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Abstract
Purpose  The lack of a fast, reliable, and general electrocardiogram (ECG) classification algorithm remains a major chal-
lenge toward an ECG-only workflow for heart disease diagnosis. In this work, the feasibility of our proposed algorithm in 
classifying 11 different heartbeat arrhythmia is investigated.
Methods and materials  Eleven heartbeat classifications with a total of 30,790 heartbeats selected from 32 patients from 
MIT-BIH dataset were investigated to evaluate the proposed algorithm, which is based on Modified Local Binary Pattern 
(MLBP). The reference feature vector for each arrhythmia was extracted during the training phase by applying the LBP 
operator to all different ECG signals individually, and the log-likelihood operator is used to classify each signal MLBP vector 
and all reference feature vectors. To enhance the algorithm accuracy, two additional morphological features are investigated, 
which are variance and mean.
Results  The proposed Mean–Variance Modified-LBP (MV-MLBP) algorithm was applied, and the average accuracy of 
99.76 was obtained. The MV-MLBP was found to be noise resistance, while the reported accuracy was obtained using no 
pre-processing, such as drift cancelation and noise reduction. In the arrhythmia classification process, the MV-MLBP algo-
rithm has recorded a noticeably high accuracy rate.
Conclusion  The proposed LBP-based approach has great potential to be transmitted to the clinic. No pre-processing neces-
sity, combined with the low computational complexity, has changed it to a fast and robust ECG classification algorithm. 
However, additional patient studies are necessary to optimize and validate the workflow.

Keywords  ECG beat classification · Local binary pattern · Variance · Mean · Data clustering

Introduction

Sudden cardiac death (SCD) is reported as one of the most 
common causes of death in recent years. While early rec-
ognition of any abnormality of heart can considerably 
reduce the danger of this kind of death, many studies have 
been investigated a vast variety of algorithms to detect and 

classify well-known abnormalities in electrocardiogram 
(ECG) signals automatically to increase the accuracy of 
heart disease recognition. Figure 1 illustrates ECG recorded 
signals of some different heart arrhythmias such as T-Wave 
Alternant (TWA), Premature Ventricular Contractions 
(PVCs), Atrial Premature Contraction (APC), and Ventricu-
lar fibrillation (V) compared with a normal one.

While it is an irrefutable fact that the ECG signal rep-
resents extremely fertile information about the heart func-
tionality, and accordingly, heart arrhythmias are due to any 
disturbance in the regularity, rate, and site of origin or con-
duction of the cardiac electric impulse (Clifford et al. 2006; 
Thaler 1999), it is considered one of the most important 
non-invasive tools in cardiac arrhythmia detection.

As an arrhythmia occurs, the formation of the normal sig-
nal heartbeats changes, which affect the morphological char-
acteristics of the signal dramatically, as well as its frequency 
content. Various studies have shown that frequency, chaotic 
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and morphological features of cardiac signals vary from one 
arrhythmia to another and most well-known ECG classifiers 
are based on features extracted from QRS or T section of the 
ECG signal (Dong et al. 2017; ławiak 2018; Rajesh Kandala 
and Dhuli 2017; Appathurai et al. 2019). Therefore, different 
statistical features (Ghorbani Afkhami et al. 2016; Jovic and 
Bogunovic 2011), spectral features (Khalaf et al. 2015; Rah-
man et al. 2017), time-domain features (Venkatesan et al. 
2018; Bhagyalakshmi et al. 2018), and several complexity 
measures (Silipo and Marchesi 1998) are selected as inform-
ative features to classify different arrhythmias.

One of the early methods in ECG classification is pro-
posed by Jain (Jain 1973). As a discrete nature of ECG sig-
nal, he claimed that the statistical algorithms are not proper 
methods in the classification process and hence, proposed a 
method representing each ECG lead by its z-domain modes 
to enhance discrimination of the subtle changes in QRS 
and T sections. In this method, the derivatives of the waves 
were employed to extract the z-domain modes. On the other 
hand, Lin et al. (Lin and Chang 1989) used linear prediction 
to extract features from QRS complexes, which has been 
applied to speech signals and is known as a powerful tech-
nique in digital speech processing. Having applied the linear 
prediction, Lin detected PVC arrhythmia with an accuracy 
rate of 92%. Osowski et al. (Osowski and Linh 2001) applied 
a fuzzy neural network to ECG beat recognition and clas-
sification, and higher-order statistical features have utilized 
in the study. Meanwhile, Engin (Engin 2004) performed 
a similar method, using autoregressive model coefficient, 
higher-order cumulate and wavelet transform variances to 

