral (8.987), disgust (8.861), sad (8.872), anger (8.915), 
and surprise (8.684).

Finally, the balanced set was submitted to classification 
with Random Forest algorithms. This algorithm was cho-
sen to compose this architecture because it is versatile, fast-
executing and deals well with large datasets. Methods based 
on Random Forest have also been successful in sets with 
missing data, with poor balance and with little variability 
(Andrade et al. 2020; Oliveira et al. 2020; Gomes et al. 2020; 
Freitas Barbosa et al. 2021).

We conducted experiments with different models of Ran-
dom Forest, varying the number of trees between 10, 20, 
50, 100, 150, 200, 250, 300, 350, 400 and 500. The Table 5 
details the settings. In these experiments we also used the 
k-fold cross-validation method with k = 10 to avoid overfit-
ting (Jung and Hu 2015). In addition, each configuration was 
evaluated for 30 repetitions to verify the statistical behavior 
of the models. Both the class balancing and classification 
steps were carried out by Weka, version 3.8.

Test stage

In the test stage, we used the subsets with 25% of each data-
set (physiological signals, speech signals and images of 
facial expressions) that did not participate in the evaluation 
stages of the classification models. This step is important 
to verify the generalization capacity of the evaluated mod-
els. A good generalization is desirable, as it implies a good 
performance of the model to classify new data. "New data" 
is data that did not take part in the training and is therefore 
unknown to the algorithm.

From the training and validation stages, we assessed the 
performance of the tested models. This analysis allowed 
us to identify the most suitable models to deal with each 
of the three data sources. After identifying these models, 
we trained each one with the entire training/validation set. 
Finally, we use the trained models to estimate the classes of 
the data in the test sets.

Metrics

To evaluate the performance of the models in both the 
training/validation and the test stages, we used five metrics: 
accuracy, kappa index, sensitivity, specificity and area of 
the ROC curve. It is important to note that for the analysis 
of the models we take into account this set of performance 
metrics and not just one of them. The Table 6 presents the 
mathematical description of these metrics.

Accuracy is a metric that indicates how efficient the classifier 
is at correctly predicting the class of each instance. It is an index 
directly proportional to the true positives (TP) and true negatives 
(TN) rates. The kappa statistic is a metric similar to accuracy. 
However, kappa takes into account the random hit chance (Art-
stein and Poesio 2008). When predictions are purely random, 
kappa index assumes 0 (zero) or negative values. Sensitivity is 

Table 5   Experimental settings for the classifiers applied do image 
data

Classifier Settings

Random Forest trees: 10, 20, 50, 100, 150, 200, 
250, 300, 350, 400, and 500 
maxDepth: unlimited numDeci-
malPlaces: 2 numExecution-
Slots: 1

Table 6   Mathematical expressions for the metrics used to evaluate 
the classification performance. TP, TN, FP and FN are the quantity of 
True Positives, True Negatives, False Positives and False Negatives, 
respectively. TPR and FPR are the True Positive Rate and False Posi-
tive Rate, respectively

Metric Mathematical expression

Accuracy Acc =
TP + TN

TP + TN + FP + FN
  

Sensitivity Sens =
TP

TP + FN
  

Specificity Esp =
TN

TN + FP
  

Kappa � =
�0 − �e

1 − �e

,  
where ρ0 is the observed agreement rate and 

ρe is the expected agreement rate, given 
by:

�e =
(TP + FP)(TP + FN)+(FN + TN)(FP + TN)

(TP + FP + FN + TN)2
  

Area under the ROC 
curve

AUC = ∫ TPR d (FPR)  
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the metric used to assess the classifier’s performance in identify-
ing the true positives. Sensitivity is commonly called the true 
positive rate (TPR), but it is also known as recall. Specificity, as 
opposed to sensitivity, it is used to assess performance in iden-
tifying the true negatives. Thus, it is known as the true negative 
rate (TNR). The area under the ROC (Receiver Operating Char-
acteristics) curve, widely known as Area Under Curve (AUC), 
is also a metric used to assess how well the model performs in 
the prediction. ROC curve is a probabilistic curve and the area 
under it represents the chance the model has to correctly predicts 
the data (Hanley and McNeil 1982). The curve is built from the 
false positive rate (FPR) on the x-axis, and the sensitivity (TPR) 
on the y-axis. In the case of multiclass problems, such as in this 
work, AUC can be evaluated in two ways: one vs one; one vs all. 
In the first one, all the curves of the combination of all classes 
with each other are plotted in pairs. In the second, the curves of 
the combination of one class versus all others are plotted.

