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Abstract
Purpose Breast cancer is still one of the deadliest forms of cancer for women, both in developed countries and in underdevel-
oped and developing nations. Mammograms are currently the most validated imaging techniques to support the differential 
diagnosis of malignant and benign lesions. Radiologists often only need to clarify doubts about regions of interest that cor-
respond to suspected lesions. Deep-wavelet neural networks are convolutional neural networks that do not necessarily learn, 
as they can have predefined filter banks as their neurons.
Methods In this work, we propose a deep hybrid architecture to support digital mammography region-of-interest imaging 
diagnosis based on six-layer deep-wavelet neural networks, to extract attributes of regions of interest from mammograms, 
and support vector machine with kernel second-degree polynomial for final classification.
Results Classical classifiers such as Bayesian classifiers, single hidden layer multilayer perceptrons, decision trees, random 
forests, and support vector machines were tested. The results showed that it is possible to detect and classify injuries with 
an average accuracy of 94% and an average kappa of 0.91, employing a 6-layer deep-wavelet network and a two-degree 
polynomial kernel support vector machine as the final classifier.
Conclusion Using a deep neural network with prefixed weights from the wavelets transform filter bank, it was possible to 
extract attributes and thus take the problem to a universe where it can be solved with relatively simple decision boundaries 
like those composed by support vector machines with second-degree polynomial kernel. This shows that deep networks that 
do not learn can be important in building complete solutions to support mammographic imaging diagnosis.

Keywords Breast cancer · Digital mammography · Breast cancer image diagnosis · Deep learning · Deep wavelets

Introduction

Motivation and problem characterization

Cancer, in all its forms, has become one of the greatest 
public health problems of the 20th century worldwide, 

regardless of the levels of social and economic development 
of different nations around the globe (Bidard et al. 2018; 
Gonçalves et  al.  2016; Pilevarzadeh et  al.  2019; Wang 
et al. 2018). Of all the forms of cancer, breast cancer is the 
most dangerous cancer for older and middle-aged women 
(Bidard et al. 2018; Gonçalves et al. 2016; Pilevarzadeh 
et al. 2019; Wang et al. 2018), and it is also the most com-
mon form of cancer among women (Bidard et al. 2018; 
Gonçalves et al. 2016; Pilevarzadeh et al. 2019; Wang et al. 
2018). Breast cancer is among the five most common types 
of cancer in the world (Shrivastava et al. 2017). In Brazil 
alone, it corresponds to about 28% of new cancer cases per 
year. Although, in general, there is a good prognosis, this 
disease is still responsible for the highest cancer mortality 
rate in the female population (Bidard et al. 2018; Gonçalves 
et al. 2016; Pilevarzadeh et al. 2019; Wang et al. 2018). 
According to the Brazilian Ministry of Health (MS), the 
early detection of tumors, which consists of identifying 
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cancer in its early stages, is essential to reduce mortality 
from the disease (Gonçalves et al. 2016).

Breast cancer has been proliferating both in so-called 
developed countries and in underdeveloped and develop-
ing countries, accompanying the increase in the average 
life expectancy of the population, the swelling of cities, the 
gradual emptying of rural areas, and the adoption of new 
and more aggressive consumption forms (Bidard et al. 2018; 
Gonçalves et al. 2016; Pilevarzadeh et al. 2019; Wang et al. 
2018). Even though the risk of breast cancer can be reduced 
through preventive strategies, such as carrying out educa-
tional campaigns that encourage visual inspection and touch 
of the breasts, even a good and well-accepted prevention 
campaign cannot eliminate most types of breast cancer, as 
they end up being diagnosed too late (Bidard et al. 2018; 
Gonçalves et  al.  2016; Pilevarzadeh et  al.  2019; Wang 
et al. 2018). Therefore, the existence and availability of tech-
nologies for early detection of breast cancer in public health 
systems can contribute to increase the chances of cure and 
treatment options (Bidard et al. 2018; Gonçalves et al. 2016; 
Pilevarzadeh et al. 2019; Wang et al. 2018).

Currently, the main method used to identify breast lesions 
is mammography, which consists of a breast scan using 
x-rays (Maitra and Bandyopadhyay 2017). However, despite 
technological advances that have resulted in improved tech-
nique and image quality, there are still situations in which 
mammography is insufficient to identify lesions, especially 
in their early stages, whether due to limitations of the 
method itself or inconsistencies in the specialists’ diagnosis 
due to the great variability of clinical cases (Bandyopad-
hyay 2010). For this reason, investigations using methods 
such as ultrasonography, magnetic resonance, and clinical 
examinations, in general, have been associated with the 
results obtained through mammography, in order to make 
the diagnosis more robust (Gonçalves et al. 2016). Even with 
the combination of these techniques, the Ministry of Health 
of Brazil still states that the majority of correctly identified 
cases are currently of advanced stage injuries, which makes 
treatment difficult, when it is possible to do so, and increases 
the need to perform procedures invasive ones such as biop-
sies and mastectomies (total or partial removal of the breast) 
(Gonçalves et al. 2016). In fact, the international scenario is 
not very different (Schattner 2020).

In this sense, the combination of specialist knowledge 
with methods of digital analysis of mammography images 
can contribute to improving diagnosis, prognosis, and 
treatment of breast cancer (Bandyopadhyay 2010; Nordin 
et al. 2008; Salmeri et al. 2009). As with other approaches 
to supporting diagnostic imaging (Santos et al. 2006a, b, 
2007, 2008a, b, c, d, 2009a, b, c, d, e), the extraction of 
attributes is an essential aspect in obtaining high accuracy 
results in breast image analysis (Bandyopadhyay 2010; 
Boquete et al. 2012; Boujelben et al. 2009; Mascaro et al. 