enhance the algorithm’s performance. By adding these new 
features to the classifier, authors could slightly improve the 
results. Albeit the final result was satisfactorily high, but 
the variety of arrhythmias classified was limited up to just 
four types. Jekova et al. (Jekova et al. 2008) implemented 
four different classifiers based on 26 morphological features 
which have been extracted from lead I, II, and VCG signals, 
such as area, slopes, peaks, time intervals, and VCG diagram 
in QRS complex. The classification methods were applied to 
five different arrhythmias from MIT-BIH dataset (MIT-BIH 
2011). By applying these four classifiers to the dataset, it 
was shown that the performance of morphological classi-
fiers greatly depends on the used learning set. Asl et al. (Asl 
et al. 2008) presented an effective cardiac arrhythmia clas-
sification algorithm using Support Vector Machine (SVM) 
classifier, based on the Generalized Discriminate Analysis 
(GDA) to reduce feature scheme. Initial 15 different linear 
and nonlinear features extracted from QRS complex have 
been reduced to five features by the GDA technique. The 
authors also examined two more feature reduction methods, 
Linear Discriminant Analysis (LDA) and Principal Compo-
nent Analysis (PCA), and final reduced features were applied 
to two different classification methods, SVM and MLP. The 
results showed that combining GDA and SVM can lead to 
the best classification accuracy rate for six arrhythmia types.

In some recent studies, simulated and synthetic TWA sig-
nals were generated and analyzed. These augmented beats 
are detected using wavelets (Boix et al. 2009; Romero et al. 
2008; Small et al. 2000) and 91% sensitivity is achieved 
(Romero et al. 2008), but this method strongly depends on 
heart rate and the maximal predictive accuracy is achieved 
at heart rates between 100 and 120 bpm, and hence, these 
TWA signals are usually measured during exercise, pharma-
cological stress, or atrial pacing. In other studies, wavelet/
FFT (Sharma and Rajendra 2019; Ghaffari et al. 2008) and 
correlation/FFT methods (Ghaffari et al. 2008) were also 
investigated. Roopaei et al. (Roopaei et al. 2010) proposed 
an algorithm to classify VF, VT and normal signals based 
on chaotic characteristics of these signals. Although it is a 
fast and accurate algorithm, it can classify only three types 
of arrhythmias. On the other hand, there are some studies 
developed to classify a wide variety of abnormalities, more 
than ten types, and have gained a high accuracy rate of clas-
sification. Ozbay et al. (Ozbay et al. 2011) used an algorithm 
by combining fuzzy type-2 C-mean clustering, wavelet, 
and neural network and classified ten types of abnormal-
ity. While they have gained a high degree of classification 
accuracy, the method is complex and time-consuming.

Many researchers have utilized a specific part of heart-
beat, QRS complex, in a wide range of classification 
algorithms to distinguish different types of abnormalities 
(Silipo and Marchesi 1998; Lin and Chang 1989; Osowski 
and Linh 2001; Jekova et al. 2008; Asl et al. 2008; Tafreshi 

Fig. 1   ECG signal of some kind of heart arrhythmia
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et al. 2014; Chen 2000). On the other hand, some research-
ers have recently considered other ECG-derived biomark-
ers as remarkably effective ones in classification algo-
rithms, and hence, researcher’s efforts have been devoted 
to T-wave features in the last few years (Boix et al. 2009; 
Romero et al. 2008; Shakibfar et al. 2012; Vaglio et al. 
2008). Vaglio et al. (Vaglio et al. 2008) and Couderc et al. 
(Couderc et al. 2006) implemented algorithms to identify 
the differentiation of LQT1 and LQT2 carriers based on 
T-wave morphology features, such as the QT peak to peak 
interval, the T-peak to T-end interval, T-wave magnitude, 
and T-loop slopes. It is an indisputable fact that using a 
specific part of ECG signal in classification algorithms 
exerts an extra “detection” step to an algorithm, which 
affects the total speed. In the MV-MLBP algorithm, the 
classification is based on the morphological features 
associated with the entire ECG signal, in which QRS or 
T-wave detection step is omitted, and consequently leads 
to a faster algorithm. In real-time heartbeat classification 
applications, accuracy, reliability, and rapid response are 
integral factors, while a considerable extent of algorithms 
developed, which are suitable in offline applications, just 
aim for a high accuracy rate. Although using the whole 
signal would lead to more complex calculations, thanks 
to the simplicity of the MV-MLBP algorithm, a fast 
and robust one is obtained, which can be used in online 
applications.