Results

In this section, we show the results of the training-validation 
and test stages for the three databases. Initially, we present 
the results for the physiological signals base, followed by the 
voice signals database. Finally, there are the results for the 
identification of emotions in facial expressions.

Physiological data

Table 7 and Fig. 6 show the performance of the classifiers in the 
training-validation stage. In Table 7 are the average and stand-
ard deviation values for all performance metrics. In addition, we 
highlight in this table the settings of each classifier family with 
the best performance. Sometimes, many configurations of the 
same classifier family obtained similar results. Thus, we per-
formed a joint analysis of the metrics and the intervals defined 
by the standard deviations to establish the best setting.

In this context, using the physiological signals, Random For-
est with 300 trees presented the best performance. This model 
achieved high average values of accuracy (98.48%), kappa 
(0.9817), sensitivity (0.9957), specificity (0.9977) and AUC 
(0.9999). In the SVM family, we found the best results using 
the polynomial kernel of 2nd degree. These results were a lit-
tle lower than those with Random Forest, with an accuracy of 
95.29%, kappa index of 0.9435, sensitivity of 0.9887, 0.9942 
specificity and AUC of 0.9968. The ELM configurations had 
the worst performances when compared to the other families. 
ELM with 4th degree polynomial kernel showed the best results 
among the ELMs. This ELM model achieved an accuracy of 
44.28%, kappa of 0.3314, sensitivity of 0.4429, specificity of 
0.8886 and 0.6657 for AUC. As mentioned earlier, we assessed 
all settings for 30 repetitions to verify their statistical behavior. 
Therefore, in the graphs of Fig. 6 we present the behavior of all 
metrics for these best configurations of each classifier family.

Table 7   Classification performance for the dataset from physiological signals

Classifier Accuracy (%) Kappa statistic Sensitivity Specificity AUC​

Random Forest 10 trees 98.08 ± 0.35 0.9770 ± 0.0042 0.9959 ± 0.0037 0.9966 ± 0.0016 0.9996 ± 0.0007
20 trees 98.28 ± 0.33 0.9793 ± 0.0040 0.9956 ± 0.0040 0.9972 ± 0.0015 0.9998 ± 0.0005
50 trees 98.40 ± 0.31 0.9808 ± 0.0037 0.9955 ± 0.0039 0.9975 ± 0.0014 0.9999 ± 0.0001
100 trees 98.44 ± 0.29 0.9813 ± 0.0035 0.9956 ± 0.0039 0.9976 ± 0.0013 0.9999 ± 0.0001
150 trees 98.46 ± 0.29 0.9815 ± 0.0034 0.9956 ± 0.0039 0.9977 ± 0.0013 0.9999 ± 0.0001
200 trees 98.47 ± 0.29 0.9816 ± 0.0035 0.9957 ± 0.0039 0.9977 ± 0.0013 0.9999 ± 0.0001
250 trees 98.47 ± 0.29 0.9816 ± 0.0034 0.9958 ± 0.0039 0.9977 ± 0.0013 0.9999 ± 0.0001
300 trees 98.48 ± 0.29 0.9817 ± 0.0034 0.9957 ± 0.0039 0.9977 ± 0.0013 0.9999 ± 0.0001
350 trees 98.47 ± 0.28 0.9817 ± 0.0034 0.9958 ± 0.0039 0.9976 ± 0.0013 0.9999 ± 0.0001

SVM linear 86.79 ± 0.76 0.8414 ± 0.0092 0.9859 ± 0.0075 0.9751 ± 0.0043 0.9886 ± 0.0022
poly 2 95.29 ± 0.52 0.9435 ± 0.0062 0.9887 ± 0.0063 0.9942 ± 0.0021 0.9968 ± 0.0014
poly 3 93.09 ± 1.76 0.9171 ± 0.0212 0.9795 ± 0.0274 0.9906 ± 0.0044 0.9956 ± 0.0029
poly 4 80.81 ± 2.66 0.7697 ± 0.0319 0.9491 ± 0.0416 0.9727 ± 0.0093 0.9892 ± 0.0048
RBF 95.11 ± 0.52 0.9414 ± 0.0063 0.9826 ± 0.0074 0.9919 ± 0.0025 0.9868 ± 0.0046

