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Abstract
Purpose  Developing a computer-assisted speech training/recognition system for recognizing the speeches of dysarthric 
speakers has become necessary because their speeches are highly distorted due to the motor disorder in their articulatory 
mechanism.
Methods  In this work, two-dimensional spectrograms in BARK and MEL scale and Gammatonegram are used as features 
to tune the convolutional neural network (CNN) architecture designed to perform the dysarthric speech recognition.
Results  Overall recognition accuracy is 88%, 97.9%, and 98% for the CNN-based dysarthric speech recognition system 
using Gammatonegram, spectrogram, and Melspectrogram, respectively. However, decision-level fusion of these features 
results has yielded 99.72% overall accuracy with 100% individual accuracy for some of the dysarthric isolated digits. This 
work is extended to have a phase spectrum compensation technique to improve the intelligibility of dysarthric speeches, 
and the decision-level fusion classifier provides relatively better accuracy of 99.92% for classifying isolated digits spoken 
by dysarthric speakers.
Conclusion  This work can be utilized to recognize the distorted speeches of dysarthric speakers like normal speeches.

Keywords  Dysarthric speech recognition · CNN · Machine learning · Spectrogram · Time–frequency representation

Introduction

Speech is the sequence of sounds being considered an output 
of the time-varying vocal tract system. Articulators are mov-
ing in response to the neural signals for producing regular 
speech. Dysarthric speeches are distorted because persons 
with dysarthria are affected by a motor speech disorder, 
and they cannot control the movement of articulators. As a 
result, dysarthric speakers experience impediments in speak-
ing properly. Articulators and muscles involved in speech 
production mechanisms are damaged or paralyzed for dys-
arthric speakers, and they find difficulty in conveying infor-
mation to others through speech. The speech intelligibility 

of dysarthric speakers (Kim et al. 2008)  considered in our 
work ranges between 2 and 95%. A dysarthria severity level 
(Gupta et al. 2021)  is assessed using short speech segments 
based on residual neural networks. Dysarthric severity clas-
sification (Joshy and Rajan 2021)  uses deep neural net-
works with speech utterances from Torgo and UA-speech 
databases. Articulatory features and deep CNN (Emre et al. 
2019) are used for developing speaker-independent speech 
recognition systems for dysarthric speakers.

The dysarthric speech recognition system (Kim et al. 
2018) is implemented using Mel frequency cepstral coef-
ficients (MFCC) and assessed using GMM-HMM, DNN-
HMM, CNN-HMM, and CLASM-HMM classifiers. Dys-
arthric speech recognition (Albaqshi and Sagheer 2020)  
is done using MFCC and convolutional recurrent neural 
networks for the Torgo database. Listen, Attend and Spell 
(LAS) model (Takashima et al. 2019) is investigated for dys-
arthric speech recognition, and the performance metric used 
is character error rate (CER). The intelligibility of dysar-
thric speeches (Chen et al. 2020)  is enhanced using a gated 
CNN-based voice conversion system. An automatic speech 
recognition system is developed for dysarthric speakers. 
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The accuracy of dysarthric speech recognition (Sidi Yakoub 
et al. 2020) is improved using empirical mode decomposition 
and CNN. This work mainly uses the speech enhancement 
technique to improve the accuracy of the dysarthric isolated 
digit recognition system. It utilizes deep machine learning 
neural network models for template creation and testing for 
original dysarthric speeches and intelligibility-enhanced 
speeches using phase spectrum compensation (PSC) as a 
speech enhancement mechanism. This paper is organized 
as follows. ‘Development of dysarthric speech recognition 
system’ section describes the database used in our work and 
analyses normal and dysarthric speech in time, frequency, 
and time–frequency domains. ‘Implementation of the CNN-
based dysarthric speech recognition’ section describes the 
methods for implementing the system with feature extraction, 
CNN-based model development, and the speech enhance-
ment technique used. Experimental results based on the pro-
posed features and CNN-based system are presented in the 
‘Results of the dysarthric speech recognition system based 
on experiments conducted’ section. ‘Discussion based on the 
outcome of the experiments’ section illustrates the discussion 
on the experimental results. The conclusion of the work is 
summarized in the ‘Conclusions’ section.

