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Abstract
Purpose According to the International Diabetes Federation, diabetes mellitus (DM) afflicted nearly 463 million people in 
the world by 2019. Approximately one in every ten individuals is diabetic and this number is projected to increase in the 
near future. Nearly, 15% of all diabetes cases lead to ulceration of the feet which culminate in amputation if left untreated. 
Therefore, there is a need for an accurate method to diagnose diabetes and diabetic foot ulcers (DFUs).
Methods In this work, we present machine learning (ML) and image processing-based algorithms to detect and diagnose 
DFUs and diabetes using thermal images of the feet. DFUs are diagnosed by detecting diabetes and pre-ulcerative foot hot-
spots or ulcer-prone regions. These hotspots are detected using asymmetry analysis and image processing whereas diabetes 
is detected by analysing various features of the foot thermogram. In order to find the most optimal diagnostic method for 
diabetes diagnosis, five classifiers utilizing artificial neural networks (ANN), quadratic support vector machine (QSVM), 
linear discriminant, logistic regression and Gaussian naïve Bayes algorithms were modelled, tested and evaluated.
Results ANN-based classifier was determined to be most accurate for diagnosing diabetes yielding an accuracy of 93.3% 
and an F1 score of 0.95. The algorithm to detect ulcer-prone regions of the feet illustrated a detection accuracy and an F1 
score of 87.1% and 0.86, respectively.
Conclusion The high accuracies of the proposed algorithms enable its use as a screening tool before blood tests for diagnosis 
of diabetes and diabetic foot ulcers, facilitating treatment.

Keywords Diabetic foot ulcers · Diabetes · Image processing · Machine learning · Computer-aided diagnosis · Diagnosis · 
Neural networks

Introduction

Diabetes mellitus (DM), commonly referred to as diabetes, is 
generally used to define a group of metabolic disorders char-
acterized by increased blood sugar levels over a prolonged 
period. Increased blood glucose levels are also known as 
hyperglycaemia which can lead to failure of various organs 
such as nerves, heart, kidney, eyes and blood vessels (Amer-
ican Diabetes Association 2009). The number of people 
afflicted by diabetes mellitus is predicted to increase to 700 
million by 2045 (Saeedi et al. 2019). The rise in sedentary 

lifestyles and unhealthy dietary habits are the main cause of 
the increase in the prevalence of DM worldwide. One of the 
consequences of DM is ulceration in the legs (especially in 
the foot) known as diabetic foot ulcers (DFUs). It occurs in 
nearly 15% of patients affected by DM. Diabetic foot ulcers 
are a devastating complication of diabetes and are character-
ized by ulceration, neuropathy and peripheral arterial disease 
of the lower limb coupled with a lack of protective sensation 
(Alexiadou and Doupis 2012). They are one of the most com-
mon foot injuries to result in lower extremity amputations. 
Hotspots are identified by comparing corresponding regions 
of the contralateral foot (regions with the temperature at least 
2 °C hotter than the contralateral site). These hot regions are 
sometimes accompanied by inflammation. Approximately 
20% of the overall healthcare expenditure on diabetes can 
be attributed to DFUs (Skrepnek et al., 2017). Often, if left 
untreated, they spread severely and can lead to needing to 
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amputate the limb and in certain extreme cases, even lead to 
death. DFUs are preventable through early diagnosis, treat-
ment of the signs of DFUs or detection of potential ulcerative 
hotspots. However, early detection of DFUs would require 
frequent examination by medical professionals which is not 
feasible for the patient or the medical industry because it is 
usually recommended that the feet need to be examined daily 
for signs of pain, skin complexion changes, swelling and cuts 
or bruises. Increased temperatures may also indicate other 
diabetic foot complications such as neuropathic ulcers, Char-
cot foot or osteomyelitis (Boulton and Whitehouse 2020). 
Conversely, a decrease in foot temperatures indicates vascular 
insufficiency in the feet.

Thermal imaging is a useful modality for identifying 
these hotspots in diabetic foot patients. Rapid tempera-
ture changes on the plantar surface of the foot in diabetic 
patients can be considered as an early sign of ulcer forma-
tion (Davenport and Kalakota 2019). Increased temperatures 
are sometimes present up to a week before ulcer formation. 
Detection of such pre ulcerative hotspots will aid in the 
early detection of diabetes. These temperature changes are 
unnoticed by the patient as diabetes sometimes damages the 
peripheral nerves and hence the patient may be unable to 
feel pain or perceive the temperature increase in the foot 
(Quinn et al. 2019). Infrared thermography (IRT) or thermal 
imaging is the process where a thermal camera is used to 
create an image using infrared radiations. Thermal cameras 
are designed to detect radiations in the long-infrared range 
(9–14 μm) and produce images of the radiations detected; 
these images are called thermograms. The black body radia-
tion low states that, every object with a temperature above 
absolute zero emits infrared radiations (Usamentiaga et al. 
2014). An increase in temperature of the body increases the 
amount of radiation; therefore, thermography allows one to 
see variations in temperature (Armstrong and Lavery 1998).