ELM linear 29.14 ± 7.46 0.1497 ± 0.0896 0.2914 ± 0.2365 0.8583 ± 0.0892 0.5748 ± 0.1134
poly 2 40.32 ± 5.34 0.2838 ± 0.0640 0.4032 ± 0.2365 0.8806 ± 0.0611 0.6419 ± 0.1144
poly 3 41.86 ± 7.15 0.3023 ± 0.0858 0.4186 ± 0.2453 0.8837 ± 0.0600 0.6512 ± 0.1218
poly 4 44.28 ± 5.57 0.3314 ± 0.0669 0.4429 ± 0.2392 0.8886 ± 0.0593 0.6657 ± 0.1165
RBF 16.67 ± 0.01 0.0000 ± 0.0000 0.1667 ± 0.3728 0.8333 ± 0.3728 0.5000 ± 0.0000
sigmoid 38.87 ± 6.94 0.2664 ± 0.0832 0.3887 ± 0.2373 0.8777 ± 0.0676 0.6332 ± 0.1171
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Fig. 6   Emotion classification performance from physiological signals. Each classifier family was assessed based on (a) accuracy, (b) kappa sta-
tistic, (c) sensitivity, (d) specificity, and (e) AUC​
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Considering these results, we used the previously trained 
Random Forest model with 300 trees to perform the predic-
tion of emotions in the test set. The confusion matrix in 
Fig. 7 shows how this model distributed the test data in the 
6 classes. The density of instances is also indicated by the 
color, so that the closer to green, the greater the number of 
instances in that region. Thus, you may see that the instances 
were almost all concentrated along the main diagonal of the 
matrix. This phenomena indicates that most of the data were 
correctly classified. Furthermore, in Table 8 we present the 
values for the rating performance evaluation metrics. There-
fore, the Random Forest model was able to classify the test 
set with 99.159% accuracy, kappa of 0.989, sensitivity of 
0.992, 0.998 specificity, and AUC of 1.

Speech data

In classifying emotions in voice signals, the outcome of the 
3 types of architectures (Table 9) shows that for this type of 
data we can still go a long way. With Random Forests, the 
10-tree configuration had the worst result, reaching 38.03% 
average accuracy. As expected, as we increased the number 
of trees in the model, we noticed an increase in overall per-
formance. Yet, this increase was not significant, to the point 
that the setting with the best performance was the Random 
Forest with 300 trees. This model achieved an average accu-
racy of 43.01%, with a kappa statistic of 0.3488, sensitiv-
ity of 0.5848, 0.9073 of specificity and AUC of 0.8958. The 
performances of SVMs were similar to Random Forests, 
being slightly worse. The best performing SVM configura-
tion was a 4th-degree polynomial kernel, with an accuracy of 
42.78%, 0.3460 kappa, 0.6035 sensitivity, 0.9110 specificity, 
and 0.8785 AUC. Among the ELM configurations, the 3rd-
degree polynomial kernel stood out positively. However, the 
ELM results were even worse than those obtained with the 

other architectures. The highest accuracy obtained with this 
architecture was 40.79%, which is associated with a kappa of 
0.3233, sensitivity of 0.4079, specificity of 0.9154 and AUC 
of 0.6616. The graphs in Fig. 8 present the behavior of all 
metrics for the best settings of the three classifier families for 
the speech data.

From these results, we found that Random Forest with 
300 trees achieved the best performance among the mod-
els. Therefore, we used this architecture to create the model 
for classifying the test data. The matrix in Fig. 9 shows the 
distribution of instances along the 8 classes of the prob-
lem. Although there is still confusion between the classes, 
it is observed that most instances were correctly classi-
fied. The accuracy associated with this classification was 
79,888% (Table 10). When applied to the test set, this model 
also resulted in good results for kappa (0.769), sensitivity 
(0.799), specificity (0.971) and AUC (0.965).