2009; Nordin et al. 2008). The use of CBIR (content-based 
image retrieval) techniques in feature representation can 
contribute to more accurate Lew et al. (2006) analyses. Sev-
eral studies have explored these aspects and achieved high 
results (Azevedo et al. 2015a, b; Cordeiro et al. 2013; Cord-
eiro et al. 2016a, b, 2017a, b; Cruz et al. 2018; de Lima et 
al. 2016; de Vasconcelos et al. 2018; Lima et al. 2015; Rod-
rigues et al. 2019).

Overall, the accuracy of diagnosis using conventional 
techniques is around 7090%, a percentage that decreases to 
less than 60% when dealing with women under 40 years 
old (Urbain 2005). These factors, associated with the vast 
variability of clinical cases, make the identification and dif-
ferentiation of breast lesions based on images a difficult task 
for human eyes, especially when it comes to small lesions 
or lesions that are difficult to access. Faced with these chal-
lenges, several works have been dedicated to the study and 
development of intelligent classification systems to be used 
as assistants to specialists, to optimize the accuracy of the 
diagnosis.

Several works have been developed to support the diag-
nosis of breast lesions in mammographic images using deep 
learning. Most of these works are based on convolutional 
neural network architectures (Hamidinekoo et al. 2018; Shen 
et al. 2019; Wang et al. 2016; Yala et al. 2019; Yoon and 
Kim 2021). Although these classifier architectures are capa-
ble of modeling very complex decision boundaries, training 
deep networks is usually quite expensive from the point of 
view of computational complexity, demanding a lot of pro-
cessing time and memory. Computing architectures with a 
high degree of parallelism are often required, such as serv-
ers equipped with graphics processing units (GPUs) (Fang 
et al. 2019; Mittal and Vaishay 2019). This tends to greatly 
increase the costs of acquiring and maintaining solutions 
for training deep neural network architectures. One way to 
overcome this problem is to use hybrid deep architectures 
based on pre-trained deep networks and shallow machine 
learning models. This approach has been called deep transfer 
learning: a deep neural network trained for another problem 
is used to extract implicit features from images; the feature 
vector thus obtained is then presented to a shallow machine 
learning model (Hua et al. 2021; Talo et al. 2019).

However, the features extracted from images using mod-
els based on convolutional neural networks are not invariant 
to translation and rotation, which makes the shallow models 
of the output layer not very robust regarding data variability. 
Thus, to overcome this problem further, it is necessary to 
train a model with a very large database, commonly in the 
big data domain. This again raises the need for architectures 
with a high degree of parallelism to deal with the compu-
tational complexity involved. Furthermore, models based 
on CNNs require that the input images have a standardized 
resolution, which requires that images of higher resolution 
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than expected for a given convolutional neural network have 
their dimensions reduced and aspect ratios changed. This can 
significantly affect the recognition of images where texture 
features are preponderant, as is the case of samples from 
regions of interest in mammograms.

In this work, we investigate the use of convolutional neural 
networks based on the wavelet transform, the deep-wavelet 
neural networks, DWNN. These deep networks, in the form 
adopted in this work, were proposed by Barbosa et al. (2020). 
These networks do not learn: it is enough to set the number of 
layers and define the type of neighborhood of pixels consid-
ered that the bank of filters will be selected. The filter bank 
is based on the approximation of the discrete transform of 
wavelets by the Mallat Algorithm: a set of high pass filters 
directed according to the pixel neighborhood and an approxi-
mation low pass filter. Features are extracted using statistics 
(synthesis blocks) obtained from the sub-images of the output 
layer. Thus, once the number of layers and the type of pixel 
neighborhood are fixed, the dimension of the feature vector 
is fixed, not being necessary to change the dimensions or the 
aspect ratio of the input images. Given the ability of the wave-
let transform to be successfully used in texture recognition 
applications, we adopted the DWNN in the model proposed 
in this work hoping to obtain good results for the problem 
of supporting the diagnosis of breast lesions considering dif-
ferent textures of breast tissue. Although mammography is 
more suitable for women over 45 years of age, with predomi-
nantly fatty breast tissue, solutions that achieve good results 
with images of denser breasts can optimize diagnosis with 
mammographic images, allowing for the inclusion of younger 
women in mammographic examinations when necessary.

Therefore, taking into account the relative success of 
approaches related to artificial intelligence and the need for 
solutions that enable the early diagnosis of breast cancer, 
this paper proposes a study of computational approaches 
for the automatic classification of lesions in mammography 
images. The study also used a new computational tool for 
image attribute extraction, the deep-wavelet neural network 
(DWNN) (Barbosa et al. 2020), which consists of a deep and 
untrained architecture, inspired by Wavelet decomposition 
at multiple levels. The shallow methods in the final layer 
we investigated were empirically chosen, trying to cover 
the most popular machine learning models: multi-layer per-
ceptrons, support vector machines, decision trees, random 
forests, extreme learning machines, and Bayesian methods.

Initially, we present relevant works in the field of breast 
cancer diagnosis using computational tools and mammogra-
phy images. Then, we present the proposal of this study. In 
the next section, we show and discuss the results obtained, 
carrying out a quantitative and qualitative evaluation of the 
explored techniques. Finally, we conclude the article by 
highlighting the main findings and limitations, in addition 
to proposing some possibilities for future work.