Early detection, management and treatment are of vital 
importance for a better prognosis of diabetes and DFUs. 
Early detection of hotspots in the form of ulcer-prone 
regions will aid treatment and help to avoid surgeries and 
amputations. Careful and routine inspection of feet is one 
of the most efficient measures for preventing diabetic foot 
complications. However, several studies have discovered that 
primary care physicians do not regularly examine the feet of 
diabetic patients during health check-ups and inadequately 
detect diabetic feet (Davenport and Kalakota 2019). Detec-
tion of ulcer-prone regions in diabetic patients will enable 
them to undertake treatment and facilitate a better prognosis 
of the disease.

Artificial intelligence (AI), machine learning (ML) and 
other automated technologies are increasingly beginning 
to be applied to healthcare. Currently, several research 
studies suggest that AI can even outperform humans at 
key healthcare tasks, such as diagnosing diseases. Today 

many ML-based algorithms are outperforming radiologists 
in spotting malignant tumours in CTs and MRIs and help-
ing researchers in conducting clinical trials (Davenport and 
Kalakota 2019). Machine learning can be defined as a statis-
tical technique that determines relationships used to fit mod-
els of data. ML is one of the most common forms of AI and 
can be of several types. Computer-aided diagnosis (CAD) 
refers to a method of assisting clinicians in diagnosis using 
computer-generated outputs. These systems have been used 
to assist radiologists and conventionally relied on manually 
engineered features and domain knowledge; however, cur-
rent approaches employ artificial intelligence to discover 
patterns and latent features in the radiological images.

Computer-aided diagnostic techniques involving the use 
of thermography to detect diabetic foot ulcers have been 
proposed by many researchers. Thermograms are usually 
segmented, processed and then classified. Quinn et  al. 
(2019) detected ulcerative foot hotspots using a methodol-
ogy involving algorithms such as CNN for feet detection, K 
means clustering for background removal, intensity-based 
registration for alignment, subtraction and shape-based 
classification to detect hotspots from thermograms. Ben-
netts et al. (2013) used k means clustering to explore dif-
ferentiation of regional peak plantar pressure in diabetic 
patients. In his research, Adam et al. (2018) used discrete 
wavelet transforms (DWT), higher-order spectra (HOS) 
techniques and an SVM classifier to diagnose diabetic foot 
using plantar foot thermograms. Vilcahuaman et al. (2015) 
proposed methods to detect diabetic foot hyperthermia by 
assessing the mean temperature of the left and right feet 
obtained by infrared thermography. Liu et al. (2015) pro-
posed a system to automatically detect diabetic foot using 
infrared thermography and asymmetry analysis-based algo-
rithms. Netten et al. (2013) designed a system implementing 
high-resolution infrared thermal imaging to detect signs of 
diabetic foot complications. Hutting et al. (2020) proposed 
methods to monitor thermal asymmetry (difference in mean 
plantar temperatures of the affected and unaffected feet) and 
assess the severity of diabetic foot infections. Maldonado 
et al. (2020) developed a system to detect high-risk zones 
such as ulcers and necrosis in diabetic foot patients by cal-
culating mean values of temperature increments and decre-
ments. Astasio-Picado et al. (2018) used thermal images to 
analyse the temperature variability of the foot by segmenting 
the sole into four areas of interest.

Methods

In this work, we developed two algorithms, one algorithm 
focuses on the detection of ulcer-prone regions or potential 
hotspots and the other algorithm is used to diagnose DM 
from foot thermograms. The algorithms were developed in 
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MATLAB R2020A. Image processing toolbox was used for 
pre- and post-processing of images, the deep learning tool-
box was used to model the artificial neural networks and 
finally, the classification learner app of the machine learning 
toolbox was used to model the other machine learning mod-
els. Confusion matrices and receiver operating characteristic 
(ROC) curves were plotted to view classification results.

Dataset preparation

A labelled dataset prepared by Hernández-Contreras et al. 
(2019) is used to train and test the classifiers. The dataset 
consists of foot thermal images of 122 diabetic patients and 
45 non-diabetic subjects. Two images, namely, the ther-
mogram of the left foot and the thermogram of the right 
foot, are available for each subject. However, for real-time 
implementation, the thermograms were combined into one 
image using Adobe Photoshop and background noise was 
added to the image. So finally, a thermal image consisting 
of thermograms of both feet corrupted with noise is used as 
the input. This dataset is used to train the classifiers to detect 
diabetes and is also used as input to test the performance of 
the hotspot detection (ulcer-prone regions) algorithm. The 
dataset was validated by Dr. Sathish K (consultant radiolo-
gist). He identified potential ulcer-prone regions in all the 
foot thermal images and these ulcer-prone regions constitute 
hotspots.

