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Abstract
Background and objectives Pulmonary obstruction diseases produce adventitious sounds in the breathing cycle. With the
increased impact of lung diseases, it has become essential for the medical professional to leverage artificial intelligence for
faster and more accurate lung auscultation. Initial biomedical signal processing techniques focused on features based on
signal amplitude, so accuracy detection depends upon the signal amplitude. The adventitious sounds heard in the respiratory
cycle have non-linear characteristics. The present research targets to propose features based on the non-linearity of the
adventitious sounds. Also, in this research, SVM-LSTM with the Bayesian optimization model is applied for the first time
to test features of adventitious sounds.

Methods The characteristics of adventitious sounds contain non-linearities. Targeting the same, the research proposes
two feature sets based on wavelet bi-spectrum and bi-phase (eight each). SVM-LSTM analyzes these features with the
Bayesian optimization algorithm model. The research employs the RALE� database, which is the most comprehensive
public database of lung sounds.

Results The results are presented in a matrix of 3×10 with parameters as MSE, PSNR, R-value, RMSE, and NRMSE from
the confusion matrix for SVM, SVM-LSTM, and SVM-LSTM with BO for each class, i.e., wheeze, crackle, and normal.
The results are evaluated using Matlab� 2021b (MathWorks�, Inc.). Results reveal that feature sets achieved an accuracy
of 94.086% for SVM, 94.684% for SVM-LSTM, and 95.699% with 95.161% for LSTM Bayesian optimization for WBS
and WBP, respectively.

Conclusion The research supports the hypothesis that adventitious sounds have non-linear properties. New features are more
effective in detecting lung sounds. Also, combining the LSTM with Bayesian optimization improved each class’s accuracy
and statistical parameters. The above model design achieved accurate AI-aided detection of lung diseases for light weighted
edge devices.

Keywords Lung sound · Signal processing · Pulmonary obstructive diseases · Wheezes · Signal classification

Introduction

One of the leading causes of death worldwide is respi-
ratory disorder diseases (WHO 2019). Patients suffering
from these diseases produce adventitious sounds in their
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breathing cycle. The World Health Organization (WHO)
declared COVID-19 as a global pandemic that is caused by
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) and is rapidly spreading across more than 200 coun-
tries worldwide (Sanders et al. 2020). COVID-19 comes
with an indication like fever, throat, dry cough, dyspnea,
fatigue, and headache. Also, when it is an indication of a
critical condition, its symptoms with multiple organ fail-
ure (Kujawski et al. 2020; Chang et al. 2020) and Sun
et al. (2020). Unconditionally, lung sounds also affect the
scarcity of voice, affecting even shortness of breath and
congestion in the upper airway. The repetitive dry coughs
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cause lungs that affect voice sound quality. Researchers
even reported that COVID-19 symptoms with inadequate
airflow by the vocal tract result in pulmonary and laryn-
gological involvements in people (Asiaee et al. 2020). As
a result, all symptoms, as stated, result in the patient’s
lungs with sounds as an identifiable voice signature. There
are mainly two categories of adventitious sounds, namely
continuous and discontinuous. The continuous adventitious
breath sounds (wheezes, stridor, and rhonchi) have a time
length of > 250 ms, but discontinuous (crackle) adventi-
tious signals have a time duration of 25 ms, according to
Islama et al. (2018). It has been seen that it is critical for
proper assessment of COVID-19 patients to mitigate and
halt the rapid expansion of diseases across the nations. With
this intensity and demise rate of COVID-19 in the presence
of lung/pulmonary diseases is increased, which is rapidly
spreading among the public. TB and COVID-19 differ as TB
is curable, but COVID-19 lacks effective anti-viral agents
and drugs (Pan et al. 2020; Cantini et al. 2020). It has
been seen that both COVID-19 and TB affect health sys-
tems since both are airborne transmissible diseases, and we
can diagnose them rapidly. Both effects stigma and requires
awareness among the public and need cooperation so that
it can be prevented and diagnosed so that treatment can be
effective. It has been seen that most countries still lack infor-
mation about COVID-19, and as compared to TB, it does
not require many clinical and immunological parameters
such that we can understand how both differ from the inter-
action between the two diseases. Besides, the COVID-19
pandemic led to a notable fall in TB notifications (Migliori
et al. 2020). COVID-19 has main dominating symptom is
coughing, which is also a symptom of more than 100 dis-
eases. However, how it affects the respiratory system varies
from COVID-19, as we can see from the fact that dis-
eases of the lungs affect the airway to be either restricted
or obstructed, which influences cough acoustics. However,
the glottis behaves diversely under unpredictable patholog-
ical conditions, and we can distinguish between coughs
due to TB, asthma, bronchitis, and pertussis (Pahar et al.
2021). The burning flare-up of COVID-19 requires COVID-
19 individuals well-planned testing such that it can limit and
arrest diseases as it is rapidly spreading globally. Chronic
pulmonary diseases have been observed main cause of the
severity and mortality ratio of COVID-19-affected patients.
One of the most feasible assessment approaches is a radio-
graphic examination exploiting chest X-ray images for pul-
monary disorders, including COVID-19. The researchers
conduct DL image classification by developing DL clas-
sifiers with nine class CXI to predict pulmonary diseases
with COVID-19 (Bhosale and Patnaik 2022b). To test
COVID-19 cases, we have analyzed the most successful
radiography utilizing chest X-ray sounds. For analyzing
diseases, we have used SVM-LSTM-BO-based artificial