Development of dysarthric speech 
recognition system

Dysarthric speech recognition is developed to recognize the 
speeches uttered by dysarthric speakers. Since a dysarthric 
speaker’s speeches are highly distorted, developing a speech 
recognition system is gaining paramount importance, and it 
is quite challenging to develop a robust system. This section 
illustrates the details of the database used and analysis of 
dysarthric speeches in time and frequency domains.

Details of the database used—dysarthric speaker 
information (Kim et al. 2008)

Table 1 indicates the speaker information considered in our 
study. An isolated digit recognition system is developed to 
recognize the digits uttered by dysarthric speakers. These 
speakers are diagnosed as patients with spastic. Intelligibil-
ity levels vary between 2 and 95%.

Analysis of speech in time, frequency, and time–
frequency domains

Speeches uttered by normal and dysarthric speakers are 
analysed in time, frequency, and time–frequency domains. 
For example, Fig. 1 presents the analysis of speech sig-
nals uttered by a normal speaker in the time, frequency, 

and time–frequency domain. He takes less than a second 
(0.84 s) to utter this word.

Analysis of speech uttered by dysarthric speaker M09 
with 86% speech fluency in time, frequency, and time–fre-
quency domain is indicated in Fig. 2. Since this dysarthric 
speaker with 86% intelligibility, there are more similarities 
in signal characteristics as compared to the speech uttered 
by the normal speaker. For example, this speaker takes 
2.15 s to utter the digit ‘one’.

Figure 3 indicates the analysis of speech uttered by the 
dysarthric speakers with 6% intelligibility in the time, fre-
quency, and time–frequency domain. A dysarthric speaker 
utters this isolated digit with 6% intelligibility, and this 
fact is demonstrated in signal characteristics as compared 
to that of the normal speaker. This speaker takes 2.6 s to 
utter the isolated digit ‘one’.

This analysis indicates that dysarthric speakers take 
more time to speak simple words, and the severity 
level of the dysarthric speakers affects their ability to 
speak to a larger extent. As a result, it takes longer for 
them to speak. So, there is a need to develop an auto-
mated system to recognize their speeches and become 
a translator.

Implementation of the CNN‑based 
dysarthric speech recognition

Dysarthric speech recognition is implemented by consider-
ing two phases: training and testing. During the training 
phase, features are extracted from the speeches uttered by 
the dysarthric speakers, the application of features to the 
modelling techniques to create templates as representative 
models of speeches, and models are fine-tuned for speech 
recognition. During testing, features are extracted from the 
speeches earmarked for testing. These features are applied 
to the models. Depending on the classifier used, speech 
is recognized as associated with the model in a pertinent 
isolated digit.

Table 1   Information—speakers considered for the current study

Speaker Age Speech intelligibility Dysarthria 
diagnosis

M09 18 High (86%) Spastic
M07 58 Low (28%) Spastic
M04  > 18 Very low (2%) Spastic
M01  > 18 Very low (10%) Spastic
F05 22 High (95%) Spastic
F03 51 Very low (6%) Spastic
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Feature extraction phase

In this work on CNN-based dysarthric speech recogni-
tion, time–frequency representational features are used 
to fine-tune the CNN models. Features extracted should 

have high discriminating capability among the speeches 
considered. Speech utterances in a pertinent isolated digit 
are concatenated, and spectrogram, Melspectrogram, and 
Gammatonegram are extracted for the speech frames con-
taining 8192 samples, and this process is repeated for 

Fig. 1   Normal speaker—analy-
sis of speech in time, frequency, 
and time–frequency domain
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Fig. 2   Dysarthric speaker M09 
with 86% intelligibility—analy-
sis of speech in time, frequency, 
and time–frequency domain
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Fig. 3   Speech—dysarthric 
speaker F03 with 6% intel-
ligibility—analysis in time, 
frequency, and time–frequency 
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every 256 samples. The block schematic used for feature 
extraction is depicted in Fig. 4.