Algorithm for detection of pre‑ulcerative hotspots

The algorithm designed for the detection of ulcer-prone 
regions primarily utilizes image processing operations along 
with asymmetry analysis and an ANN. A block diagram out-
lining the proposed methodology is included in Fig. 1.

Image processing refers to the method of analysing and 
performing various operations on an image to enhance the 
quality and extract relevant information from the image 
(Kapoor and Prasad 2010). To achieve the desired quality, 

the foot thermogram images are post-processed using vari-
ous image processing techniques such as segmentation, 
resizing, thresholding and erosion. Segmentation refers to 
the process of dividing an image into numerous segments 
to extract and isolate the desired region of interest from the 
whole image for further processing. Image resizing includes 
altering the dimensions of images while retaining all rel-
evant information. Thresholding estimates threshold val-
ues and divides images into distinct regions. Erosion is a 
morphological operation that shrinks the objects of interest 
removing unwanted anomalies and perimeter of the region 
using a predefined image probe to achieve useful contrasting 
results from the image.

Segmentation and pre‑processing

The input images are passed onto a pixel-based segmenta-
tion algorithm which detects thermogram pixels and filters 
out noise and other artefacts. Pixels that contain information 
of thermograms have similar colour, intensity and average 
colour values. This property is exploited to design the seg-
mentation algorithm. The algorithm computes the average 
colour value for each pixel, compares it with a threshold 
and retains important pixels filtering out noise and other 
artefacts. The average colour value is obtained by averag-
ing the red, green and blue pixel values. A threshold of an 
average colour value of 10 pixels was used after inspecting 
the pixel values of the foot and testing out multiple thresh-
olds ranging from 0 to 30. A segmentation algorithm with 
a threshold of 10 exhibited the best performance (in terms 
of noise removal and retaining pixel values corresponding 
to the foot). Then, indices corresponding to the extremi-
ties of the feet are obtained and two images corresponding 
to the left foot and the right foot are segmented from the 
input image. The images are finally filtered using a low pass 
averaging filter of window size 3, enhanced and resized to a 
common size (155 × 60).

Conversion to temperature‑weighted images

An ANN is created to convert every pixel of a thermogram 
to its temperature equivalent. The red, green and blue pixel 
values are used as input and the temperature is obtained as 
the output. A 3–10-1 neural network architecture is used for 
fitting (Fig. 2). The network was trained and tested using 
twelve thermal images and their corresponding tempera-
ture values (these values were provided in the dataset); this 
resulted in 65,520 sets of values. Seventy percent of these 
values were used for training, 15% for validation and the 
final 15% were used for testing. Validation was conducted 
at 26 epochs. ANN are multi-layer interconnected compu-
tational systems inspired by the biological neural networks 
in animals and are used to recognize patterns. Every neuron Fig. 1  Block diagram delineating the hotspot detection algorithm
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is interconnected to other neurons and every connection has 
a weight or a real number associated with it which controls 
the signal between these connected neurons. An ANN can 
alter its structure based on the input data and is achieved by 
adjusting the weight of the connection. ANN can be used for 
classification, regression and clustering.

Asymmetry analysis

Generally, the ulcerated tissues and the ulcer-prone regions 
in the foot are hotter than the healthy tissues. This property 
is used to visualize the ulcer-prone tissues as hotspots in the 
foot thermograms. This detected asymmetry in the tempera-
ture distribution in the thermograms verifies the existence 
of hotspots in the patient’s feet. Corresponding regions of 
the temperature-weighted images of the left and right feet 
were compared and asymmetry analysis was performed. The 
images were aligned by detecting the feet extremities in the 
segmented left and right foot thermograms, resizing the feet 
to common dimensions and finally, flipping any one of the 
two processed foot thermal images (left or right, depending 
on the difference image to be obtained). This was accom-
plished by first documenting the location (in terms of pixel 
indices) of the great toe, heel extremity and left and right 
extremities and then cropping the images using these indices 
to remove the outermost regions. The images are resized to a 
common size. The feet are finally aligned by flipping any one 
of the two processed thermal images. The temperature differ-
ences were identified by subtracting the two thermal images 
after alignment. Two different images are obtained for each 
subject, the first image is obtained by subtracting the flipped 
and processed temperature-weighted image of the right foot 
from the processed temperature-weighted image of the left 
foot and the second difference image is obtained by subtract-
ing the flipped and processed temperature-weighted image 
of the left foot from the processed temperature-weighted 

image of the right foot. A temperature difference greater 
than 2.2 °C signifies a hotspot or an ulcer-prone region and 
therefore, 2.2 °C is used as a threshold to create binary dif-
ference images. Binary thresholding was performed on the 
subtracted images and this finally results in the formation 
of different images. The image resembles a black and white 
mask with the white regions corresponding to regions with 
high-temperature differences.