Related works

In their work, W. Azevedo et al. (2015a, b) proposed using 
extreme learning machines (ELMs) with different kernels 
to identify healthy breasts, with benign lesions and those 
with malignant lesions. For this, the authors used the Image 
Retrieval in Medical Applications (IRMA) database, with 
2796 images (128×128) of regions of interest (ROI) from 
mammograms, organized according to the predominant type 
of tissue in the breast, which may be adipose (I), fibrous (II), 
heterogeneously dense (III), or extremely dense (IV) tissue.

Therefore, we employ 5 different evaluation scenarios 
to verify the performance of the classifier configurations. 
Four of these scenarios consisted of using images associ-
ated with a unique type of tissue constitution. In such cases, 
each image must be classified into one of the following 
three classes: no lesion, benign lesion, or malignant lesion. 
Finally, the fifth scenario used all the images, associating 
all types of fabric and, mainly based on this, there are 12 
possible classes, three for each type of fabric. Therefore, in 
the fifth evaluation scenario, we sought to verify if the ELM 
would be able to classify the images not only by the type of 
tissue, but also by the diagnosis associated with the image.

For attribute extraction, the authors also evaluated dif-
ferent combinations of the Haralick, Zernike, and Wavelet 
methods, all tested individually and associated in pairs. The 
ELM kernels were the sigmoidal, dilatation, and erosion 
kernels, the last two being proposed in the same study. One 
hundred neurons in the hidden layer of the classifier and the 
10-fold cross-validation method were used.

Overall, the association of Wavelet and Haralick attrib-
utes resulted in the best performances. Results close to the 
best were obtained when only the Haralick attributes were 
used. The Zernike attributes and the association of Zernike 
and Wavelet resulted in the least satisfactory performances. 
Regarding the result for each of the databases, it was observed 
that the use of fabric III favored the classification, reaching up 
to 95% of accuracy, with a kappa index of 0.96, using the ero-
sion kernel. Tissues I, II, and IV had very similar results, all 
with 90% accuracy and kappa indices of 0.92, 0.91, and 0.93, 
respectively, the first result being obtained with the erosion 
kernel, and the others two with dilatation. For the database 
with all tissues and 12 possible classes, as expected, there was 
a considerable decrease in classification performance, so that 
a maximum precision of 65% was obtained, with a kappa of 
0.66, both for erosion and for kernel expansion.

In the work by Becker et al. (2017), a self-constructed binary 
database (with cancer versus without cancer) was used, from 
which two studies were carried out. The first was a longitudinal 
study, which used exams of patients followed for 7 years (2008-
2015), resulting in 178 exams per class. The second study was 
cross-sectional, whose data were from 2012 cases, with 143 
exams from cancer patients and 1003 from healthy individuals.
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Image analysis was performed using the ViDi SuiteVer-
sion software. Initially, the ROI of each image was selected 
by specialists in the field. The ROI heatmap was used to 
represent the images and a dANN (deep Artificial Neural 
Network) was used as a classifier. This method resulted in an 
accuracy of 81%, with a sensitivity of 59.8% and specificity 
of 84.4%, for the group of the first study. In the second study, 
the performance was 85% correct, with 73.7% and 72% of 
sensitivity and specificity, respectively.

In the study by S. Wang et al. (2017), the authors used the 
Mammographic Image Analysis Society (mini-MIAS) data-
base, containing 322 mammograms (1024×1024), also divided 
by tissue type, but with 3 possible tissues: adipose, adipose-
glandular, and dense-glandular. The main objective of this work 
was to investigate the performance of the proposed classifi-
cation method, Jaya-FNN, using the Jaya algorithm to train a 
feed-forward neural network (FNN). For this, 200 images were 
randomly chosen, 100 of the healthy breasts class and 100 of 
the cancerous breasts class. Then, the images were filtered for 
noise attenuation and segmented, isolating the ROI.

For feature extraction, the weighted fractional Fourier 
transform (WFRFT) was used, resulting in the fractional 
Fourier spectrum, which consists of a large set of attributes. 
Therefore, the principal component analysis (PCA) method 
was used to reduce the dimensionality of these attributes. 
The work also proposes the Jaya-FNN classification method, 
which consists of an FNN whose weights and biases are 
trained using the Jaya algorithm. For validation, the k-fold 
method was used, with 10 folds. In the study, the perfor-
mance of Jaya-FNN was compared with that of other algo-
rithms widely explored in the literature, leading the authors 
to observe that the proposed method presented the best 
results when compared to the other methods. Using JayaFNN 
resulted in the lowest standard deviation and a mean square 
error of 0.0093, which was more than 70% smaller than the 
second-best error. As for the metrics of accuracy, sensitivity, 
and specificity, values around 92% were obtained for all.

Magna et al. (2016) used the  A2INET network to iden-
tify asymmetries between breasts, using mammographic 
images from two public domain databases, the Digital 
Dataset for Screening Mammography (DDSM) and the 
mini-MIAS. The  A2INET, proposed in the work, consists 
of a semi-supervised model of an artificial immune net-
work. Ninety-four images were used, which were divided 
equally into two groups: healthy breasts and asymmetrical 
breasts. To represent the images, the authors used 24 attrib-
utes extracted from a measure of quantification of structural 
similarity between regions, to describe relevant differences 
between the two breasts. In addition, the PCA method was 
also applied to reduce the dimensionality of the attributes.