Eighty percent of the features are used for training 
and the remaining 20% for testing. Size of the spectro-
gram, Melspectrogram, and Gammatonegram feature is 
[129,127], [64,127], and [64,49], respectively. For one 
frame, spectrogram, Melspectrogram, and Gammaton-
egram are plotted as in Figs. 5, 6, and 7.

Development of CNN templates

Spectrogram, Melspectrogram, and Gammatonegram 
two-dimensional feature sets for each isolated digit 

are applied to the CNN network. Network models are 
fine-tuned to perform speech recognition for dysarthric 
speakers. Table 2 describes the CNN layered architecture  
(Soliman et al. 2021 J. Zhang et al. 2017, Arias-Vergara 
et  al. 2021, Vavrek et  al. 2021, Sangwan et  al. 2020, 
Chen et al. 2020, P. H. Binh et al. 2021) for Gammaton-
egram-based dysarthric isolated digit recognition imple-
mented as a work.

Similar CNN architecture is implemented with variations 
in the image input size [129, 127, and 1] for spectrogram and 
[64, 127, and 1] for Melspectrogram-based CNN networks. 
Figure 8 indicates the modules used for creating group CNN 
templates for the proposed features.

Fig. 4   Feature extraction phase

Fig. 5   Spectrogram—waterfall 
plot—dysarthric speech—iso-
lated digit ‘one’
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Fig. 6   Melspectrogram—water-
fall plot—dysarthric speech—
isolated digit ‘one’

Fig. 7   Gammatonegram—
waterfall plot—dysarthric 
speech—isolated digit ‘one’

Table 2   CNN layered 
architecture—
Gammatonegram—dysarthric 
isolated digit recognition
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Phase spectrum compensation‑based speech 
enhancement (Stark et al. 2008)

In this method, the modified phase response is combined with 
a magnitude response to get the changed frequency response 
for the noisy speech. Analysing the relation between spectral-
domain and time-domain during the synthesis process makes 
it possible to cancel out the high-frequency components, thus 
producing a signal with a reduced noise component. The 
STFT of the noisy signal is computed as in (1).

The compensated short-time phase spectrum is computed 
by using Eqs. (2) and (3).

The process obtains phase spectrum compensation func-
tion as in Eq. (2).

||Dn(k)
|| specifies magnitude response of the noise signal�

—constant
The anti-symmetry function �(k) is defined as in (3).

Multiplication of symmetric magnitude spectra of the 
noise signal with anti-symmetric function �(k) produces 
an anti-symmetric ∧n(k) . Noise cancellation is made during 
the synthesis process by utilization of the anti-symmetry 
property of the phase spectrum compensation function. The 
complex spectrum of noisy speech is computed as in Eq. (4).

(1)Yn(k) =
|
|Yn(k)

|
|e

j∠Yn(k)

(2)∧n(k) = ��(k)||Dn(k)
||

(3)𝜓(k) =

{
1 if 0 <

k

N
< 0.5

−1 if 0.5 <
k

N
< 1

(4)Yn(k) = Xn(k) + ∧n(k)

The compensated phase spectrum of the noisy signal is 
derived as in Eq. (5).

Recombination of the compensated phase response with 
magnitude response of the noisy signal is done to get the 
modified spectrum, from which enhanced speech is derived 
by performing inverse transform as in (7) on the modified 
spectral response given in (6).

Figure 9 indicates the performance of the speech enhance-
ment technique by phase compensation.