Image processing for hotspot detection

The difference images were then subject to median filtering 
using a 5 × 5 median filter to remove minute inconsequential 
temperature differences and other background noise. Mor-
phological operations such as erosion and dilation were 
then performed using line-shaped structuring elements (a 
1 × 6 array of ones is used as the structuring element) to 
remove false hotspots that arise due to improper alignment 
of both feet. Bright regions with an area of fewer than 200 
pixels were identified, filtered and removed. The biologi-
cal nature of foot ulcers such as their points of origin and 
spread is taken into account to remove false hotspots in post-
processing. This is accomplished by dividing the image into 
16 different regions, identifying the hotspots in these regions 
and assessing its origin and spread. Hotspots that originate 
in the centre of the foot are removed. The difference image 
corresponding to the left foot is flipped. The masks used 
to reconstruct the images are finally complete. The white 
regions of the masks correspond to ulcer-prone regions and 
this black and white mask is used for reconstruction.

Reconstruction

A reconstruction algorithm that compares the input thermal 
images of both feet with the black and white mask is devel-
oped. Hotspots are obtained from the bright regions of the 

Fig. 2  Neural network architec-
ture for RGB to a temperature 
conversion
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mask and are highlighted in the original image. The input 
thermal images are now modified to highlight hotspots. The 
white regions in the output (processed thermal image) indi-
cate ulcer-prone regions.

Figure 3 consists of outputs obtained after different steps 
of the image processing algorithm used to highlight potential 
ulcerative regions or hotspots. Figure 3a and b represent the 
input and segmented images, respectively. Figure 3c and d 
represent the temperature-weighted and initial difference 
images, respectively. Figure 3e and f represent the differ-
ent images after thresholding and after applying the median 
filter. Figure 3g represents the mask used for reconstruction 
and finally, Fig. 3h represents the output image.

Evaluation

All the thermal images in the dataset were manually passed 
as input to the hotspot detection algorithm and the output 
was observed for each input. The hotspots identified by the 
algorithm were compared with the ulcer-prone regions iden-
tified by the radiologist and the results were documented; 
the detected hotspots were categorized into four catego-
ries, namely, true positives (TP), true negatives (TN), false 
positives (FP) and false negatives (FN). The algorithm was 
tested using 164 thermograms of which 76 thermal images 
consisted of various ulcer-prone regions. A confusion matrix 
was plotted and used to evaluate the performance of the 

Fig. 3  a Input image from our 
modified dataset. b Output of 
the pixel-based segmentation 
algorithm. c Temperature-
weighted images obtained using 
an ANN. d Output of image 
subtraction and asymmetry 
analysis. e Output on thresh-
olding the difference images. 
f Output after application of 
a median filter. g Output after 
application of morphological 
operations and post-processing 
algorithms. h Output after 
applying the reconstruction 
algorithm utilizing the hotspots 
mask
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hotspot detection algorithm. The parameters used for evalu-
ation include specificity, precision, recall, F1 score and clas-
sification accuracy. Precision represents the correctly identi-
fied positives and is represented by Eq. 1, whereas specificity 
represents the correctly identified negatives and is denoted 
by Eq. 2. Recall quantifies the true positives detected out of 
all positives present and is given in Eq. 3. F1 score refers to 
the harmonic mean of precision and recall thereby giving an 
estimate of both values and is represented in Eq. 4. Finally, 
classification accuracy, represented by Eq. 5, signifies the 
number of correct predictions made out of all predictions. 
Higher values of these scores indicate better performance.

Detection of diabetes

Diabetes is detected by classifying the foot thermograms. 
Machine learning-based classifiers were modelled to diag-
nose diabetes using foot thermograms. Thermograms of a 
subject’s feet are used as input by the algorithm. A block dia-
gram enumerating the proposed system is included in Fig. 4.

Pre‑processing

The thermal images were resized, enhanced, filtered and seg-
mented using the same pixel-based segmentation algorithm 

(1)Precision =
TP

TP + FP

(2)Specificity =
TN

TN + FP

(3)Recall =
TP

TP + FN

(4)F1 Score =
2 × Precision × Recall

Precision + Recall

(5)Classification Accuracy =
TP + TN

TP + TN + FP + FN

and the same filters discussed in the previous section. Seg-
mentation results in two images, one image corresponds to 
the thermogram of the left foot and the other image corre-
sponds to the thermogram of the right foot. These thermo-
grams are converted to temperature-weighted images using 
the ANN described in the pre-ulcerative foot hotspot detec-
tion algorithm and represented in Fig. 2. These temperature-
weighted images are subject to the feature extraction process.