Local binary pattern (LBP) is a simple, fast, and straight-
forward method initially applied to texture classification 
methods, which was mainly to classify steel roll, paper, 
wood, carpet, and textile (Young 1995; Sheen et al. 1997; 
Dorrity and Vachtsevanos 1998; Chan and Pang 2000; Sari-
Sarraf and Goddard 1999; Kumar and Pang 2000; Tajeripour 
et al. 2007; Kaya et al. 2014). Although LBP is intrinsi-
cally a 2-dimensional algorithm, 1-dimensional LBP was 
developed by Tajeripour (Tajeripour et al. 2007) to detect 
defects in pattern fabrics. Considering interesting features 
of the 1-dimensional form of LBP, it can be used as a proper 
approach for real-time biomedical signal processing such as 
ECG classification. Kaya (Kaya et al. 2014) applied the 1-D 
LBP to the EEG signals as a feature extractor combined with 
different machine learning classifiers to classify epileptic 
EEG signals. Jaiswal (Jaiswal 2017) introduced two feature 
extraction algorithms based on LBP to classify epileptic 
EEG signals and a high accuracy rate obtained. Rigouid 
(Regouid and Benouis 2019) proposed a biometric recogni-
tion system based on Shifted 1D-LBP as a feature extraction 
method and K Nearest Neighborhood, where a correct recog-
nition rate of 100 is reported for normal ECG signals. Con-
tinuing the Rigouid method, Benouis et al. (Benouis et al. 
2021) developed an algorithm based on 1-D Local Differ-
ence Pattern combined with SVM and Neural Network and 
classified normal signals and ECG arrhythmias. While high 

accuracy rates are reported in these researches, the number 
of ECG classes are limited to normal and abnormal one.

In this paper, the basic form of LBP is presented and 
the M V-MLBP algorithm based on one dimensional LBP, 
variance and mean operators are proposed. The feasibil-
ity of the LBP to classify a wide range of arrhythmia was 
examined and two more morphological characteristics of 
the ECG signals were applied to enhance the classification 
result. Having applied the MV-MLBP algorithm to 11 heart 
beat classes, the classification result was compared with 
similar workflows.

Method

Local binary pattern (LBP) is a simple, fast, and straight-
forward classification method initially applied to texture 
classification methods initially introduced by Ojala (Ojala 
et al. 2002), which is used mainly to classify steel roll, paper, 
wood, carpet, and textile. Although LBP is intrinsically a 
two-dimensional algorithm, one-dimensional LBP is devel-
oped by Tajeripour (Tajeripour et al. 2007) to detect defects 
in pattern fabrics. Considering interesting features of the 1-D 
LBP, it can be used as a proper approach for real-time bio-
medical signal processing such as ECG or even EEG signals.

LBP principle

Original LBP, as a 2D method, consists of labeling a pixel 
by comparing its gray value with that of all other pixels 
in a circular neighborhood. Figure 2 illustrates symmetric 
neighbor sets, which are usually in circular form, for various 
radii, R, and different numbers of neighbors, P.

As shown in Fig. 2, in the basic form of the method, LBP 
operator is defined in a circular neighborhood and returns 
a P bit binary vector with 2P distinct values, which greatly 
depends on the gray value of the neighbors. Considering the 
fact that the basic form of LBP specifies 2P distinct labels 
to each neighborhood, it is known as a complex algorithm, 
which exerts a huge computational burden on the algorithm. 
To decrease the complexity, and at the same time to speed 
up the algorithm, modified LBP is developed. In M-LBP, 
a uniformity measure is defined as the number of spatial 
transitions between 1 and 0 s in the pattern (Chan and Pang 
2000), and any pattern with uniformity measure less than Ut 
is defined as a uniform pattern. Otherwise, it is supposed to 
be a non-uniform pattern.

In the next step, the probability of encountering a specific 
label can be calculated by the ratio of all number of neigh-
bors labeled as that label to the number of all neighbors 
according to Eq. (1).
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where, NPi
 is the number of neighbors labeled as Pi and 

NTotal is the number of all neighbors. Therefore, at the end 
of this process, P + 2 probabilities will be computed which 
can be used as a distinguishing feature for classification 
(Tajeripour et al. 2007). For any sample under test, the log-
likelihood ratio is computed in the way that it belongs to 
class K if the computed probabilities minimize this ratio:

(1)Pi ≅
NPi

NTotal

(2)L(S,K) =

P+1∑
i=0

Silog

(
Si

MiK

)

where, MiK represents the probability of encountering a 
label i in the patterns of each class k, and Si is the probability 
of encountering label i in the sample under test.