The performance of  A2INET was compared with that 
of three other methods, kNN, Partial Least Squares Discri-
minant Analysis (PLS-DA), and a backpropagation neural 

network. The proposed network outperformed the results of 
the other classifiers tested, as the accuracy of up to 90% was 
obtained using  A2INET, while accuracies of the other meth-
ods were around 70%.

In the study by Rodriguez-Ruiz et al. (2019), the authors 
sought to identify breast cancer in mammography images 
from 9 different databases, totaling 9,000 images of breasts 
with cancer, 3,000 of them with calcification and 180,000 
images of healthy breasts. For classification, a convolutional 
neural network (CNN) was used, whose results were com-
pared to the diagnoses provided by 101 radiologists. Network 
performance was analyzed for each of the bases separately. 
Based on the work, the authors verified that the computa-
tional method used had a performance close to, but inferior 
to, the specialized knowledge of radiologists, with specificity 
between 49 and 79% and maximum sensitivity of 86%.

Although in the work by Rodriguez-Ruiz et al. (2019), 
the authors discuss the results in order to investigate the 
possibility of replacing radiologists’ knowledge with com-
putational intelligence, it is important to mention that this 
is not the scope of the present work. In the study proposed 
here, our focus is on the development of new learning 
models that can be used in the development of solutions 
to support differential diagnosis. These solutions could 
be made available in the form of web microservices that, 
in turn, can be connected to expert systems that integrate 
various information from different databases to support 
the process of diagnosing breast cancer or breast lesions.

Materials and methods

Proposal

In this study, we propose an approach for identifying and 
classifying breast lesions from mammography images 
(Fig. 1). The images used are from the Image Retrieval 
in Medical Applications (IRMA) database and consist of 
regions of interest in mammograms. In the database, there 
are images of different breast tissues, both healthy and 
with benign and malignant lesions.

Initially, we analyzed the dataset in two different ways: 
in the first, we used only images of breasts with a predomi-
nance of adipose tissue (tissue I). In a second step, the 
analysis was performed using all the images of the different 
breast compositions, combining the breast images with all 
possible compositions: tissues I (adipose), II (fibroglandu-
lar), III (heterogeneously dense), and IV (extremely dense). 
Then, we use the DWNN method to extract attributes from 
the images. Finally, we evaluated the performance of differ-
ent algorithms in positioning the images in their respective 
classes (i.e. normal, benign, and malignant). Figure 1 illus-
trates this method.
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Dataset

The mammography imaging database adopted is the Image 
Retrieval in Medical Applications (IRMA) database, with 
2796 images (128×128 pixels) of regions of interest (ROI), 
developed at Aachen University of Technology, Germany, 
and given to the Research Group on Biomedical Comput-
ing at UFPE (Brazil), for academic use, by Prof. Thomas 
Deserno (Deserno et al. 2012). The IRMA repository was 
built from four other public databases:

• 150 images from the MIAS (Mammographic Image 
Analysis Society) database (Suckling et al. 1994);

• 2576 images from the DDSM (Digital Database for 
Screening Mammography) database (Heath et al. 2000);

• 1 image extracted from LLN database (Lawrence Liver-
more National Laboratory, USA);

• 69 images from the Department of Radiology at Aachen 
University of Technology (RWTH), Germany.

In this database, the images are organized in two ways: 
by the type of tissue density predominant in the breast and 
by the diagnosis associated with the patient’s clinical case. 
As for the type of tissue, they are divided into four, accord-
ing to the BIRADS (Breast Imaging Reporting and Data 
System) (D’Orsi et al. 1998) classification: adipose (type I), 

Fig. 1  Proposed method for the 
identification and classification 
of breast lesions in mammog-
raphy images. Initially, we 
extract features through DWNN 
method. Then, the feature vec-
tors are assessed by different 
classification algorithms to 
identify the existence of a breast 
lesion in the image and indicate 
the probable type of lesion.
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fibroglandular (type II), heterogeneously dense (type III), and 
extremely dense tissue (type IV). Figure 2 shows examples 
of each of these classes of breast tissue. As for the diagnosis 
associated with each image, there are three possible classes: 
healthy breasts, malignant lesions, and benign lesions. Consid-
ering the complete image base, we have 233 images for each of 
the three possible diagnoses, considering the four tissue types. 
Thus, there are 12 classes with 233 images each, totaling 2796 
images. All diagnoses were previously established by special-
ists and used to resize the mammography images, isolating 
only the ROI, as shown in Fig. 3.

In this work, all images from the IRMA database were 
used, which were organized into 2 databases, the first with 
images of predominantly adipose breasts and the second 
with images of breasts with a predominance of all types of 
tissues. Table 1 details the organization of these bases. It is 
noteworthy that the IRMA base used was previously bal-
anced, so the number of images is evenly distributed among 
the classes. Furthermore, it was not necessary to carry 
out any type of conversion, since the images are already 
acquired in gray levels.

Deep‑wavelet neural network

Deep-wavelet neural network (DWNN) is a deep-learning 
method of attribute extraction for pattern recognition, based 
on Mallat’s algorithm (Mallat 1989) for multilevel wavelet 
decomposition. The “Deep” in the name arises from the pos-
sibility of using multiple layers, making the method even 
deeper as new layers are added. Furthermore, as with con-
ventional deep learning methods, such as convolutional neu-
ral networks (CNN), the process consists of two basic steps, 
in the first, the images are submitted to filters, and in the 
second, pooling occurs. However, while filters are not fixed 
in conventional methods, the filters used in deep wavelet are 
fixed and refer to families of Haar wavelets.