Feature extraction

Feature extraction used to classify images and features gives 
us information about the characteristics of the image that is 
being processed (Kumar and Bhatia 2014). Feature extrac-
tion refers to the process of carefully extracting desired fea-
tures from an input image which makes it easier for the clas-
sifier to classify these input images based on their features. 
Two different types of features are commonly extracted, i.e. 
first-order statistical features and grey-level co-occurrence 
matrix (GLCM) features from the foot thermograms (Rasyid 
et al. 2018). The first-order statistical features extracted 
include mean, standard deviation and maximum value of 
temperature. Variables such as contrast, correlation, energy 
and homogeneity are measured in GLCM and are mainly 
used to describe the texture of the input image. It addition-
ally includes information on the spatial frequency of the 
input image (Gogoi et al. 2015). Here, a total of forty-one 
features were extracted from the temperature-weighted 
images as a part of the feature extraction process. The tem-
perature-weighted images were compressed to provide a 
clearer representation of the temperature distribution in a 
region and the compressed images were also used for feature 
extraction. Furthermore, the outputs at different stages of the 
pre-ulcerative foot hotspot detection algorithm were used for 
feature extraction. The features extracted include informa-
tion on average temperature, standard deviation, maximum 
value, GLCM features such as energy, homogeneity, contrast 
and correlation from the temperature-weighted images and 
the compressed temperature-weighted images. Other fea-
tures include the number of pixels corresponding to hotspot 
regions detected before and after processing, mean value, 
maximum value and standard deviation of the temperature-
weighted image after asymmetry analysis and subtraction. 
Features are extracted from every input thermogram and 
their corresponding segmented and temperature-weighted 
images, these features are used as input parameters by the 
different ML-based models for classification.

The features extracted were normalized using a normali-
zation function to increase the accuracy of the classifier. The 
normalized value of an entry ‘i’ of a feature ‘X’ is given in 
Eq. 6.Fig. 4  Block diagram explaining the classification process used by 

our proposed system
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Feature selection

Feature selection succeeds the feature extraction process. The 
main objective of the algorithm is to eliminate redundant fea-
tures and to select the desired features from a raw input image 
to build an efficient predictive model by increasing classifi-
cation accuracy and decreasing computational time (Maheta 
and Shroff 2015). Training the model with a lot of features 
can reduce classification accuracy even though the features 
are relevant and contain the desired information about the 
input image. The chi-squared test-based feature selection pro-
cess helps us to understand the significance of all the features 
extracted and using these values, the user keeps the most 
significant features discarding the other features (Spencer 
et al. 2020). The chi-squared method is relatively an easier 
process for univariate feature selection for image classifica-
tion as the feature interactions are not taken into account 
when this method is applied for feature selection. All forty-
one normalized features were subject to the feature selection 
process. The best twenty-five ranked features were selected 
and used as inputs for the classification process.

Classification

The twenty-five features selected were used to train five clas-
sifiers. The machine learning algorithms used for classifica-
tion include an ANN performing pattern recognition, logistic 
regression, linear discriminant, QSVM and Gaussian naïve 
Bayes. The classifiers were modelled, trained, validated and 
evaluated using the deep learning and machine learning tool-
boxes in Matlab. Confusion matrices and ROC curves were 
generated for each classifier and were used for evaluation.

ANN image classier applies the process of learning to 
classify inputs into different classes by finding common 
features in them. ANN can be used for predicting output 
values by identifying relations in non-linear problems using 
the training dataset. The weights of the connection are opti-
mized during training using the back-propagation algorithm. 
A major advantage of using ANN is that the model of the 
system can be built from the existing data itself.

Linear discriminant analysis (LDA) is a widely used 
linear classification technique and has been used exten-
sively to identify linear combinations in features that are 
extracted from images. It characterizes and classifies the 
features into various categories with the primary objective 
of reducing the redundant features to increase the accuracy 
and efficiency in classifying the foot thermogram image 

(6)Xi =
Xi − min(X)

max(X) − min(X)

and to produce accurate and understandable classification 
results (Zhao et al. 2019).

Naive Bayes classifiers are primarily based on the Bayes 
theorem and the principle that a pair of features used for 
classification are independent (Jahromi and Taheri 2017). 
The name arises because it ignores the prior distribution 
parameters and assumes the independence of the features 
extracted and selected from the input images. The advan-
tages of this classifier include fast computation, capability 
to handle both continuous and discrete data and require-
ment of lesser training data. The Gaussian naïve Bayes 
follows Gaussian normal distribution and is more efficient 
when handling continuous data.