The proposed algorithm

One dimensional LBP

The MV-MLBP method is based on a modified version of 
1-D LBP, and consequently, the neighborhood of the LBP 
operator is a row-wise line segment. According to the 1-D 
LBP developed by Tajeripour (Tajeripour et al. 2007) used, 
the value of the first element of the ECG data vector in a 
segment is compared with the value of other elements. In 
this case, the notation of local binary patterns is renamed 
from LBPP,R to LBPl

Ut

LBP
.

Fig. 2   Circularly symmetric 
neighborhoods for different P 
and R 

Fig. 3   Applying LBP on ECG 
signal points with a segment 
chosen of the length of 10 pixels
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where the size of the segment for applying LBP opera-
tor is lLBP pixels, gc is the value of the analyzing point, 
which is the first data in the segment, and gp is that of all 
other points in the selected segment. U is uniformity meas-
ure and Ut is non-uniformity threshold. Figure 3 illustrates 
the process of applying the LBP operator to a sample ECG 
signal. In this figure, the lLBP is chosen as ten, and the 
operator is applied to 3 sequential points.

The periodic characteristics of the ECG signal have led 
to a fixed lLBP equal to the length of a complete heartbeat 
period (P-P interval) in ECG vector data. Applying the 
1-D LBP to these segments leads to a vector of probabili-
ties of encountering each label in segments. The average 
of all vectors extracted from all segments in each signal is 
considered a feature for that signal.

The ECG signal classification process is divided into 
two steps: training and testing. To have a fair compari-
son between the final results of different kinds of arrhyth-
mias, all signals are re-sampled to the same sampling rate. 
According to MIT-BIH Arrhythmia Database, all ECG 
signals provided are of two leads, modified limb lead 
II (MLII) and modified lead V1, which are obtained by 
placing the electrode on the chest (MIT-BIH 2011). While 
the normal QRS are usually prominent in the former one, 
according to the MIT-BIH Arrhythmia Database, this is 
the one used in this research.

LBP/VAR

To develop an algorithm, accurate enough to classify 
wide range of arrhythmia categories, two extra features 
are added to the 1D LBP feature. These two features are 
based on morphological characteristics of the signal too. 
The first one considers the variance, and the other consid-
ers the mean value of the signal, which both are widely 
used in heartbeat signal classification.

The LBPP,R operator is a greyscale invariant measure, 
i.e., its output is not affected by any monotonic trans-
formation of the greyscale. It is an excellent measure of 
the spatial pattern, but it, by definition, discards contrast 
(Tajeripour et al. 2007). To engage the contrast of local 
image texture as well, we can measure it with a rotation-
invariant measure of local variance:

where

(3)LBP
uT
lLBP

=

�∑lLBP−1

p=0
s
�
gp − gc

�
if U ≤ UT

lLBP Otherwise

(4)VARP,R =
1

P

P−1∑
p=0

(
gp − �

)2

and gp is the gray value of the specific pixel.
The 1-D variance applied to the ECG signal is as follows:

where lv is the length of the segment under the test. A 
vector showing the variance of all points in the range is cal-
culated by applying the variance operator on a segment of 
the length lv for all points. After sorting this vector, it is 
divided into r bins, and the number of variances falling in 
each bin is calculated. The final vector shows the number of 
similar variances in all r bins, which is represented as VARr

lV
 . 

To improve the capability of the proposed algorithm in ECG 
classification and to incorporate the rate of variance in the 
amplitude of the signal, the 1-D variance is augmented to 
LBP:

The variance probability vector, F2, is sorted and divided 
into r bins. In the test stage, the number of variance values, 
which belong to each bin, is calculated; the sample under 
test belongs to class K if the computed probabilities mini-
mize the following ratio:

where

LBP/VAR/MEAN

Albeit the LBP/VAR method is considered a powerful 
classifier, but experimental results show that the capabil-
ity of the LBP/VAR method is not satisfactory enough for 
a vast range of abnormalities compared with other reported 
results. Meanwhile, morphological properties of the ECG 
signal are one of the most important features used in ECG 
classification, among which the area under the signal is 
one of the widely used features in ECG classification. To 
investigate this feature in the MV-MLBP algorithm, the 
mean value of the signal is considered too. Considering 
the fact that the ECG signal is a discrete vector, by adding 

(5)� =
1

P

P−1∑
p=0

gp

(6)VARlv
=

1

lv

lv∑
p=0

(
gp − �

)2

(7)

{
F1 = LBP

uT
lLBP

F2 = VARr
lV

(8)L(S,K) = LLBP + LV

(9)

⎧⎪⎨⎪⎩

LLBP
�
SP,KP

�
=
∑lLBP+1

i=0
SPi

log

�
SPi

MiKp

�

LV
�
SV ,KV

�
=
∑r

i=0
SVi

log

�
SVi

MiKV

�
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all samples in the range of a specific segment, the area 
covered by this segment can be calculated as shown in 
Fig. 4.

where SL represents the area covered by the function 
F(xi) and Δx denotes the interval of sampling time (period 
of sampling T) in ECG signal.