Facial expressions

For the training-validation stage with the facial expression data 
we obtained the results in Table 11 and Fig. 10. The plots in 
Fig. 10 illustrate the general behavior of the evaluated Random 
Forest configurations. By increasing the number of trees, there 
was also an improvement in performance until reaching a cer-
tain plateau, where performance became almost constant. This 
certain point of stability was reached from the configuration with 
350 trees. After this configuration, the increase in the number 
of trees did not lead to significant increases in any of the per-
formance metrics. This behavior was repeated for all metrics. 
Yet, there was a little more data dispersion in the sensitivity and 
specificity metrics. Random Forest with 350 trees resulted in 
an average accuracy of 75.29%, kappa of 0.7117, sensitivity of 
06116, 0.9233 of specificity and 0.8858 of AUC. So this was the 
setting used to create the model to classify the test set.

Fig. 7   Confusion matrix regard-
ing the classification of emo-
tions on the test set of physi-
ological signals with a Random 
Forest of 300 trees
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Table 12 presents the classification performance of the 
test set. For this database, the model classified the instances 
with 82,752% of accuracy, kappa of 0.791, 0.828 of sensitiv-
ity, 0.962 of specificity and AUC of 0.975. The distribution 
of these instances in the 7 classes of the problem is shown 
in Fig. 11. Once again, the confusion matrix shows that most 
instances were correctly classified.

Discussion

Using the physiological signals database, we found interest-
ing results in classifying the emotions (i.e. sadness, happi-
ness, disgust, neutral, amusement, and anger). The results in 
training-validation phase pointed to a good performance of 
Random Forest and SVM algorithms. Sensitivity, specific-
ity and AUC values for these methods were similar to each 
other. However, Random Forest presented slightly higher 
results of accuracy and kappa statistic. Both algorithms also 

showed high reliability in the results, since there was almost 
no data dispersion. On the other hand, the ELM configu-
rations presented much lower results than those obtained 
with the other classifiers. The performance of the best ELM 
setting showed greater dispersion. It was also statistically 
dissociated from the others for all evaluated metrics (see 
Fig. 6). From these findings, we selected the Random Forest 
model with 300 trees as the one with the best performance. 
This last model was later used to classify the test set.

In the test step with physiological data most instances 
were correctly classified. The matrix in Fig. 7 shows this 
result. There was low confusion between classes, with few 
instances placed outside their origin class. The biggest 
confusion rate was between the disgust and anger classes, 
with 4 instances of disgust placed in anger. Furthermore, 
except for the classes happiness and anger, all other classes 
had instances classified as neutral. On the other hand, the 
neutral and happiness classes showed the lowest rate of 
confusion, with only 1 instance being classified outside its 
class of origin. In total, of the 2022 instances of the test 
set, only 17 were incorrectly classified, representing an 
error of 0.84%. This test performance is confirmed by the 
high values of all evaluation metrics presented in Table 8.

Considering the speech data, the results of the proposed 
method were not all positive. Overall, the results for the 
Random Forest, SVM and ELM configurations were simi-
lar to each other. They achieved median values for most of 
the evaluated metrics. The results in Fig. 8 prove that there 

Table 8   Test results of the 
best overall method (Random 
Forest with 300 trees) in the 
classification of physiological 
data

Model Random Forest (300 
trees)

Accuracy 99.159%

Kappa 0.989
Sensitivity 0.992
Specificity 0.998
AUC​ 1.000

Table 9   Classification performance for the dataset from speech signals

Classifier Accuracy (%) Kappa statistic Sensitivity Specificity AUC​

Random Forest 10 trees 38.03 ± 3.54 0.2918 ± 0.0406 0.5591 ± 0.1096 0.8889 ± 0.0272 0.8464 ± 0.0449
20 trees 39.91 ± 3.52 0.3133 ± 0.0403 0.5716 ± 0.1149 0.8977 ± 0.0275 0.8733 ± 0.0354
50 trees 41.91 ± 3.78 0.3362 ± 0.0432 0.5879 ± 0.1125 0.9034 ± 0.0264 0.8883 ± 0.0309
100 trees 42.44 ± 3.59 0.3423 ± 0.0411 0.5840 ± 0.1144 0.9065 ± 0.0252 0.8933 ± 0.0295
150 trees 42.69 ± 3.71 0.3451 ± 0.0425 0.5841 ± 0.1129 0.9072 ± 0.0247 0.8942 ± 0.0294
200 trees 42.71 ± 3.73 0.3454 ± 0.0427 0.5825 ± 0.1160 0.9072 ± 0.0242 0.8949 ± 0.0296
250 trees 42.89 ± 3.79 0.3474 ± 0.0434 0.5828 ± 0.1154 0.9066 ± 0.0249 0.8953 ± 0.0296
300 trees 43.01 ± 3.77 0.3488 ± 0.0431 0.5848 ± 0.1147 0.9073 ± 0.0245 0.8958 ± 0.0295
350 trees 43.06 ± 3.79 0.3494 ± 0.0433 0.5858 ± 0.1149 0.9079 ± 0.0245 0.8960 ± 0.0293