Support vector machines (SVM) are predominantly 
binary classification algorithms based on predictive analysis 
which assign the input feature data to classes by construct-
ing a hyperplane in a high-dimensional feature space. A 
quadratic support vector machine (QSVM) uses a quadratic 
function as the hyperplane for classification. It is generally 
considered as one of the best and most robust classifiers 
among the supervised learning-based classifiers (Ali et al. 
2015). They are relatively memory efficient but are also 
characterized by higher computational and training times.

Logistic regression is widely used as a supervised clas-
sification algorithm to predict make predictions of categori-
cally dependent variables by analysing relationships between 
a set of given independent variables in a model by estimating 
their probabilities using a logistic function also known as the 
sigmoidal function, which is an S-shaped curve that takes a 
value between ‘0’ and ‘1’ and converts these probabilities 
into binary values for further prediction (MurtiRawat et al. 
2020). The error is calculated after each training example and 
is minimized by modifying the weights. Its major advantage is 
that it is comparatively faster than other supervised classifica-
tion techniques and it is also very easy to train and implement.

Evaluation

The ML-based diabetes detection algorithm was tested 
using foot thermograms from 118 diseased subjects and 
45 healthy subjects. Seventy percent of the dataset were 
used for training, 15% were used for validation and 15% 
were used for testing. The confusion matrices plotted pro-
vide information about how well the classifier worked; it 
includes true positive, true negative, false positive and false 
negative values. These values are used to calculate various 
scores used to evaluate the performance of each classifier. 
Similar to how the previous algorithm was evaluated, the 
metrics specificity, precision, recall, classification accuracy 
and F1 score were used to evaluate the classifiers.
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Results

The performance of the hotspot detection algorithm, dia-
betes diagnosis algorithm and the performance of different 
classifiers are discussed in this section.

Artificial neural network to determine 
the temperature

The artificial neural network created to fit RGB pixel val-
ues and convert them into temperature equivalent values is 
evaluated by passing ten different thermograms as input and 
finding the correlation between the output of the neural net-
work and the known temperature values corresponding to 
different pixels of the image. Only the non-zero temperature 
values of the thermograms were considered for evaluation. 
A correlation score of 0.9264 was obtained on evaluation 
which means that the temperature values predicted by the 
artificial neural network are 92.64% accurate.

Hotspot’s detection algorithm

The algorithm compares the temperatures of both feet and 
applies various image processing algorithms as discussed 
to highlight ulcer-prone regions. The algorithm was tested 
using 164 thermograms of which 76 thermal images con-
sisted of various ulcer-prone regions. The confusion matrix 
obtained on evaluating the algorithm is included in Fig. 5. 
Moderate detection accuracy of 87.1% is obtained. The pre-
cision, recall, specificity and F1 score of the algorithm are 
determined to be 0.84, 0.89, 0.85 and 0.86, respectively. 
Figures 6 and 7 show how the ulcer-prone regions are high-
lighted by the proposed algorithm for different input images 
and Fig. 8 shows the output for a healthy test subject.

Fig. 5  Confusion matrix of the hotspot detection algorithm

Fig. 6  Hotspots on the left great 
toe detected by the proposed 
algorithm

Fig. 7  Hotspots on the right 
heel detected by the proposed 
algorithm
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Feature selection

Forty-one features were extracted from the input thermogram 
and the features were subject to the feature selection process 
which utilizes a chi-sq test-based algorithm. The algorithm 
ranked the features and the best twenty-five features were 
used for classification. The features used for classification 
included a combination of average temperature value, the 
standard deviation of feet temperature values, maximum 
feet temperature value, standard deviation and maximum 
feet temperature value of compressed temperature-weighted 
images, results of the hotspot detection algorithm and the 
GLCM feature homogeneity. The five best features include 
an average temperature of left foot, mean temperature value 
of both feet, the standard deviation of temperature values of 
left foot, the standard deviation of temperature values of com-
pressed temperature-weighted images and the maximum tem-
perature of the compressed left foot temperature-weighted 
image. A heatmap consisting of correlation values of the first 
five features is included in Fig. 9.

Classifiers used for diabetes detection

Five algorithms, namely, logistic regression, Gaussian naïve 
Bayes, QSVM, ANN and linear discriminant, were used for 
the classification process. The algorithms were trained and 
tested using the dataset. The dataset after cleaning consisted 
of 163 thermal images of which 118 individuals suffered 
from diabetes mellitus. Five-fold validation was applied and 
the dataset was divided into three parts, 70% for training, 
15% for validation and the final 15% for testing. The best 
twenty-five features selected were extracted from the ther-
mal images, normalized and then used as input to train the 
classifiers. The confusion matrices obtained on evaluating 
the classifiers are included in Figs. 10, 11, 12, 13 and 14 
and the ROC curves along with the area under the curve 
(AUC) values obtained on evaluating the model are included 
in Figs. 15, 16, 17, 18 and 19.