intelligence for seeing various sounds of lung-based dis-
ease and have studied to see how much improvement we
can achieve as a machine learning for our algorithm-based
study to see the advantage as compared to obstructive pul-
monary diseases (Bhosale et al. 2022; Bhosale and Sridhar
Patnaik 2022). The main aim of DL methodology is to
grasp hierarchical features from data. DL methods permit
us to tackle complex patterns skilfully. GGO, consolida-
tion, pleural effusion, and bilateral lung involvement are
the specific patterns due to infectious COVID-19 in radio-
logical images (Carotti et al. 2020). These specific patterns
can be identified by using different DL architectures (Khan
et al. 2021). It has been reported that DL models have
higher sensitivity and specificity values and more accurate
predictions for COVID-19 detection. DL methods reduce
negative error and false positive rates and provide medical
specialists and radiologists with a quick, economical, and
accurate diagnostic. COVID-19 can be finely tuned, and
much time is saved on analysis-related tasks as we built
the DL model and trained them from scratch. The present
research aims to uncover the non-linear characteristics of
the adventitious sounds heard during the respiratory cycle.
It has been discovered that wheezing noises are recognized
between expiration and inspiration in intensity, pitch, posi-
tion, and duration. As a result of narrowing the airway
blockages, we can have either a high or low pitch (Swapna
et al. 2020; Taplidou and Hadjileontiadis 2007). Kevat et al.
(2020) used the manual accusation to detect adventitious
breath sounds with low inter-observer reliability. The study
gathered 192 auscultation recordings of children with two
digital stethoscopes (Clinicloud and Littman) categorized
as wheezes and crackles. The above research uses spec-
trogram and waveform analysis of clinicloud recordings
to detect wheezes and crackles. The above study had a
positive percent agreement (PPA) of 0.95 and a negative
percent agreement (NPA) of 0.99, while Littman collected
sounds had a PPA of 0.95. The PPA and NPA were both
0.82 (Fig. 1).

Shi et al. (2019a) use temporal feature Mel spectrogram
features and Bi GRUVGish classifier combination on a
database of 384 subjects to achieve an accuracy of 87.41%.
Aykanat et al. (2017) employ MFCC spectrograms with
CNN classifier to achieve an accuracy of 80%.

Niu (2019) describe a system for detecting the presence
of sputum and acquired inhale and exhale respiratory
sounds. The research extracted audio features and fed them
to a tenfold cross-validation experiment (logistic classifier).
The research achieved a sensitivity of 92.26% and a
specificity of 92.26%

In the research conducted by Shi et al. (2019b), they
chose WCC features and combined them with the BPNN
classifier to achieve an accuracy of 92.5% with a database
of 64 subjects.

350



Research on Biomedical Engineering (2023) 39:349–363 

Fig. 1 Graphical abstract

Bardou et al. (2018) obtained the features in the form
of spectrograms and fed these to a CNN-based classifier to
achieve an accuracy of 95.56%.

Demir et al. (2020) clubbed time frequency-based
features with convolution neural networks to achieve an
accuracy of 65.5%.

The above researchers have employed either one or
two classifiers only for testing proposed features. Most of
the features target the linear characteristics of adventitious
sounds. The accuracy so achieved has an upper cap of 95%.
The database also has a limited number of subjects.