In the Wavelet decomposition based on Mallat’s algo-
rithm, low-pass and high-pass filters are applied to an image, 
resulting in a set of other images. Images resulting from 

low-pass and high-pass filters are called approximations and 
details, respectively (Mallat 1989). The smoothness of the 
original image is highlighted in the approximations, while in 
details, the edges (or discontinuity regions) are highlighted. 
This strategy is used in pattern recognition as it allows ana-
lyzing images in both the spatial and frequency domains 
(Mallat 1989).

In the DWNN approach, a neuron is formed by combin-
ing a filter, gi, with a downsampling operator (↓2) as shown 
in Fig. 4. In the figure, the matrices X and Y represent the 
input and output images respectively. The resolution of Y is 
smaller than X just by applying downsampling.

All filters used in DWNN form a filter bank, which are 
kept fixed throughout the process. The bank is supposed 
to have n filters. Thus, an input image will be submitted 
to n neurons that form the first intermediary layer of the 
neural network. In the second layer, the images resulting 
from the first will be submitted to the same filter bank and 
to downsampling individually, in the same way as was done 
for the input image. And the process repeats for the third and 
subsequent intermediate layers. In the DWNN output layer, 
there is the synthesis block which is responsible for extract-
ing information from the images resulting from the process. 
Such approach is outlined in Fig. 5; in the figure, the abbre-
viation “SB” means synthesis block, and m represents the 
number of layers of the DWNN. The filter bank, downsam-
pling, and the synthesis block will be detailed below.

The filter bank used in DWNN is fixed and composed of 
orthogonal filters. Considering S the domain of the image 
(support call) and R the set of real number, we can say that 
the orthogonal filters are of the type gk : S → R, for 1 ≤ k ≤ 
n. So, mathematically, the filter bank (G), can be represented 
by the set:

Before determining the DWNN filter bank, it is necessary 
to define which neighborhood will be considered during the 
filtering process. Let a pixel ~u of coordinates (i,j). The 8 

(1)G =
{

g1,g2, g3 … .gn
}

Fig. 2  Mammograms of dif-
ferent breast tissues: a adipose 
(type I), b fibroglandular (type 
II), c heterogeneously dense 
(type III), and d extremely 
dense (type IV) tissues.
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neighborhood pixels (also called the 8-neighborhood) of ~u 
is formed by the pixels: (i + 1,j), (i − 1,j), (i,j + 1), (i,j − 1), 
(i + 1,j + 1), (i + 1,j − 1), (i−1,j +1), and (i−1,j −1). In 
other words, the lateral, vertical, and diagonal pixels of ~u 
are considered neighbors, as show in Fig. 6a.

Considering an 8-neighborhood, it is possible to form 
an orthonormal filters base containing a total of five filters, 
where four filters are bandpass filters containing a specific 
orientation selectivity (Mallat 1989). That is, each filter will 
highlight details in a given orientation. Figure 6b shows the 
orientations of such filters for an 8-neighborhood. In the 
figure, g1 is the high frequency vertical filter, responsible for 
highlighting horizontal edges, g2, horizontal high frequency 
edges, which highlights vertical edges, and g3 and g4 are the 
diagonal filters, which highlight the corners of the image. 
Therefore, the filters g1, g2, g3, and g4 form the set of high-
pass filters, also classified as derived filters for highlighting 
as discontinuities of the input image.

In addition to the high-pass filters, the DWNN filter bank 
includes a low-pass filter (g5), acting as a smoother. Its func-
tion is to highlight the homogeneous areas of the image. This 
filter is considered an integrator filter. An example of a nor-
mal low-pass filter for 8-neighborhood is given in Equation 2 

Fig. 3  Examples of IRMA 
dataset images

Table 1  Organization of mammography databases: 233 images for 
each of the 12 classes (4 tissues × 3 possible diagnoses), compre-
hending 699 images for each tissue and a total of 4 × 699 = 2796 
images

Database Classes Amount 
of 
images

Tissue I (adipose) I-normal
I-benign
I-malignant

699

All tissues all-normal all-benign all-
malignant

2796

Fig. 4  DWNN neuron, com-
posed of a filter, gi, and the 
downsampling operator, ↓2. 
X and Y are input and output 
images of the neuron.
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where the center of the mask (2,2) is the reference position 
used during the convolution of the image with the filter.

The filters shown by Fig. 6b and by Equation 2 are valid 
for an 8-neighborhood. However, when choosing a different 
neighborhood you should consider other filters. For example, 
consider a neighborhood of 24 pixels as shown in Fig. 7a. The 
orientation-specific selectivity high-pass filters will be given 
as shown in Fig. 7b. In this case, there are 8 high-pass filters 
(g1, g2, ..., g8). For 24-neighborhood, the low-pass filter would 
be a 5×5 matrix formed by 1/25 terms, following the same 
filter principle given in Equation 2 for an 8-neighborhood. So, 
for a neighborhood of 24 pixels must be used as a filter bank 
in the DWNN the orthonormal set given by the filters shown 
in Fig. 7b and one more low-pass, totaling 9 filters.

(2)g5 =
1

9

1 1 1

1 1 1

1 1 1
(2,2)

The second component process of a DWNN neuron is 
the downsampling, responsible for reducing the image 
resolution, in order to reduce the data complexity for the 
next layers of the network.

The downsampling is done by replacing four pixels 
of the image, arranged in a window 2×2, with just one. 
Figure 8 shows a scheme of how the downsampling. The 
symbol φ↓2 was used to represent an operation.