Fig. 8  Absence of hotspots in a 
healthy test subject

Fig. 9  Heatmap corresponding to the correlation values of the first 
five features

Fig. 10  Confusion matrix of the logistic regression classifier
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The five models created were evaluated by calculating clas-
sification accuracy, precision, specificity, recall and F1 score. 
A comparison of the performance of different classifiers is 
included in Table 1. The ANN-based classifier exhibited the 
best performance yielding a classification accuracy of 93.3% 
and an F1 score of 0.95.

Discussion

Firstly, we decided to use an ANN for the transposition 
of pixel intensities into temperature after testing multiple 
algorithms including linear and non-linear regression, poly-
nomial interpolation methods such as Newton polynomial 
interpolation, Lagrange polynomial interpolation, spline 

Fig. 11  Confusion matrix of the Gaussian naïve Bayes classifier

Fig. 12  Confusion matrix of the QSVM classifier

Fig. 13  Confusion matrix of the ANN classifier

Fig. 14  Confusion matrix of the linear discriminant classifier
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interpolation and cubic spline interpolation, curve fitting and 
the usage of least mean squares for error reduction. These 
other methods resulted in a maximum correlation of just 
over 70% and led to an increased error rate in hotspot iden-
tification. However, the usage of an ANN increased the accu-
racy of pixel transposition by nearly 20% and rectified most 
of the errors in hotspot identification that were observed 
when the other methods were used.

Secondly, as the hotspot detection algorithm is highly 
sensitive to temperature changes, it suffers from an increased 
false-positive count resulting in an accuracy of 87.1%. 
Improper alignment of feet before subtraction attributes to 
almost 50% of the false positives. Hence, with a few modi-
fications to improve the accuracy of the algorithm (deep 
learning techniques such as R-CNN can be used for better 

Fig. 15  ROC curve of the logistic regression classifier

Fig. 16  ROC curve of the Gaussian naïve Bayes classifier

Fig. 17  ROC curve of the QSVM classifier

Fig. 18  ROC curve of the ANN classifier
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alignment of both feet and CNN-based classifiers can be 
implemented for classifying temperature changes) and after 
conducting additional tests using images from different 
thermal cameras, the algorithm can be clinically be used to 
detect regions prone to ulceration and can thereby be used 
to detect diabetic foot ulcers in the early stages.

To better evaluate the performance of the proposed 
model, we compare the results of the proposed algorithm 
with other existing hotspot detection algorithms. In Table 2, 
we compare our algorithm with other works related to the 
diagnosis of DFU or detection of ulcer-prone regions. Our 
algorithm outperforms most of the pre-existing algorithms 
proposed in the literature and hence can potentially serve as 
a viable alternative to the existing algorithms. As the pro-
posed algorithm is primarily based on image processing, 
it offers other advantages such as ease of implementation, 
lower system requirements, lower storage requirements and 
faster computational time.

Finally, the classification accuracy of the classifiers used to 
detect diabetes is limited by a small-sized dataset. The accu-
racy can be increased by increasing the size of the dataset and 
by exploring other features that can be used for classifica-
tion. The algorithm can be further tested and improvised by 

Fig. 19  ROC curve of the linear discriminant classifier

Table 1  Comparison of the 
performance of different 
classifiers utilized in the 
proposed design

Classifier Accuracy Specificity Precision Recall F1 Score

Logistic regression 90.2% 0.82 0.93 0.93 0.93
Gaussian naïve Bayes 84% 0.89 0.95 0.82 0.88
QSVM 89.6% 0.87 0.95 0.91 0.93
ANN 93.3% 0.89 0.96 0.95 0.95
Linear discriminant 88.3% 0.91 0.96 0.87 0.91

Table 2  Comparison between the proposed system and other works related to the detection of DFU or ulcer-prone regions using ML and image 
processing

Authors Diagnostic inputs used Algorithms used for diagnosis Results

Vardasca et al. (2019) Foot thermograms Classified using kNN, ANN and SVM Maximum classification accuracy of 81.25% 
(kNN)

Cruz-Vega et al. (2020) Foot thermograms Classified using DFT Net, AlexNet and 
GoogleNet CNN structures, ANN and SVM

Maximum classification accuracy of 85.3% 
(DFT Net CNN)

Quinn et al. (2019) Foot thermograms Segmented using R-CNN and k means clus-
tering followed by intensity-based image 
registration and asymmetry analysis