Taplidou and Hadjileontiadis (2010) used higher-order
spectral features to classify adventitious sounds to detect
adventitious sounds based on statistical attributes (SPSS
tool), with a 96% accuracy rate. The current research
proposes sixteen features (two sets of eight each, with two
forwarded (Taplidou and Hadjileontiadis 2010)) based on
WBS and WBP. These features are fed to the proposed
classification model. Here we used SVM-LSTM with
BO as the classification model. SVM algorithm uses
loss function for training by folding at k=5. The finding
suggests a gradual rise in accuracy from the SVM to
the SVM-LSTM algorithm and the SVM-LSTM-Bayesian
optimization model for both types of features. Remote
automated auscultation systems may play a crucial role
in combating the problem of the availability of expert
physicians. Hence, artificial intelligence can be leveraged
to assist physicians in performing auscultation remotely
and more accurately. This paper proposes a new hybrid
framework for lung sound classification for biomedical
engineering by combining feature engineering (FE), LSTM,
and SVM with Bayesian optimization (BO) for machine
learning. The FE module comprises feature selection
and extraction phases. And the SVM with LSTM with
Bayesian optimization (BO) algorithm is used to fine-
tune the control parameters of data and provides more
accurate results by avoiding the optimal local trapping. The
proposed FE-SVM-LSTM-BO framework works in such
a way as to ensure stability, convergence, and accuracy.
The present FE-SVM-LSTM-BO model is tested based
on data for lung sounds for categorical wheeze, crackle,
and normal sounds with error calculation parameters. The

results show that the proposed model has significantly
improved the accuracy with a fast convergence rate and
shows efficiency from previous studies for all statistical and
error parameters (Zulfiqar et al. 2022). Our proposed work
tested adventitious sounds, i.e., crackles, wheezes, and both
but it is incapable of detecting other sounds, i.e., rhonchi
and squawks. Also, the ICBHI database on which our work
has been proposed has only a limited number of respiratory
cycles, and it is a fact that recording respiratory sounds
is a challenging process compared to other physiological
signals, i.e., ECG; fewer studies focus on them. Also, as
we use DL strategies due to noisy and small data suffering
from significant deviation and generality failures, and also
as we use DL systems, it is critical to assess efficiency
since they are susceptible to noise and incorrect model
interpretation. The inductive implications inherent in cases
of uncertainty (Bhosale and Patnaik 2022a). The paper’s
organization flow explains the methods followed in the
research and highlights data acquisition and pre-processing
techniques followed in the research. And another part
gives a broad overview of feature set analysis. And later
presents the experimental results and is later detailed in
the discussion. And concludes the paper. Finally, end with
Acknowledgements.

Methods

The methodology adopted in this work is divided into the
following points:

1. Data analysis takes place in two subsections: data
acquisition and data processing, in which we have taken
the Rale database.

2. Feature extraction phase: Here, the research uses
mathematical extraction of features described in the
feature analysis section.

3. To extract the feature’s numerical values, we have
constructed an excel sheet.

4. Categorical data based on wheeze, crackle, and normal
sounds, the research adopts SVM, LSTM, and LSTM
with BO algorithm as artificial intelligence.
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5. The algorithm’s running generates parameters that
make a confusion matrix.

6. Using the confusion matrix, we calculated error
parameters.

7. In this analysis, based on the results, we discussed and
concluded all our points and discussed them in the result
and conclusion sections.

Data acquisition

The data in this research mainly comprise of the Respiration
Acoustics Laboratory Environment RALE� (Pasternak
2008) lung sounds 3.2 (permitted to use the data for
academic research) and other resources (Huang 2005;
Keroes 2018). The educational program RALE� aims
to educate doctors, nurses, medical professionals, and
students. It features about 50 recordings, a collection
of adventitious sounds from people of various ages
and conditions. There is also a quiz area with 24
more instances. The Health Sciences Communications
Association has given the collection a commendation
award for computer-based products. Wheezes (normal,
monophonic, and polyphonic wheezes) are represented by
252, crackle (coarse and fine crackle) is characterized by
70, and normal sound (bronchial, bronchovesicular, and
tracheal sounds) is represented by 50.

Data pre-processing

The voltage range of the captured sound is −5V to +5V
(−32,767 to +32,768). The sampling frequency for the
captured sound is 4kHz, 16 bits, and 1024 points per
segment. Following the computerized respiratory sound
analysis (CORSA) guidelines, the first-order Butterworth
filter high passes the signals at 7.5kHz for filtering out
DC offset. The signals are low pass filtered at 2.5kHz
using eighth-order Butterworth LPF. The system uses BPF
(150Hz–2kHz) for heart sound cancellation. The signals are
divided into segments of its waveform by using Goldwave�

Software. A pulmonologist manually validated the database
in the medical clinic in Indore, India.

Feature analysis

To provide a distinctive identity, the values are drawn from
a signal called a feature. In this paper, we have proposed
a feature set that shows non-linearity in the time-frequency
domain, and for this proposed system, we have seen non-
stationary characteristics and the quadratic phase coupling
of harmonic peaks of the feature are non-linear in nature. So
as a higher-order spectrum, we have a rich feature scope in
non-linear signals.

Fig. 2 Higher-order features of wavelet bi-phase for wheezes

Figures 2, 3, 4, 5, 6, and 7 are the higher-order spectra
of wheeze, crackle, and normal health sounds of wavelet bi-
spectrum and bi-phase. They are marked with global max
and min peaks with arriving rise and fall times.