Results of the dysarthric speech recognition 
system based on experiments conducted

Speech utterances in pertinent isolated digits are concat-
enated, and spectrogram, Melspectrogram, and Gammaton-
egram two-dimensional features are extracted after voice 
activity detection for original raw dysarthric speeches. Simi-
larly, speech intelligibility is improved using phase spectrum 
compensation as a speech enhancement technique on raw 
dysarthric speeches. The proposed time–frequency repre-
sentational features are extracted for the enhanced dysarthric 
speeches. Eighty percent of the features have been used for 
training. Twenty percent of the features are considered for 
testing. These features are given to the CNN models. Based 
on the matching, each row of the test vectors is associated 
with one of the groups in training. Group can be categorical 

(5)∠Yn(k) = ARG[Yn(k)]

(6)Sn(k) =
|
|Yn(k)

|
|e

j∠Yn(k)

(7)s(n) = real[inverse STFT(Sn(k))]

Fig. 8   CNN template creation
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string of indices of isolated digits ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, 
‘7’, ‘8’, ‘9’, ‘0’. The confusion graph in Fig. 10 indicates the 
performance of the Gammatonegram and CNN-based dys-
arthric isolated digit recognition without applying PSC for 
speech enhancement. The overall average system accuracy is 
88.3%, with a relatively low accuracy of 83% for recognizing 
the digit ‘2’.

The confusion chart shown in Fig. 11 depicts spectrogram 
and CNN-based dysarthric isolated digit recognition system 
without PSC. The average accuracy is 97.8%.

The confusion chart depicted in Fig. 12 demonstrates the 
performance of the dysarthric isolated digit recognition for 
the Melspectrogram and CNN-based system. The average 
accuracy is 98%.

Decision-level fusion of results of three spectrograms 
for the CNN-based system is done, and Table 3 reveals the 
performance of the decision-level fusion system. Figure 13 
indicates the proposed decision-level fusion system. The 
overall accuracy of the decision-level fusion classifier is 
99.72%.

Figures  14, 15, and 16 indicate the performance of 
the spectrogram, Melspectrogram and Gammatonegram, 
and CNN-based system by using PSC as an enhancement 

technique on the raw dysarthric speeches for improving 
Intelligibility.

The average recognition accuracy for Gammatonegram, 
spectrogram and Melspectrogram, and CNN-based system 
with PSC as speech enhancement technique is 96.67%, 
99.46%, and 98.76%, respectively. Table 4 indicates the 
performance of the dysarthric isolated digit recognition 
system for PSC as a speech enhancement technique with a 
decision-level fusion of results corresponding to the two-
dimensional features such as spectrogram, Melspectrogram, 
and Gammatonegram.

Overall average accuracy is 99.92%. Figure 17 indicates 
the comparative performance of the system with and without 
the speech enhancement technique.

This work on isolated digit recognition is extended 
to perform connected word recognition. Twenty related 
words spoken by dysarthric speakers are taken, and Fig. 18 
indicates the confusion charts for connected word recogni-
tion using the proposed features and CNN-based systems. 
The performance of the decision-level fusion of correct 
indices on the features and CNN-based systems is indi-
cated in Fig. 19. This system is evaluated using PSC for 
speech enhancement, and the accuracy is good.

Fig. 9   Illustration of speech 
enhancement technique—phase 
spectrum compensation
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Fig. 10   Confusion chart—Gam-
matonegram and CNN-based 
system (without PSC)
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Fig. 11   Performance chart—
spectrogram and CNN-based 
system (without PSC)
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Fig. 12   Performance chart—
Melspectrogram and CNN-
based system (without PSC)
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Table 3   Performance assessment—decision-level fusion of spectrograms and CNN-based system (without PSC)

Isolated digits One Two Three Four Five Six Seven Eight Nine Zero

%RA 100 99.2 99.6 99.4 100 99.6 100 99.8 99.8 99.8
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Discussion based on the outcome 
of the experiments