On the other hand, the mean value of a discrete signal 
F(x) is:

where L denotes the segment in which the operator ML 
is applied. By considering both Eqs. (10) and (11), it 
reveals the fact that the area under the ECG signal can be 
calculated through the operator ML. Just like the variance 
operator, a vector illustrating the mean value of all points 
in the segment L is calculated by applying the mean opera-
tor. In the next step, the vector is sorted and divided into 
s bins, and finally, the number of mean values which 
belong to each bin is calculated. The final vector shows the 
number of similar mean values in all s bins and is repre-
sented as Means

lm
.

The structure of the LBP/VAR algorithm is promoted 
to LBP/VAR/MEAN in order to get a better classification 
rate:

LBP, variance, and mean vectors are of the length 
lLBP + 2, r + 1, and s + 1, respectively, so the final formu-
lation of the augmented LBP proposed in this paper is 

(10)SL =

L∑
i=0

F
(
xi
)
Δ(x)

(11)ML =
1

L

L∑
i=0

F
(
xi
)

(12)

⎧⎪⎨⎪⎩

F1 = LBP
uT
lLBP

F2 = VARr
lV

F3 = Means
lm

shown in Eq. (13). In the testing stage, the sample under 
test belongs to class K if the computed probabilities mini-
mize the following ratio:

where

By combining LBP with variance and mean operator, the 
final operator is a multi-resolution one. As lLBP, lv, and lm 
are selected independently, the algorithm proposes a multi-
resolution interpretation of the signal simultaneously. This 
interesting feature provides an appropriate context to find 
the best length of operation for each operator independently. 
Combining these operators with their corresponding effec-
tive length of operation leads to the best efficiency for the 
final algorithm.

In order to find the optimal length of operation for each 
operator, Eq. (12) is applied to all test signals with different 
length of operation for each arrhythmia individually, and the 
results are compared with reference feature vectors extracted 
from the same arrhythmia category with similar length, and 
consequently, the rate of similarity of the test signal with 
all categories is obtained by Eq. (13). The maximum value 
of these similarity rates is selected by Eq. (15) to show an 
effective length of operation. It should be noted that this 
maximum similarity is obtained by minimizing L(S,K) as 
defined in:

where I=1,2,...,11 is an index corresponding to all eleven 
ECG signal categories.

In Eq. (15), the length of optimum operation is selected 
in each category. The final algorithm is a combination of 
mean, LBP, and variance operators with different lengths, 
which have been calculated as optimal lengths in each signal 
category by Eq. (15).

Classification procedure

Training stage

In each category and for each heart signal, the reference 
feature vector for each operator is calculated in the training 
stage according to the following procedure:

(13)L(S,K) = LLBP + LV + Lm

(14)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

LLBP

�
SP, KP

�
=
∑lLBP+1

i=0
SPi log

�
SPi

MiKp

�

LV

�
SV, KV

�
=
∑r

i=0
SVi

log

�
SVi

MiKV

�

Lm

�
Sm,Km

�
=
∑s

i=0
Smi

log

�
Smi

MiKm

�

(15)
[
lLBP, lV , lm

]
= argmin

i

(
L
(
S,
[
lLBPi

, lV , lmi

]))

Fig. 4   Area covered by a signal is proportional to the mean value
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1.	 Dividing the signal into segments containing one period 
of heartbeats

2.	 Selecting a segment of each period with the length M
3.	 Applying LBP, variance, and mean operator to each 

point in the segment with its corresponding length of 
operation

4.	 Calculating the final probability vectors for each seg-
ment in the signal using Eq. (1).

At the end of this process, three reference vectors are 
computed for each segment by applying LBP, variance, and 
mean operators R1, R2, and R3, respectively, where R1 is a 
vector with the lengthlLBP + 2, R2 is a vector with the length 
r + 1, and R3 is a vector with the length s + 1.