Wavelet bi-phase (WBP) and bi-spectrum (WBS)

In obstructive pulmonary disease, airway restriction intro-
duces non-linearity in harmonic peak interactions. The
wavelet analysis aids in the detection of non-linearity
in signal analysis. We convolve the wave-like struc-
tures (wavelets) with the signal in wavelet transform.
This convolution procedure reveals the signal’s transitory

Fig. 3 Higher-order features of wavelet bi-spectrum for wheezes
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Fig. 4 Higher-order features of wavelet bi-phase for crackle

features. The mathematical formula for CWT is as follows:
Hadjileontiadis (2018)

Wx(a, b) = 1√
a

∫ +∞

−∞
x(t)ψ ∗

(
t − b

a

)
dt (1)

where x(t) represents the signal in time-domain (x(t) ∈
L2(R)), * represents complex conjugate, and ψ(t) is the
mother wavelet scaled by a factor a, a >0 and dilated by a
factor b, also a and b are continuous. The Morlet wavelet
has the advantage of time and frequency localization.
They are also helpful in identifying measurable features
in the time-frequency domain and are preferred as mother
wavelets.

ψ(t) = 1√
πfb

e
−t2
fb ej2πfct (2)

Fig. 5 Higher-order features of wavelet bi-spectrum for crackle

Fig. 6 Higher-order features of wavelet bi-phase for normal

where fc and fb are the central wavelet frequency
and bandwidth parameters, respectively. The wavelet bi-
spectrum is defined as

WBx(a1, a2) =
∫

T

W ∗
x (a, τ )Wx(a1, τ )Wx(a2, τ )dτ (3)

The preceding integration takes place over a limited time
interval T: τ0 < τ < τ1 and a, a1, and a2 are the wavelet
component and signal scale lengths. The WBS provides
quadratic phase coupling between wavelet components in
the interval T . Wavelet bi-amplitude and bi-phase refer to
the magnitude and phase of complex WBS, respectively.

Fig. 7 Higher-order features of wavelet bi-spectrum for normal
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Instantaneous wavelet bi-amplitude and bi-phase

The WBS defined in equation 3 corresponds to time interval
T; instantaneous WBS (IWBS) is defined as follows:

IWBx(a1, a2, t) =| IWBx(a1, a2, t) | ej≤IWBx(a1,a2,t) (4)

= Axe
jϕx

The IWBS is a complex quantity with a magnitude of bi-
amplitude and a phase of bi-phase, as shown by the above
equation.

Global peaks (GPs) maxima, minima, and Euclidean
distance

The following features are based on GPs and Euclidean
distance: Feature 1: Global max value in the amplitude
domain (wavelet bi-spectrum) GMaxWBx

Feature 2: Global min value in the amplitude domain
(wavelet bi-spectrum) GMinWBx

Feature 9: Global max value in the amplitude domain
(wavelet bi-phase) GMaxφx

Features 10: Global min value in the amplitude domain
(wavelet bi-phase) GMinφx

If the peak’s amplitude exceeds the average amplitude, it is
classified as GP. Global maxima or minima is the maximum
value attained by a function in the positive or negative
direction. The global peaks (GPs) appear throughout the
signal’s lifespan (TTotal). Their features offer the proposed
feature’s bi-frequency-related qualities.

mAx(ω1, ω2) = Ax(ω1, ω2, t) (5)

where Ax(ω1, ω2) is the IWBC amplitude of instanta-
neous wavelet bi-amplitude over the area � that exceeds the
statistical noise.

mAbGPi
x (ωc1, ωc2) = mAbGPi

x (ω1, ω2) |
mA

GPi
x (ω1,ω2)=max

(6)

Ci = (ωc1, ωc2), i = 1, 2, .......l
The function of global maxima in domain D has a global
maximum at C ∈ D.

if f(x) < f (c) for all x ∈ D, it has a global minima at
C ∈ D

if f(x) ≥ f (c) for all x ∈ D, it has a global maxima at
C ∈ D

As seen in Table 1, the GMax of both bi-phase and bi-
spectrum has −45.8678, −12.276, and −13.3763 values for
W, C, and N. The GMin of both bi-phase and bi-spectrum
for crackle has −99.7943 values. And GMin for bi-spectrum
has −102.6085 and −111.2704 values for W and N. And
GMin for bi-phase has −102.609 and −111.27 values for W
and N. Ta
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The following section puts up light on feature number
three and eleven: Feature 3: The distance of the Ci from the
contour S of the ith GP at the bi-frequency domain in the
wavelet bi-spectrum DGPiWBx

Feature 11: The distance of the Ci from the contour S of the
ith GP at the bi-frequency domain in the wavelet bi-phase
DGPi φx

The distance of the Ci from the contour S of the ith GP
at the bi-frequency domain, considering the contour S of
GPi is denoted by DGPi . The Euclidean distance (feature
numbers 3 and 11) of Si from Ci can be defined as follows:

sj = (ωs1, ωs2)
j ∈ S, j = 1, 2, ....m (7)

where m is the number of points on the contour S of GPi.
As seen in Table 1, the DGPi of both bi-phase and bi-
spectrum has 56.7406,630.5659 and 106.9485 values for W,
C, and N.