SVM linear 36.42 ± 3.33 0.2734 ± 0.0381 0.5253 ± 0.1150 0.9075 ± 0.0247 0.8491 ± 0.0363
poly 2 37.65 ± 3.33 0.2874 ± 0.0381 0.5634 ± 0.1158 0.9143 ± 0.0237 0.8683 ± 0.0359
poly 3 39.95 ± 3.240 0.3137 ± 0.0370 0.5927 ± 0.1034 0.9106 ± 0.0243 0.8778 ± 0.0334
poly 4 42.78 ± 3.79 0.3460 ± 0.0433 0.6035 ± 0.1128 0.9110 ± 0.0252 0.8785 ± 0.0338
RBF 37.35 ± 3.45 0.2840 ± 0.0394 0.5370 ± 0.1180 0.9135 ± 0.0235 0.8564 ± 0.0368

ELM linear 34.47 ± 8.74 0.2511 ± 0.0999 0.3447 ± 0.2758 0.9064 ± 0.0793 0.6256 ± 0.1144
poly 2 39.74 ± 8.74 0.3113 ± 0.0999 0.3974 ± 0.2579 0.9139 ± 0.0692 0.6556 ± 0.1126
poly 3 40.79 ± 9.96 0.3233 ± 0.1024 0.4079 ± 0.2400 0.9154 ± 0.0688 0.6616 ± 0.1040
poly 4 40.20 ± 10.11 0.3165 ± 0.1155 0.4020 ± 0.2562 0.9146 ± 0.0686 0.6583 ± 0.1115
RBF 13.22 ± 0.99 0.0083 ± 0.0114 0.1322 ± 0.3298 0.8760 ± 0.3245 0.5041 ± 0.0170
sigmoid 37.50 ± 8.09 0.2857 ± 0.0924 0.3750 ± 0.2456 0.9107 ± 0.0737 0.6428 ± 0.1042
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was no statistical difference between these architectures if 
we look to the results of kappa, sensitivity and specific-
ity. However, there was difference for the metrics accuracy 
and AUC, with Random Forest and SVM performing bet-
ter than ELM. In most cases ELM also presented greater 
data dispersion than the other architectures. It is also worth 

mentioning the good results of specificity and AUC. This 
phenomenon indicates that the algorithms were more capa-
ble of identifying the classes to which a given instance does 
not belong to than identifying which is the correct class of 
that instance. It is important to highlight the large number 
of emotion classes in this voice database. In addition, this 

Fig. 8   Emotion classification 
performance from speech data. 
Each classifier family was 
assessed based on (a) accuracy, 
(b) kappa statistic, (c) sensitiv-
ity, (d) specificity, and (e) AUC​
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database has few data for each class, thus resulting in low 
variability. These factors difficult the training of the algo-
rithms, reducing classification performance.

In the test stage with the voice dataset, we also used a 
Random Forest model with 300 trees. This model achieved 
the best performance during the training-validation stage. 
The performance of this model was superior during the clas-
sification of the test data, reaching almost 80% accuracy. 
This result shows that the training, validation and test sets 
were properly designed. The confusion matrix (Fig. 9) shows 
that most instances were correctly classified. Of the 358 
instances of the validation set, 72 were incorrectly classi-
fied. Almost all instances of the calm, neutral and astonished 
classes were correctly classified. Additionally, contrary to 

what happened with physiological signals, there was little 
confusion between neutral class and the others. The highest 
confusion rate was between rage and happy classes, with 5 
of the 48 instances of rage being classified as happy. The 
class that was most confused with the others was disgust, 
with 14 instances of the 48 being incorrectly classified out-
side the origin class.