Classification accuracy of 60%

Maldonado et al. (2020) Foot thermograms Segmented using R-CNN followed by clas-
sification

Detection accuracy of 90% with an error rate 
of 7.05% in labelled areas for ulcers

Sivayamini et al. (2017) Foot infrared images Image segmentation using discrete wavelet 
transform (DWT) followed by GLCM 
feature extraction and optimization using 
cuckoo search and particle swarm tech-
niques

Maximum classification accuracy of 79.109% 
(particle swarm optimization)

Proposed system Foot thermograms Pixel-based image segmentation and image 
processing followed by asymmetry analysis 
and pot processing

Final detection and labelling accuracy of 
87.1%

792 Research on Biomedical Engineering (2022) 38:781–795



1 3

acquiring foot thermograms using different thermal cameras 
and from individuals of different races, regions, lifestyles and 
origins. The performance of different classifiers is compared 
in Table 1. It is also important to note that the same ther-
mograms which were misdiagnosed by the hotspot detection 
algorithm were also misclassified by the diabetes detection 
classifier. Therefore, accuracy can also be improvised by prop-
erly acquiring and processing the input thermograms. Classi-
fiers utilizing ANN were found to be most accurate followed 
by classifiers utilizing logistic regression, QSVM, linear dis-
criminant and finally Gaussian naïve Bayes algorithms. The 
performance of QSVM and logistic regression is almost iden-
tical with minor differences. QSVM exhibits slightly higher 
precision and specificity scores whereas logistic regression 
exhibits slightly higher accuracy and recall scores and both 
classifiers exhibit equal F1 scores. With a few tweaks, the pro-
posed algorithm can be clinically used to diagnose diabetes.

To better evaluate the performance of the diabetes detection 
classifier, we compare the results of our best classifier (ANN) 
with other diabetes detection CAD algorithms proposed by 
other researchers. In Table 3, we compare our model with other 
works related to the diagnosis of diabetes. The ANN-based 
classifiers outperform most of the pre-existing algorithms pro-
posed in the literature and hence can serve as an alternative to 
existing technologies. Finally, DFUs can be detected in the 
early stages by correlating the results of the hotspot detection 
algorithm with the results of the diabetes detection algorithms.

The limitations of our work are as follows. DM cannot 
be diagnosed with certainty when only foot thermograms 
are used. These tests need to be coupled with blood glucose 
tests for an accurate diagnosis. Therefore, right now, our 
algorithm can only act as a diagnostic aid and be used as 
a screening tool before blood testing. Our algorithm also 
fails at diagnosing DM in the early stages; the algorithm 
is based on detecting high-temperature regions and ulcer-
prone regions in the feet. Hence, it cannot aid in the early 
diagnosis of the disease as these changes in the feet occur 
only after years of suffering from DM. Finally, our hotspot 
detection algorithm is validated only for the detection of 
regions with an increased risk of ulceration. Ulcer-prone tis-
sues are hotter than normal tissues. A dataset consisting of 
foot thermograms of subjects suffering from DM and at risk 
of foot ulceration must be acquired and be used to test the 
proposed hotspot detection algorithm. Only, when this test 
yields successful results can our algorithm be used to detect 
pre-ulcerative hotspots for the early diagnosis of DFUs.

Conclusion

A non-irradiant, non-invasive, fast and accurate method 
was designed, developed and evaluated for the diagnosis of 
diabetes and detection of ulcer-prone regions in the feet. In Ta
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this paper, we analysed the use of different classifiers and 
determined the best method to diagnose diabetes using foot 
thermograms. Feature selection illustrated a positive correla-
tion between the average temperature of feet and the occur-
rence of diabetes. Out of the five classifiers tested, the ANN-
based classifier yielded the best results with a classification 
accuracy, specificity, precision, recall and F1 score of 93.3%, 
0.89, 0.96, 0.95 and 0.95, respectively. The hotspot detec-
tion algorithm yielded a detection accuracy, specificity, preci-
sion, recall and F1 score of 87.1%, 0.85, 0.84, 0.89 and 0.86, 
respectively. The current study is limited by the small size of 
the dataset. Consequently, the classifiers and algorithms can 
be improvised by increasing the size of the dataset. This can 
be done by manually acquiring thermal images of the feet of 
diabetic patients and using them to retrain and test the models 
and algorithms developed. The algorithms can be integrated 
into an application for easy usage. Thermal imaging provides 
a low-cost solution and additionally does not cause any side 
effects; therefore, tests can be repeated multiple times making 
it particularly useful to detect the spread of ulcerative hot-
spots. With the help of the proposed methods, diabetes can be 
diagnosed with greater ease and the detection of ulcer-prone 
regions would aid in the detection of DFUs, enabling a better 
prognosis of the disease.
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