Amplitude abovemean

Feature 4: Amplitude above mean in wavelet bi-spectrum)
AmeanWBx

Feature 12: Amplitude above mean in wavelet bi-phase)
Ameanφx The fourth and twelfth features are discussed
in this section. The peak-to-peak (p-p) amplitude is the
difference between the largest and the smallest points.
Figure 2 depicts the signal amplitude measurement points.
The p-p amplitude is denoted by the number “2” in Fig. 8.
Peak-to-Peak amplitude (represented as “2” in Fig. 8) =
Mean of the spectrum (MS) = Peak-to-Peak amplitude
(denoted as “2” in Fig. 8)/2
Amplitude above mean Amean = Peak amplitude (denoted as
“1” in Fig. 2)−Mean of the spectrum (MS)

As seen in Table 1, the Amean of both bi-phase and bi-
spectrum has 28.3703, 43.7591, and 48.9471 values for W,
C, and N.

Average instantaneousWBS/WBP

Feature 6: Average instantaneous wavelet bi-spectrum
across the examined total time interval T mWBx(ω1, ω2)

Fig. 8 Location of measurement of signal amplitude

Feature 14: Average instantaneous wavelet bi-phase across
the examined total time interval T mφx(ω1, ω2)

This section elaborates the features number six and
fourteen. The maximum instantaneous wavelet bi-phase of
the LPs in the time interval t is denoted as mφx(ω1, ω2)

and for WBS as mWBx(ω1, ω2). The frequencies ωc1 ,
ωc2 where LPi has its maximum value vary with time.
The representation of time dependence of the wavelet
frequencies ωc1and ωc2 is represented as ωc1(t) and ωc2(t).

As seen in Table 1, the Average instantaneous of both bi-
phase and bi-spectrum has 5.18E+04, 7.01E+04, and 51134
values for W, C, and N.

MaximumWBS/WBP across time

Feature 7: Maximum wavelet bi-spectrum across time-
related to LPs maxWBLP

x

Feature 15: Maximum wavelet bi-phase across time-related
to LPs maxφLP

x

This section puts light on feature numbers seven and fifteen.
The local peaks (LPs) are seen in the signal’s detailed
perspective based on window overlapping section � using
IWBS analysis.

AbLPi
x (ωc1, ωc2, t) = AbLPi

x (ω1, ω2, t) |
mA

LPi
x (ω1,ω2,t)=max

(8)

where l is the number of LPs, and i is the maximum peak
position. The maximum WBS/WBP across time is related
to local peaks as follows:

max φLP
x = max(φLP

x (t)) (9)

max WBLP
x = max(WBLP

x (t)) (10)

As seen in Table 1, the Max of both bi-phase and bi-
spectrum has 1020, 1024, and 1021 values for W, C,
and N.

Arithmetic mean (AM) and standard deviation (SD)

Feature 5: Mean wavelet bi-spectrum related to LPs
meanWBLP

x

Feature 8: The standard deviation of the wavelet bi-
spectrum related to LPs stdWBLP

x

Feature 13: Mean wavelet bi-phase related to LPs (Taplidou
and Hadjileontiadis 2010) meanφLP

x

Feature 16: The standard deviation of the wavelet bi-phase
related to LPs (Taplidou and Hadjileontiadis 2010) stdφLP

x

This section discusses feature numbers five, eight, thirteen,
and sixteen. AM measures the dispersion of a collection of
data from its mean and is the central value of the SD

stdWBLP
x = std(WBLP

x (t)) (11)
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Table 2 Performance measures for SVM algorithm of WBP for each class

Name Classes MacroAVG MicroAVG

“True positive” 252 64 34 116.67 116.67

“False positive” 0 6 16 7.3333 7.3333

“False negative” 16 0 6 7.3333 7.3333

“True negative” 104 302 316 240.67 240.67

“Precision” 1 0.91429 0.68 0.86476 0.94086

“Sensitivity” 0.9403 1 0.85 0.9301 0.94086

“Specificity” 1 0.98052 0.95181 0.97744 0.97043

“Accuracy” 0.94086 0.94086 0.94086 0.94086 0.94086

“F-measure” 0.96923 0.95522 0.75556 0.89334 0.94086

stdφLP
x = std(φLP

x (t)) (12)

meanφLP
x = mean(φLP

x (t)) (13)

meanWBLP
x = mean(WBLP

x (t)) (14)

As seen in Table 1, the mean of both bi-phase and bi-
spectrum has 510.7143, 535.3702, and 511.34 values for W,
C, and N. As seen in Table 1, the Std of both bi-phase and
bi-spectrum has 290.4293, 289.4929, and 287.2834 values
for W, C, and N.