The mean value of all derived vectors for each operator is 
calculated to minimize any noise effects combined with the 
ECG signals. These final vectors are much less prone to the 
risk of noises such as electromyogram noise, additive white 
Gaussian noise, and power line. R1, R2, and R3 represent the 
final vectors indicating the reference vector used in the LBP, 
variance, and mean operators, respectively.

where K is the number of cases considered in each class 
of arrhythmia.

Testing stage

All five training phase steps are applied to each test signal, 
and indicating vector for each operator is calculated.

Final resulting vectors are compared with the corre-
sponding vectors of all arrhythmia using Eq. (13) and the 

(16)R1 =
1

K

K∑
i=1

R1i;R2 =
1

K

K∑
i=1

R2i;R3 =
1

K

K∑
i=1

R3i

similarity of each testing signal to a specific arrhythmia is 
calculated using Eq. (15).

Experimental results

To evaluate the MV-MLBP algorithm, eleven arrhythmias 
selected from MIT/BIH arrhythmia database (MIT-BIH 
2011) are investigated in which eleven types of arrhyth-
mias and normal ECG are included and are summarized in 
Table 1. One-third of the selected signals are used in the 
training procedure, and the rest are used to test and validate 
the algorithm. The algorithm is undergone using MATLAB 
software, version 7.5, 2007.

In the “Train phase” section and the “Test phase” section, 
three operators are applied to all signals in the train and test 
phase. In order to achieve better classification efficiency, 
operators are applied to signals containing ten periods of 
the heartbeat (N = 10 × M). According to Table 2, experi-
mental results show that if the length of LBP operator (lLBP) 
is chosen as M/5, the MV-MLBP algorithm’s result is more 
accurate, and only a negligible portion of the arrhythmia in 
the dataset are labeled as non-uniformed. These results show 
that if the probability of encountering label lLBP, which is 
assigned to all non-uniform signals, is small (less than 1%), 
the algorithm can classify the ECG heartbeats with a high 
accuracy rate.

Train phase

In the train phase, the first step consists of dividing every 
signal in a specific class of arrhythmia into segments of the 
length 10 × M and the LBP operator is applied to these seg-
ments individually. The probability of encountering each 

Table. 1   The number and type of heart beat signals used in this study

Type MIT-BIH file number Number of 
heart beats

LBBB (Left bundle Branch Block) 109–111-207 2470
RBBB (Right bundle Branch Block) 118–124-212–231-232 5270
AF (Arial Fibrillation) 00 m-01 m-03 m-05 m-07 m-08 m-10 m-11 m-12 m-13 m-15 m 2310
APC (Atrial Premature Complex) 100–118-200–201-202–207-209–220-222–223-232 2180
PVC (Premature Ventricular Complex) 106–119-200–203-208 3140
QT Sel30- Sel31- Sel32- Sel33 Sel35- Sel36- Sel37- Sel38- Sel40 1890
ST 810 m-811 m-812 m-820 m-821 m-822 m-823 m-824 m-825 m-826 m 2330
TWA (T Wave Alternance) twa01m- twa03m- twa06m- twa08m- twa09m- twa10m- twa11m- twa12m- twa13m- 

twa15m
2780

VF (Ventricular Fibrillation) Royal Infirmary of Edinburgh (Small et al. 2000) 2100
N (Normal) 16265 m-16272 m-16273-

16420 m-16483 m-16539 m-16773 m-16786 m-17052 m-17453 m-18177 m
4220

VT (Ventricular Tachycardia) cu01m- cu02m- cu03m- cu04m- cu05m- cu06m- cu07m- cu08m- cu09m- cu10m- cu11m- 
cu12m- cu13m-

2100
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Table. 2   Simulation results for 
different length of operation for 
LBP operator

M M/2 M/5 M/6 M/8 M/10

AF 33.6 93.2 97.16 88.46 22.69 22.69
APC 42.22 12.64 95.51 93.43 56.04 35.48
LBBB 13.56 72.97 98.00 91.79 68.02 48.80
QT 56.4 24.07 82.73 94.42 80.29 37.96
Normal 68.87 56.70 96.25 65.72 77.97 83.25
PVC 35.34 92.47 94.27 83.65 58.28 27.50
RBBB 46.76 33.86 90.91 47.06 73.94 51.76
ST 66.51 28.47 96.80 84.67 71.05 74.63
TWA​ 32.54 36.81 94.38 62.36 63.71 34.93
VF 22.74 62.21 73.64 75.61 43.23 56.12
VT 28.65 68.15 77.34 81.28 76.45 30.32