Consider any function φ↓2 : R4 → R, where φ↓2(·) can be 
a maximum function (returns the largest value among the 
input values), or the minimum (returns the smallest value), 
or the arithmetic mean or median of the values of pixels or 
among other possibilities of functions of the type R4 → R. 
Then, the pixels a0, b0, c0, d0, identified in Fig. 8, have their 
values given by:

a = �↓2

(

a1, a2, a3, a4
)

b = �↓2

(

b1,b2, b3, b4
)

Fig. 5  Schematization of the deep-wavelet neural network (DWNN) approach.
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In the case shown in Fig. 8, from an image 10×10 (100 
pixels) return an image 5×5 (25 pixels), reducing the 
image resolution by a factor a 4. It is also possible to see 
in Fig. 8 that the window 2×2 of pooling moves by skip-
ping two pixels, this means that the pooling is performed 
using a stride 2 (Albawi et al. 2017).

The use of downsampling has an interesting feature as 
it reduces memory consumption during the execution of 
the algorithm. Consider, for example, an image with 4096 
pixels submitted to the 8-neighborhood orthonormal filter 
bank (referring to the first middle layer of the DWNN). 
As a result, another n = 5 images will be obtained each 
containing the same amount of pixels. This then results in 
an increase in the amount of data by a factor of five. When 

c = �↓2

(

c1, c2, c3, c4
)

d = �↓2

(

d1, d, d, d4
) considering more layers of the DWNN, the amount of data 

would grow exponentially by a factor of nm.
Such inconvenience could make the process unfeasi-

ble. But when applying downsampling, as the number of 
images increases by a factor nm,the size of each image 
coming from the process is reduced relative to the input 
image by a factor of  4m. An especially interesting situation 
occurs when considering an 8-neighborhood, for which the 
filterbank has a total of 5 filters. However, it is possible 
to combine the diagonal filters (g3eg4in Fig. 6b) in order 
to work with a bank containing 4 filters. In this special 
case, after m layers of DWNN neurons,  4m images will 
be obtained reduced each one, with respect to the input 
image, by a factor of  4m. In this way, then, the amount 
of data will remain constant throughout the execution of 
the algorithm. Using such an approach on the 4096 pixels 

Fig. 6  a 8-neighborhood, are 
considered neighbors of pixel 
~u all pixels marked in gray. b 
High-pass filters with orienta-
tion selectivity, g1 filter with 
vertical selectivity, g2 horizon-
tal filter, g3 and g4 diagonal 
filters.

Fig. 7  a Neighborhood for 24 
pixels. b High-pass filters with 
orientation selectivity 24 neigh-
borhood pixels.
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image in the previous example, after the first layer of the 
DWNN, it will result 4 images of 1024 pixels. Therefore, 
the amount of data during the process remains constant.

Considering the schematic of a DWNN neuron shown 
in Fig. 4 and the input X and output Y images for a given 
neuron, you can write that Y is related to X as follows:

where the ∗ symbol represents the convolution operation.
The output layer of the DWNN is formed by the synthesis 

blocks. Each block has the function of extracting, from each 
image resulting from the intermediate layers, an information 
(or data) that represents it, as shown in Fig. 9.

Then, in the synthesis blocks, each of the nm reduced 
images will be submitted to a function ϕ : S → R. Among 
other possibilities, ϕ(·) can assume a function of maximum, 
minimum, mean, or median. Your goal is, therefore, to 
replace the entire image with a single value.

Thus, considering f(~u) ∈ R the value of pixel ~u, we 
have that xi ∈ R is obtained as follows:

Figure 9 shows a schematic of the synthesis block. At 
the end of DWNN, when applying the synthesis block to 
all images resulting from the m intermediate layers, we will 
have a set of terms xi (1 ≤ i ≤ nm). Such a set can be under-
stood as the attributes of the input image. When applying the 
DWNN to a set of image, a database is obtained, which can 
be used as input to a classifier.

Feature extraction

For the extraction of attributes, we use the method deep-
wavelet neural network (DWNN) (Barbosa et al. 2020). 

(3)Y = �↓2(gk ∗ �)

(4)�1 = �(f (∼ u);∀ ∼ u ∈ S)

DWNN is a deep, untrained network for attribute extraction, 
inspired by Mallat’s (Mallat 1989) algorithm for multilevel 
Wavelet decomposition. This algorithm, which emerged 
as a strategy for implementing the discrete wavelet trans-
form, consists of obtaining approximations and details of an 
image. Approximations are the low-frequency representation 
of the image, conserving its general trend while smoothing 
out the abrupt transitions present in it. The details show the 
image’s high-frequency components, highlighting regions 
of discontinuity such as edges and blemishes.

In Wavelet decomposition, low-pass and high-pass filters 
are applied to an image to form a set of other images that 
are smaller in size than the original. From low-pass filter-
ing, approximations are obtained and details are acquired 
through high-pass filters. This approach allows the analysis 
of images in the spatial and frequency domains and, there-
fore, it has been widely used in pattern recognition. DWNN 
uses a process similar to this one, in which a neuron is 
formed by combining a given filter with a process of image 
size reduction called downsampling.

Fig. 8  Downsampling (φ↓2). 
Through the process the image 
size was reduced by a quarter.

Fig. 9  Outline of the synthesis process
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Thus, considering a bank with n filters, an input image 
will be submitted to n neurons that form the first layer of 
the neural network. In the second layer, each of the images 
resulting from the first will be individually submitted to the 
same bank of n filters and to downsampling, in the same way 
as was done for the input image. The process is repeated for 
all layers of the network, according to the quantity estab-
lished by the user and which determines the depth of the 
network.