Results

The result section puts up light on the confusion matrix,
accuracy vs. iterations, loss vs. iterations, and derivation of
statistical measures.

As seen from Tables 2, 3, 4, 5, 6, and 7, we have attained
Precision value improvement in WBS, and WBP with
LSTM with Bayesian optimization shows WBS with LSTM
with Bayesian has a good Precision value. As seen from
Tables 2, 3, 4, 5, 6, and 7, we have attained Recall value

improvement in WBS, and WBP with LSTM with Bayesian
optimization shows WBS with LSTM with Bayesian has a
good Recall value. As seen from Tables 2, 3, 4, 5, 6, and
7, we have attained Specificity value improvement in WBS,
and WBP with LSTM with Bayesian optimization shows
WBS with LSTM with Bayesian has a good Specificity
value. As seen from Tables 2, 3, 4, 5, 6, and 7, we have
attained F1 value improvement in WBS, and WBP with
LSTM with Bayesian optimization shows WBS with LSTM
with Bayesian has a good F1 value.

For both WBP and WBS, Tables 2, 3, 4, 5, 6, and
7 present the performance metrics for SVM, LSTM, and
LSTM with Bayesian optimization for each class, i.e.,
wheeze, crackle, and normal sounds. The above model
applied in the current study is a new model applied to lung
sounds (Anderson et al. 2021), and also it is giving better
results.

Table 9 shows the error calculation for SVM, LSTM, and
LSTM with BO. These errors are calculated from Figs. 9,
10, and 11. Table 9 shows that the MSE values for WBS
AND WBP for SVM and LSTM are 97.333 and 90.667 and
for LSTM with BO for WBS is 38.667 and WBP is 44.000.
So we conclude that the lower the MSE better it is. And it

Table 3 Performance measures for LSTM algorithm of WBP for each class

Name Classes MacroAVG MicroAVG

“True positive” 252 66 34 117.33 117.33

“False positive” 0 4 16 6.6667 6.6667

“False negative” 16 0 4 6.6667 6.6667

“True negative” 104 302 318 241.33 241.33

“Precision” 1 0.94286 0.68 0.87429 0.94624

“Sensitivity” 0.9403 1 0.89474 0.94501 0.94624

“Specificity” 1 0.98693 0.9521 0.97967 0.97312

“Accuracy” 0.94624 0.94624 0.94624 0.94624 0.94624

“F-measure” 0.96923 0.97059 0.77273 0.90418 0.94624
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Table 4 Performance measures for LSTM algorithm with Bayesian optimization of WBP for each class

Name Classes MacroAVG MicroAVG

“True positive” 248 66 40 118 118

“False positive” 4 4 10 6 6

“False negative” 10 0 8 6 6

“True negative” 110 302 314 242 242

“Precision” 0.98413 0.94286 0.8 0.90899 0.95161

“Sensitivity” 0.96124 1 0.83333 0.93152 0.95161

“Specificity” 0.96491 0.98693 0.96914 0.97366 0.97581

“Accuracy” 0.95161 0.95161 0.95161 0.95161 0.95161

“F-measure” 0.97255 0.97059 0.81633 0.91982 0.95161

>>

Table 5 Performance measures for SVM algorithm of WBS for each class

Name Classes MacroAVG MicroAVG

“True positive” 252 64 34 116.67 116.67

“False positive” 0 6 16 7.3333 7.3333

“False negative” 16 0 6 7.3333 7.3333

“True negative” 104 302 316 240.67 240.67

“Precision” 1 0.91429 0.68 0.86476 0.94086

“Sensitivity” 0.9403 1 0.85 0.9301 0.94086

“Specificity” 1 0.98052 0.95181 0.97744 0.97043

“Accuracy” 0.94086 0.94086 0.94086 0.94086 0.94086

“F-measure” 0.96923 0.95522 0.75556 0.89334 0.94086

Table 6 Performance measures for LSTM algorithm of WBS for each class

Name Classes MacroAVG MicroAVG

“True positive” 252 66 34 117.33 117.33

“False positive” 0 4 16 6.6667 6.6667

“False negative” 16 0 4 6.6667 6.6667

“True negative” 104 302 318 241.33 241.33

“Precision” 1 0.94286 0.68 0.87429 0.94624

“Sensitivity” 0.9403 1 0.89474 0.94501 0.94624

“Specificity” 1 0.98693 0.9521 0.97967 0.97312

“Accuracy” 0.94624 0.94624 0.94624 0.94624 0.94624

“F-measure” 0.96923 0.97059 0.77273 0.90418 0.94624
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Table 7 Performance measures for LSTM algorithm with Bayesian optimization algorithm of WBS for each class