In classifying emotions from facial expressions, we found 
a gradual increase in the performance of the algorithms. This 
increase was noticed as we increased the number of trees 
that build the Random Forest. From the evaluation of all 
metrics, we found that from Random Forest with 350 trees 
we may consider that there was no further increase in the 
classification performance. Overall, this algorithm achieved 
good results of accuracy, kappa statistic, specificity and 
AUC. However, the sensitivity values were a little below 
the other metrics. This finding indicates that there is some 
difficulty in identifying the correct class of each instance in 
this data modality.

In addition, there is also a good classification perfor-
mance of Random Forest with 350 trees for the test set. The 
matrix in Fig. 11 shows that most of the data were correctly 
classified. Of the 8969 instances in the test set, only 1547 
were misclassified. Most errors occurred between neutral, 
happy and sad classes. There was a low rate of confusion 

Fig. 9   Confusion matrix regard-
ing the classification of emo-
tions on the test set of speech 
signals with a Random Forest of 
300 trees

Table 10   Test results of the 
best overall method (random 
forest with 300 trees) in the 
classification of speech data

Model Random Forest (300 
trees)

Accuracy 79.888%

Kappa 0.769
Sensitivity 0.799
Specificity 0.971
AUC​ 0.965

Table 11   Classification 
performance for the dataset 
from facial expressions

Classifier Accuracy (%) Kappa sta�s�c Sensi�vity Specificity AUC

Random Forest

10 trees 55.49 ± 0.63 0.4806 ± 0.0074 0.4556 ± 0.0163 0.8583 ± 0.0047 0.7429 ± 0.0083
20 trees 61.18 ± 0.59 0.5471 ± 0.0069 0.4859 ± 0.0167 0.8821 ± 0.0045 0.7920 ± 0.0073
50 trees 67.67 ± 0.61 0.6228 ± 0.0071 0.5333 ± 0.0176 0.9039 ± 0.0040 0.8397 ± 0.0062

100 trees 71.44 ± 0.54 0.6669 ± 0.0063 0.5682 ± 0.0156 0.9145 ± 0.0039 0.8639 ± 0.0057
150 trees 73.07 ± 0.54 0.6858 ± 0.0064 0.5860 ± 0.0152 0.9186 ± 0.0038 0.8737 ± 0.0053

200 trees 73.97 ± 0.57 0.6964 ± 0.0067 0.5969 ± 0.0149 0.9205 ± 0.0037 0.8789 ± 0.0053
250 trees 74.57 ± 0.54 0.7033 ± 0.0064 0.6029 ± 0.0154 0.9278 ± 0.0036 0.8821 ± 0.0052
300 trees 74.98 ± 0.52 0.7081 ± 0.0061 0.6079 ± 0.0152 0.9227 ± 0.0035 0.8842 ± 0.0051
350 trees 75.29 ± 0.54 0.7117 ± 0.0063 0.6116 ± 0.0156 0.9233 ± 0.0036 0.8858 ± 0.0051
400 trees 75.52 ± 0.52 0.7144 ± 0.0061 0.6146 ± 0.0150 0.9239 ± 0.0036 0.8870 ± 0.0051
500 trees 75.86 ± 0.52 0.7184 ± 0.0061 0.6185 ± 0.0159 0.9247 ± 0.0035 0.8887 ± 0.0050
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between the disgust class and the others. This phenomenon 
is evidenced by the red quadrants of the matrix. The fact that 
there are fewer instances of this class in the set may have 
favored this result. There was still low confusion between 
the astonished class and the others.

The findings from all data modalities show that the Ran-
dom Forest algorithm was sufficiently robust to generalize 
the results obtained in the training-validation steps to the 
test data. In addition, this model presented low data vari-
ability. It points to a good reliability and repeatability of the 

Fig. 10   Emotion classifica-
tion performance from facial 
expressions data. Each classifier 
configuration was assessed 
based on (a) accuracy, (b) 
kappa statistic, (c) sensitivity, 
(d) specificity, and (e) AUC​
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performances obtained here. These findings were common to 
the three databases, even though they came from very differ-
ent sources. This means that the proposed method is promis-
ing for the classification of emotions in multimodal data.

Conclusion

Considering the importance of emotions for the regulation 
of social interactions and the growing demand for tools 
that help in their identification, we propose an approach for 
automatic recognition of emotions. Since the expression 
of emotions is commonly affected by neurodegenerative 
pathologies such as dementia, our approach aims to use 
emotional feedback to support the personalization of thera-
pies for elderly people with dementia. In the therapeutic 
context, the customization of interventions has been shown 
to be effective in adapting the conduct to better meet the 
individual needs of patients. In this approach, we evaluated 
the performance of a computational methodology in the 
recognition of emotions in data from different modalities.