Finally, in the DWNN output layer, we have the synthesis 
blocks (SB), which are responsible for extracting informa-
tion from the images resulting from the entire process. In 
these blocks, each of the reduced nm images will be sub-
mitted to a maximum, average, minimum, median, or mode 
function. Thus, each image is replaced by a unique value.

In this work, we extracted features by using a 5-layer 
DWNN with a filter bank of four 8-neighborhood filters, 
resulting, therefore, in 1024 attributes for each input image. 
In the synthesis block we used the minimum function to 
calculate the output of the network, as this one presented 
better results against maximum, mean, and median. Results 
with maximum, mean, and median synthesis blocks did not 
reach the minimum accuracy of 70%, which is the empiri-
cally acceptable threshold for the diagnostic support system 
to outperform a human mastologist analyzing a mammo-
graphic image. For this reason, these results were not pre-
sented in this work.

Classification

After extracting attributes, the set was submitted to a clas-
sification step. Tests were carried out with Bayesian network 
(Bayes Net), naive Bayes classifier (Naive Bayes), multilayer 
perceptron (MLP), support vector machine (SVM), extreme 
learning machines (ELM), in addition to classifiers based 
on trees; search: J48, random tree, and random forest. The 
settings for each classifier are presented in Table 2.

All tests were performed using the 10-fold cross-valida-
tion method (Jung and Hu 2015). Each configuration was 
tested 30 times, in order to obtain statistical information for 
comparing the methods.

To assess the performance of the classifiers, accuracy 
metrics and kappa index were used. The accuracy (Ac) cor-
responds to the percentage of correctly classified instances 
and can vary from 0 to 100% (Krummenauer and Doll 2000). 
This metric is calculated from the Equation 5, where ncorrect 
is the number of correctly classified instances and ntotal is the 
total number of instances.

(5)Ac =
ncorrected

ntotal
∗ 100%

The kappa index (κ) is a statistical metric to assess the 
agreement between the obtained and expected results Landis 
and Koch (1977); McHugh (2012). The kappa index can 
vary in the range [−1, 1], where values less than or equal to 
0 (zero) indicate no agreement between the results, values 
above 0.8 demonstrate high agreement, and intermediate 
values represent low or moderate agreement. Kappa pro-
vides information about the degree of reproducibility of the 
method and is calculated as indicated in Equation 6, where 
Pcalculated represents the observed value and Pexpected is the 
expected value.

Results

In the IRMA database, the images are separated by type 
of tissue predominant in the breast, which can be adipose, 
fibrous, heterogeneously dense or extremely dense. Further-
more, for each of these tissues, the images are classified 
according to breast evaluation, according to the BIRADS 
(Breast Imaging Reporting and Data System) classification. 
Thus, there are normal breasts, with a benign lesion or with 
a malignant lesion. Initially, only images of breasts classified 
as adipose were analyzed, as it consists of the predominant 
breast constitution in women who undergo mammography. 
Then, the classification performance was also evaluated 
using images of all possible types of tissues, with the aim of 
increasing the variability of breast constitutions.

(6)K =
Pcalculated−Pexpected

1−expected

Table 2  Classifiers parameters: SVM with second-degree polynomial 
kernel; MLP with 10 neurons in the hidden layer; ELM with sigmoid 
kernel; random forests with 100 trees; standard random tree and J48; 
and standard Bayesian network and Naive Bayes classifiers.

Classifier Parameters

Bayesian network Batch size: 100
Naive Bayes Batch size: 100
MLP Hidden layers: 1

Neurons in the hidden layer: 10
Learning rate: 0.3
Momentum: 0.2
Iterations: 500

SVM Kernel: second-degree polynomial
J48 -
Random tree Batch size: 100

Seed = 1
Random Forest Number of trees: 100

Batch size: 100
ELM Neurons in the hidden layer: 100

Kernel: Sigmoid
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Figure 10 shows the performance of the different meth-
ods for classifying the highlighted regions of interest in 
adipose-type breasts into the normal, benign or malignant 
lesion classes. Figure 11 presents the results of accuracy 
and kappa index for the dataset of mammography images 
of adipose, dense and fibrous breasts analyzed together. For 
the extraction of attributes, the DWNN with 5 levels and a 
minimum function for the synthesis block was used.

From these results, we realized that the best classifica-
tions were with SVM. Thus, Fig. 3 shows the confusion 
matrix obtained with this method during image classifi-
cation. From the matrix, we noticed a greater confusion 
between the benign and malignant classes. There is no con-
fusion between these classes and the normal/healthy class. 
Furthermore, Table 4 shows the results of sensitivity, speci-
ficity, and AUC of this model.

Discussion

The use of DWNN in the images with adipose breasts made 
the performance of the classification methods very different 
from each other: the SVM clearly stood out, reaching accu-
racies above 96%, with a kappa of 0.95. This method was 
followed by random forest, with accuracy close to 85% and 
kappa around 0.70. Bayesian networks achieved intermediate 
performances. However, we obtained less satisfactory results 
using decision trees (random tree and J48), ELM and MLP. 
The latter stood out negatively due to the large dispersion of 
data, greater than that of all other methods. Basically, the same 
pattern was observed between the accuracy results, in Fig. 10a, 
and the kappa index, in Fig. 10b.