Name Classes MacroAVG MicroAVG

“True positive” 252 66 38 118.67 118.67

“False positive” 0 4 12 5.3333 5.3333

“False negative” 10 2 4 5.3333 5.3333

“True negative” 110 300 318 242.67 242.67

“Precision” 1 0.94286 0.76 0.90095 0.95699

“Sensitivity” 0.96183 0.97059 0.90476 0.94573 0.95699

“Specificity” 1 0.98684 0.96364 0.98349 0.97849

“Accuracy” 0.95699 0.95699 0.95699 0.95699 0.95699

“F-measure” 0.98054 0.95652 0.82609 0.92105 0.95699

is clear from Table 9 that bi-spectrum is good for LSTM
with BO. Table 9 shows that the PSNR values for WBS
AND WBP for SVM and LSTM are 24.2482 and 28.5563
and for LSTM with BO for WBS is 32.2579 and WBP is

Fig. 9 Confusion Matrix for SVM algorithm for WBS and WBP

31.6983. So we conclude that the lower the PSNR better it
is. And it is clear from Table 9 that bi-spectrum is good for
LSTM with BO. Table 9 shows that the R-values for WBS
and WBP for SVM and LSTM are 0.9958 and 0.9962 and

Fig. 10 Confusion matrix for LSTM algorithm for WBS and WBP
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Fig. 11 Confusion matrix for LSTM and Bayesian optimization
algorithm for WBS and WBP

for LSTM with BO for WBS is 0.9984, and WBP is 0.9981.
So we conclude that the higher the R-value better it is. And
it is clear from Table 9 that bi-spectrum is good for LSTM
with BO. Table 9 shows that RMSE for WBS AND WBP for
SVM and LSTM are 9.8658 and 9.5219 and for LSTM with
BO for WBS is 6.2183 and WBP is 6.6332 (Table 8). So we
conclude that the lower the RMSE better it is. And it is clear
from Table 9 that bi-spectrum is good for LSTM with BO.
Table 9 shows that NRMSE for WBS AND WBP for SVM
and LSTM are 0.0453 and 0.0471 and for LSTM with BO
for WBS is 0.0308 and WBP is 0.0328. So we conclude that
the lower the NRMSE better it is (Fig. 12). And it is clear
from Table 9 that bi-spectrum is good for LSTM with BO.

Table 8 shows the comparative analysis for researchers
who have achieved lower results than our proposed work.
Kevat et al. (2020) use neural network study had a positive
percent agreement (PPA) of 0.95 and a negative percent
agreement (NPA) of 0.99, while Littman collected sounds

had a PPA of 0.95. The PPA and NPA were both 0.82.
Shi et al. (2019a) use temporal features, Mel spectrogram
features, and Bi GRUVGish classifier combination on a
database of 384 subjects to achieve an accuracy of 87.41%.
Aykanat et al. (2017) employ MFCC spectrograms with
CNN classifier to achieve an accuracy of 80%. Niu (2019)
describes a system for detecting the presence of sputum
and acquired inhale and exhale respiratory sounds. The
research extracted audio features and fed them to a ten-
fold cross-validation experiment (logistic classifier). The
research achieved a sensitivity of 92.26% and a specificity
of 92.26%. Shi et al. (2019b) chose WCC features and
combined them with the BPNN classifier to achieve
an accuracy of 92.5% with a database of 64 subjects.
Bardou et al. (2018) obtained the features in the form
of spectrograms and fed these to a CNN-based classifier
to achieve an accuracy of 95.56%. Demir et al. (2020)
clubbed time frequency-based features with convolution
neural networks to achieve an accuracy of 65.5%.

It shows that all error parameters have better values for
LSTM with the BO model. Also, Tables 2, 3, 4, 5, 6,
and 7 reflect that LSTM with BO model performs best
in all parameters, i.e., sensitivity, specificity, precision, F-
measure, and accuracy.