In this work on dysarthric speech recognition, speech 
utterances of dysarthric speakers are split into two sets, 
each for training and testing. Spectrogram, Melspectro-
gram, and Gammatonegram features are extracted from 
basic training speeches, and CNN templates are created for 
each isolated digit based on the pertinent input features. 
Test sets of utterances in each isolated digit are tested, 
and the system’s performance is analysed based on three 
different two-dimensional spectrogram features with CNN 
for modelling and classification. Out of the features used, 
the overall accuracy of the system for spectrogram and 
Melspectrogram is the same. Another experiment is con-
ducted on the intelligibility improved speeches of dysar-
thric speakers with an application of the phase spectrum 
compensation technique for speech enhancement. Spectro-
gram-based feature selection is better in terms of attaining 

good accuracy as compared to other features. Decision-
level fusion of outcome of the experiments for the features 
with and without speech enhancement technique proves 
to be good in attaining the very good accuracy of 99.92% 
for all the isolated digits uttered by dysarthric speakers. 
Table 5 gives the comparative analysis of the proposed 
work with existing works mentioned in the literature.

Conclusions

In this paper, the development of a speech recognition 
system for recognizing the isolated digits uttered by 
dysarthric speakers is analysed and assessed using two-
dimensional spectrogram features and deep CNN. Spec-
trogram, Melspectrogram, and Gammatonegram features 
are extracted from the speech utterances corresponding to 
the speech utterances of isolated digits [‘1’, ‘2’, ‘3’, ‘4’, 
‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘0’]. Eighty percent of the derived 
two-dimensional time–frequency representational features 

Fig. 13   Decision-level fusion classifier

Fig. 14   Performance chart—
Gammatonegram and CNN-
based system with PSC for 
speech enhancement
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Fig. 15   Performance chart—spectrogram and CNN-based system with PSC for speech enhancement

Fig. 16   Performance chart—
Melspectrogram and CNN-
based system with PSC for 
speech enhancement

1 2 3 4 5 6 7 8 9 0
Predicted Class

1

2

3

4

5

6

7

8

9

0

Tr
ue

Cl
as

s

Testing Accuracy

1

4

1

1

2

1

3

1

1

2

2 3

2

5

1

1

4

3

1

5

1

1

3

3

3

1

1

454

453

455

455

455

459

450

459

448

455

1.3%

1.5%

1.1%

1.1%

1.1%

0.2%

2.2%

0.2%

2.6%

1.1%

98.7%

98.5%

98.9%

98.9%

98.9%

99.8%

97.8%

99.8%

97.4%

98.9%

1.3% 0.7% 1.3% 0.9% 0.7% 2.8% 0.7% 1.7% 2.2% 0.2%

98.7% 99.3% 98.7% 99.1% 99.3% 97.2% 99.3% 98.3% 97.8% 99.8%



1077Research on Biomedical Engineering (2022) 38:1067–1079	

1 3

Table 4   Performance assessment—dysarthric digit recognition with PSC for speech enhancement and decision-level fusion classifier

Isolated digits One Two Three Four Five Six Seven Eight Nine Zero

%RA 100 100 99.78 100 100 100 99.57 100 100 99.78

Fig. 17   Comparative analysis 
with and without PSC speech 
enhancement technique
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Fig. 18   Results—confusion chart—proposed features and CNN-based systems—connected word recognition
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are applied to the CNN layered architecture, and combined 
group CNN models are created. The remaining 20% of the 
features are applied to the CNN group models, and classi-
fication is done based on the association of feature frames 
with one of the groups in training. Gammatonegram-, 
spectrogram-, and Melspectrogram-based CNN have an 
overall accuracy of 88.3%, 97.89%, and 98%, respectively. 
Decision-level fusion of correct classification indices of 
three CNN-based systems has yielded a good overall accu-
racy of 99.72%, with 100% individual accuracy for some 
isolated digits. The system is evaluated by applying the 
PSC speech enhancement technique to the raw dysarthric 
speeches, and a 9% increase in overall accuracy is ensured 
for Gammatonegram and CNN-based systems. The speech 
enhancement technique ensures a 1% increase in accuracy 
for spectrogram- and Melspectrogram-based recognition 
systems with marginal improvement for decision-level 
fusion of all CNN-based systems. If there is a system to 
recognize the distorted speeches of dysarthric persons, 
this automated system would be useful for caretakers to 
provide required help/assistance to the persons affected 
with dysarthria.
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