Fig. 5   Probability of encountering each label in different heartbeat
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label is used as an instrumental factor in MV-MLBP ECG 
classification method. To have a fair comparison between 
different classes of arrhythmia, all signals are re-sampled 
to 204 samples in each heartbeat. Figure 5 illustrates the 
probability of encountering each label in the LBP opera-
tor in different heartbeats. Having applied the LBP to all 
signals, the algorithm labeled all non-uniform signals in all 
categories as lLBP to increase the classification accuracy in 
the test phase. Tajeripour (Tajeripour et al. 2007) raised the 
threshold to reduce the number of signals labeled as lLBP 
to zero and reported a higher classification accuracy. As 
a result, the value of threshold (UT) is chosen as lLBP/5 to 
minimize the number of arrhythmias labeled as lLBP. These 

figures contain 41 bars, where the height of 41th bar (lLBP), 
which represents the probability of encountering label lLBP, 
is equal to zero.

In order to find the efficient length of operation for vari-
ance and mean operators, each one is examined with a differ-
ent length combined with LBP individually. Table 2 shows 
the simulation results examined for LBP and the best length 
is chosen accordingly. After choosing the LBP efficient 
length of operation, it is used to evaluate the accuracy rate 
for variance and mean operators with different lengths of 
operation (M/10, M/8, M/6, M/2, and M) and different bin 
numbers (32, 64, and 128) reported in Table 3 and 4. In these 
simulations, the accuracy rate is calculated by Eq. (17):

Table 3   Simulation results for 
different length of operation 
in mean operator and different 
segmentation of the range of the 
resulting vector

Number of 
bars/lm

M M/2 M/5 M/6 M/8 M/10

AF 32 11.25 49.34 12.98 21.64 37.22 35.49
64 14.72 53.67 19.04 24.24 38.09 38.09
128 26.83 57.99 16.45 17.31 32.03 31.16

APC 32 99 24.75 41.25 49.5 66 41.25
64 99.58 24.75 41.25 57.75 66 33
128 90.75 24.75 49.5 49.5 66 33
32 0 24.58 53.34 59.87 59.87 59.87

LBBB 64 0 24.58 54.07 49.17 49.17 49.17
128 0 49.17 24.58 24.58 33 24.58
32 12.34 41.13 8.23 4.11 24.68 37.01

QT 64 12.34 69.92 32.9 28.79 41.13 53.46
128 4.11 82.25 65.8 65.8 82.25 98.7
32 53.68 99.3 42.94 56.36 56.36 56.36

Normal 64 50.99 73.8 22.81 26.84 29.52 48.31
128 38.91 56.36 28.18 14.76 20.13 13.42
32 51.69 49.1 90.45 90.45 98.04 87.87

PVC 64 38.76 41.35 82.7 62.02 67.19 67.19
128 25.84 33.6 49.1 28.43 33.6 36.18
32 42.69 43.1 93.4 93.4 99.23 89.42

RBBB 64 30.75 51.37 72.72 85.12 63.19 63.19
128 38.91 56.36 28.18 31.43 37.64 42.14
32 13.5 0 23.34 43.34 71.34 99.14

ST 64 13.5 0 34.56 45.87 45.87 72
128 13.5 0 14.5 9 4.5 13.5
32 54.73 43.46 40.24 40.24 35.41 37.02

TWA​ 64 48.29 49.99 49.9 49.9 35.41 35.41
128 43.46 59.56 56.34 56.34 49.9 41.85
32 0 23.82 48.33 70.99 96.67 62.89

VF 64 0 0 72.5 72.5 72.5 72.5
128 0 0 72.5 48.33 48.33 54.35
32 0 0 17.86 57.53 25.68 17.86

VT 64 0 6.78 44.67 25.68 25.68 12.42
128 0 6.78 32.71 41.74 25.68 6.78
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Highlighted cells emphasized in Tables 2, 3, and 4 repre-
sent the best similarity rate acquired for LBP, variance, and 
mean operator respectively, considering different length of 
operation.

The highlighted cells illustrate the best accuracy rate 
obtained for each arrhythmia. These simulation results 
reveal the fact that to have a pervasive algorithm, the best 
classification accuracy is obtained with different lengths 
of operation for variance and mean operator. According to 
these results, the final algorithm is as follows:

(17)

Accuracy =
numberofheartbeatsinaclasswhichareclassifiedcorrectly

numberofallheartbeatsinaclass

And the final similarity ratio is obtained as:

Figures 6 and 7 show the procedure of applying variance 
and mean operators on a segment containing five heartbeats.