The performance of the classifiers was also verified for the 
classification of regions of interest in breasts with all possible 
tissue constitutions (adipose, fibrous, heterogeneously dense or 
extremely dense). As in the previous case, the aim is to automat-
ically identify whether the image belongs to the normal class, 
benign lesion or malignant lesion. The DWNN configuration 
for attribute extraction was similar to the one used previously, 
with 5 levels and a minimum function for the synthesis block.

Similarly to that observed in Fig. 10, the use of DWNN in 
breasts with different tissue constitutions (see Fig. 11) made the 
performance of the classification methods very different from 
each other: SVM stood out a lot, but this time reaching 94% 
accuracy, with a kappa of 0.91. The Bayesian methods, J48, 
ELM, and random forest showed similar performances, with 
accuracies between 75 and 85%. The random tree algorithm 
and the MLP presented the worst results, with the MLP with 
the largest dispersion among the evaluated methods. The results 
expressed in Fig. 11 demonstrate that the method is robust, even 
after associating the different types of tissues, which, conse-
quently, makes the classification problem more complex.

Tables 3 and 4 show the confusion matrix and the values of 
sensitivity, specificity, and area under the ROC curve, respec-
tively, for a single run of the best model, i.e. DWNN with 5 
layers and SVM with second-degree polynomial kernel. These 
results correspond to a test with 50% of the database. The 
results of the confusion matrix (see Table 3) show that mam-
mogram patches from healthy patients were not confused with 
either of the other two classes. However, 8 images classified 
as malignant are confused with benign images out of a total 
of 466, while 6 benign images are confused with malignant 
images out of a total of 466 images. According to Table 4, 
the sensitivity, specificity, and AUC results are, in this order: 
100%, 100%, and 100% for normals; 98.71%, 99.14%, and 
98.93% for benign; and 98.28%, 99.36%, and 98.82% for 
malignant. The weighted values of sensitivity, specificity, and 
AUC are then 99%, 88.61%, and 93.80%, respectively. These 
results are comparable or superior to those of the state of the 
art, like Becker et al. (2017); Magna et al. (2016); Rodriguez-
Ruiz et al. (2019); Wang et al. (2017), also obtained with the 
IRMA database.

Conclusion

The present study presented a new architecture of deep 
artificial neural network: the deep-wavelet neural network, 
DWNN. We present a hybrid classifier architecture aimed 
at recognizing patches from mammograms of different 
tissues to support the diagnosis of malignant and benign 
breast lesions. DWNN has the advantage of not needing 
any training or pre-adjustment of parameters other than the 
number of layers. The proposed hybrid architecture com-
bines a DWNN for extracting features from mammography 
patches with classic machine learning methods, seeking 
to solve the challenges associated with the interpreta-
tion of mammography images, especially those related to 
denser tissues, which are commonly associated with more 
advanced patients. young people under the age of 45. The 
proposed method obtained results above 90% of accuracy, 
with a kappa index around 0.90 in the classification of 
mammographic images with lesions in different breast 
constitutions. We also observed, in most cases, low vari-
ability of results, implying, therefore, greater reliability. A 
clear exception to this finding occurred with the use of the 
multilayer perceptron, which showed high data dispersion 
in all test scenarios.

We also verified that the support vector machine excelled 
in relation to other classification algorithms. High results 
were also obtained with random forest and extreme learning 
machine, indicating that the problem can be generalized, but 
often in a non-linear way. The high performance of these 
methods explains the low results obtained with decision 
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trees (J48 and random tree). Individual decision trees com-
monly achieve high results when the basis is very specific. 
The intermediate performances of Bayesian methods point 
to a certain independence between the attributes extracted 
by the DWNN.

Therefore, future works may use techniques to select the 
most relevant attributes to represent the data sets, eliminat-
ing redundant or non-relevant information and, therefore, 
optimizing the processing. In addition, other classification 
techniques using deep learning and unsupervised learning 
can be tested and combined with the technique proposed 
in this work, in the form of ensembles, seeking to achieve 

higher values of sensitivity and specificity and, therefore, 
even greater clinical applicability.

Finally, the results obtained reinforce the power of com-
putational intelligence to solve complex and non-linear 
problems, recurrent characteristics in issues associated with 
biomedical applications. Deep learning techniques, such as 
DWNN, explored here, have been shown to be effective for 
such applications, as they increase the complexity of the 
decision frontier for solving the classification problem. As 
demonstrated by the results obtained, the method proved to 
be very promising for the classification of breast lesions in 
mammography images. Our approach is especially relevant 

Fig. 10  Results of a accuracy and b kappa index for the mammography image database of predominantly adipose breasts using attributes 
extracted by DWNN
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because it presents interesting results even when analyz-
ing images of breasts with different densities: from adi-
pose breasts, in the case of patients over 45 years of age, 

to extremely dense breasts, in the case of adolescents and 
young adults. Since breast composition is directly associated 
with the patient’s age and clinical variability, the approach 

Fig. 11  Results of a accuracy and b kappa index for the base of mammography images of adipose, dense, and fibrous breasts analyzed together, 
using attributes extracted by DWNN

Table 3  Confusion matrix for the best breast lesion classification

Normal Benign Malignant

Normal 466 0 0
Benign 0 460 6
Malignant 0 8 458

Table 4  Sensitivity, specificity, and AUC metrics for the proposed 
approach

Sensitivity Specificity AUC 

Normal 100.00% 100.00% 100.00%
Benign 98.71% 99.14% 98.93%
Malignant 98.28% 99.36% 98.82%
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emerges as a possible alternative to support the process of 
diagnosing breast lesions.
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