Discussion

Automatic classification of adventitious sounds for identify-
ing pulmonary obstructive is a challenge. Previous methods
to detect adventitious sounds of lungs mostly employed fea-
tures based on linear characteristics. Here in this research,
we propose features based on the non-linear characteris-
tics of lung sounds. Table 8 compares the various research
using RALE� database. Table 8 shows that conventional
classifiers used for testing the features are conventional.
Here in this research, we used the SVM-LSTM-BO ML
combination for the first time to separate lung anomalies.
The results compare the accuracy of the algorithm with
and without Bayesian optimization. The results show that
with the Bayesian optimization proposed algorithm model
becomes more effective in detecting the targets. When using
Bayesian optimization, the algorithm benefits from prior
knowledge of a problem’s structure, and the data shows a
set of high-quality solutions. Here we can adjust the previ-
ous information to information gathered during the run to
produce new solutions. Tables 2, 3, 4, 5, 6, and 7 shows
that the accuracy of SVM for both WBS and WBP is
94.086% and for LSTM for both is 94.624% while for
LSTM with Bayesian optimization for WBP IS 95.161%
and for WBS is 95.699%. So we can conclude from this
that major improvement is seen in LSTM with Bayesian
and also best improvement is seen in wavelet bispectrum
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Table 9 Error calculation for WBS and WBP for confusion matrix

Algorithm MSE PSNR R-value RMSE NRMSE

WBS WBP WBS WBP WBS WBP WBS WBP WBS WBP

SVM 97.333 97.333 24.2482 24.2482 0.9958 0.9958 9.8658 9.8658 0.0453 0.0453

LSTM 90.667 90.667 28.5563 28.5563 0.9962 0.9962 9.5219 9.5219 0.0471 0.0471

LSTM and BO 38.667 44.000 32.2579 31.6983 0.9984 0.9981 6.2183 6.6332 0.0308 0.0328

for accuracy parameters. And also, for other parameters,
as seen from Tables 2, 3, 4, 5, 6, and 7 we discuss, the
LSTM with Bayesian optimization is efficient for wavelet
bispectrum for F-measure, sensitivity, specificity, precision
for each class, i.e., wheeze, crackle, and normal with macro
avg and micro avg respectively. As seen from Tables 2, 3, 4,
5, 6, and 7, we have attained TP value improvement in WBS
and WBP with LSTM with bayesian optimization with val-
ues 118.67 and 118, which shows WBS with LSTM with
Bayesian has a good TP value. As seen from Tables 2, 3, 4,
5, 6, and 7, we have attained TN value improvement in WBS
and WBP with LSTM with Bayesian optimization with val-
ues 242.67 and 242, which shows WBS with LSTM with
Bayesian has a good TN value. As seen from Tables 2, 3, 4,
5, 6 , and 7, we have attained FP value improvement in WBS

and WBP with LSTM with Bayesian optimization with val-
ues 5.3333 and 6, which shows WBS with LSTM with
Bayesian has good FP value, i.e., lower FP more improve-
ment. As seen from Tables 2, 3, 4, 5, 6, and 7, we have
attained FN value improvement in WBS, and WBP with
LSTM with bayesian optimization with values 5.3333 and
6, which shows WBS with LSTM with Bayesian has good
FP value, i.e., lower FN more improvement.

The results show that SVM parameters such as penalty
and kernel parameters positively affect SVM model
correctness and complexity. Besides, the findings revealed
that the proposed method might be employed as a system
of aid to diagnose COVID-19 disease. The findings uncover
that the suggested strategy has good behavior in increasing
classification accuracy and optimal feature selection. The

Fig. 12 Accuracy and loss vs. iteration plot for LSTM algorithm and LSTM and Bayesian optimization algorithm for WBS and WBP
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presented strategy can be considered a useful clinical
decision-making tool for clinicians. With the increasing
popularity of LSTMs, various alterations have been tried on
the conventional LSTM architecture to simplify the internal
design of cells to make them work more efficiently and
reduce computational complexity.

Conclusion

Researchers proposed two sets of features based on WBS
and WBP to detect adventitious sounds of lungs. Results
reveal that feature sets based on WBS AND WBP obtained
an accuracy of 94.086% for SVM and 94.684% for
LSTM, and 95.699% and 95.161% for WBS with WBP,
respectively, for LSTM and Bayesian optimization. The
concept that adventitious sounds have distinct non-linear
features has been proven via research. We concluded that
combining LSTM with Bayesian optimization improved
each class’s accuracy and all statistical parameters. The
model achieved accurate AI-aided detection of lung diseases
for light weighted devices. As seen from the results, we
reached on conclusion that SVM with LSTM with Bayesian
optimization have achieved improvement in all parameters,
i.e., accuracy, specificity, sensitivity, precision, and recall
for each class also, i.e., wheeze, crackle, and normal sounds
also we have found that for WBS have more improvement
in LSTM with Bayesian as compared with WBP. Also,
we conclude from this part that combining SVM with
LSTM with Bayesian for WBS proposed method concludes
improvement from previous work. Future works will focus
on increasing the data-set size to include more subjects and
a wider range of diseases such as COVID-19. This will
improve the credibility of the proposed model. Although the
proposed classification model achieves high-performance
metrics, it may be further improved by adjusting the pre-
processing techniques and the training structure.
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