(18)
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Table 4   Simulation results for 
different length of operation in 
variance operator and different 
segmentation of the range of the 
resulting vector

Number of 
bars/lm

M M/2 M/5 M/6 M/8 M/10

AF 32 39.82 43.28 93.48 90.89 95.22 69.25
64 39.82 51.94 68.38 73.58 79.63 99.54
128 27.7 70.98 64.92 63.19 70.98 72.71

APC 32 49.5 66 99.05 90.75 63.45 24.75
64 33 49.5 49.5 49.5 41.25 41.25
128 33 16.5 33 49.5 41.25 33
32 24.58 73.75 62.34 61.99 54.65 67.35

LBBB 64 24.58 68.75 68.75 56.84 46.89 45.63
128 49.17 98.33 98.33 48.96 73.45 57.84
32 0 57.58 45.24 49.35 69.92 83.25

QT 64 0 53.46 49.35 57.58 74.03 82.45
128 0 57.58 61.69 57.58 78.14 82.45
32 38.91 42.94 16.1 21.47 38.91 38.91

Normal 64 46.97 46.97 17.44 29.52 36.23 38.91
128 40.26 44.28 16.1 30.86 38.91 44.28
32 2.58 2.58 41.35 31.01 23.26 33.6

PVC 64 2.58 0 38.76 28.43 23.26 28.43
128 2.58 0 18.09 12.92 23.26 10.34
32 22.38 12.47 84.32 61.33 31.58 27.84

RBBB 64 22.38 15.63 64.95 58.86 31.58 22.38
128 22.38 15.63 48.24 49.55 45.67 37.5
32 22.58 31.5 9.45 6.75 9.45 31.5

ST 64 22.58 27.04 4.56 6.75 9.45 31.5
128 18 27.04 9.45 6.75 4.56 22.58
32 32.2 94.98 59.56 70.83 57.95 59.56

TWA​ 64 38.63 91.76 57.95 62.78 57.95 59.56
128 32.2 98.2 59.56 64.39 59.56 57.95
32 100 36.75 36.75 54.57 54.57 77.26

VF 64 98.43 54.57 36.75 68.54 68.54 77.26
128 77.26 54.57 36.75 68.54 68.54 77.26
32 48.33 97.45 92.56 84.75 64.57 32.54

VT 64 48.33 85.68 84.14 72.54 51.87 51.87
128 48.33 85.68 76.62 66.43 42.41 38.36
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Test phase

In this section, three operators are applied to all signals to 
calculate corresponding feature vectors using Eq. (18). By 
comparing these three vectors of each signal with indicat-
ing vectors in each class using Eq. (19), the similarity of the 
tested signal with each arrhythmia class is calculated and is 
shown in Table 5. According to the proposed algorithm, the 
test signal attributes to a class of arrhythmia which results 
in a higher similarity coefficient. The criteria to evaluate the 
accuracy rate of the MV-MLBP is by Eq. (20).

where TP, TN, FP, and FN are true positive, true negative, 
false positive, and false negative, respectively. Moreover, the 
precision, recall, and F-measure are calculated according to 
(21), (22), and (23).

(20)Accuracy(AC) =
TP + TN

TP + TN + FP + FN
× 10

(21)Precision =
TP

TP + FP

(22)Recall =
TP

TP + FN

Fig. 6   Probability of encountering label zero to lv = M/6 in a normal sinus heartbeat
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Discussion

The capability of the MV-MLBP with other similar studies 
is compared in Table 6, which illustrates the accuracy of the 
MV-MLBP algorithm.

(23)F − measure =
2TP

2TP + FP + FN

According to Table 6, the proposed morphological-based 
method is applied to 11 different arrhythmias, and high accu-
racy is achieved. The new proposed algorithm is the combi-
nation of 1-D LBP, variance, and mean operators. While the 
length of operation for each operator in the method can be 
selected individually, and hence is known as a multi-resolu-
tion method. Considering the low computational complexity 
of the MV-MLBP, it can be used as a suitable algorithm for 
online ECG classification too.

Fig. 7   Probability of encountering label zero to lm = M/6 in a normal sinus heartbeat
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Conclusion

This paper aims at a fast and accurate ECG classifica-
tion algorithm capable of classifying a wide range of 
arrhythmias with a high accuracy rate. The primary 
purpose of this study was to develop a fast, easy to 
implement, and practical algorithm to be transferred 
to clinical applications. According to the simplic-
ity and satisfactorily accurate rate of classification 
shown in Table 6, it is evident that a broader range 
of arrhythmia can be considered and classified by the 
proposed algorithm. On the other hand, interesting 
features of LBP can trigger researchers to apply the 

method in other medical signal and image processing 
applications.
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