Since previous studies prove that data association ben-
efits the identification of emotions, we used data that have a 
proven relationship with the expression of different human 
emotions. Therefore, we accessed data from facial expres-
sions, speech signals, and central and peripheral physiologi-
cal signals. We obtained this data from public databases. 
Data analysis was performed using artificial intelligence 

computational tools. In this sense, two approaches were 
proposed: one for images (facial expressions) and another 
for signals (speech and physiological).

For the investigation of emotion patterns in images we 
propose a hybrid architecture based on pre-trained deep 
neural network and Random Forest for feature extraction 
and classification. The signals were described by statisti-
cal attributes and in time and frequency domains. Next, we 
evaluated the performance of different configurations of 
ELM, SVM and Random Forest classifiers in differentiat-
ing emotions in these signals.

The performance assessment of these methods took 
place in two stages, one of training-validation and the other 
of test. In the training-validation stage, we evaluated the 
different architectures to identify the most suitable setting 
to deal with each type of data. Then, the chosen model was 
used in the test stage of each data modality.

In the context of signals, the approach adopted allowed 
a classification with high accuracy (98.48%), kappa index 
(0.9817), sensitivity (0.9957), specificity (0.9977) and AUC 
(0.9999) for the physiological signals. However, the perfor-
mances with speech signals were much worse, with maxi-
mum accuracy of 43% and kappa of 0.35. For both cases 
Random Forest with 300 trees showed the best performance. 
The low performance with speech signals can be explained 
by the high complexity of this data associated with the low 
number of records per class. Even though the database con-
tains a good amount of signals, there are also many classes 
of emotions (8). Therefore, the amount of data per class ends 
up becoming insufficient to enable the identification of the 
patterns of each class.

In the image analysis, the architecture combining LeNet 
and Random Forest with 350 trees presented the best clas-
sification performance. This algorithm was able to identify 
the 7 emotions of the problem with an accuracy of 75.29%, 
kappa of 0.7117, sensitivity of 0.6116, specificity of 0.9233 
and AUC of 0.8858.

Table 12   Test results of the 
best overall method (random 
forest with 350 trees) in the 
classification of facial data

Model Random Forest (350 
trees)

Accuracy 82.752%

Kappa 0.791
Sensitivity 0.828
Specificity 0.962
AUC​ 0.975

Fig. 11   Confusion matrix 
regarding the classification of 
emotions on the test set of facial 
expression data with a Random 
Forest of 350 trees
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It is important to highlight that in both types of data 
(signals and images) the best classifications were achieved 
by Random Forests with a large number of trees. This 
indicates that the identification of emotions in these data 
modalities requires a certain degree of computational com-
plexity. In the test step, we use the architectures with the 
best performance for each type of data to classify instances 
that were not used in the training step. From the test we 
noticed a high generalization capacity of the architectures 
for the three scenarios. With the physiological data we 
reached an accuracy of 99.16%. For speech signals, the 
percentage of correct classification was 79.89%. There was 
also an accuracy of 82.75% in the identification of emo-
tions in images of facial expressions. In addition, a good 
performance in differentiating emotions was also perceived 
in all scenarios. This was explicit in the confusion matrices 
and in the high values of the sensitivity, specificity and 
AUC metrics.

The good results in the test stage are encouraging 
and point to the possibility of adopting the method in 
the analysis of emotions in multimodal data. These find-
ings are even more interesting due to the large amount 
and variety of emotions. However, some improvements 
can be incorporated, such as the use of a greater amount 
and diversity of data, especially for speech signals. The 
limited availability of data in the speech signal database 
made it necessary to use strategies to synthesize data 
from the original dataset, which may end up attributing 
a certain degree of redundancy to the instances of each 
class. In this sense, the incorporation of new data in the 
architecture training can make the solution more robust 
and improve its performance in a context of daily use. 
For the development of a final solution, more in-depth 
studies are also needed on the computational, time and 
memory costs associated with processing. Future works 
may also investigate the performance of architectures in 
classifying emotions in multimodal signals coming from 
the same individual.
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