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Abstract
Purpose Psychiatry still needs objective biomarkers. In the context of schizophrenia, there are speech abnormalities such as
tangentiality, derailment, alogia, neologisms, poverty of speech, and aprosodia. There is a growing interest in speech signals
features as possible indicators of schizophrenia. This article aims to develop an intelligent tool for detection of schizophrenia
using vocal patterns and machine learning techniques. The main advantages of this type of solution are the low cost, high
performance, and for being non-invasive.
Methods Thirty-one individuals over 18 years old were selected, 20 with previous diagnosis of schizophrenia, and 11
healthy controls. Their speech was audio-recorded in naturalistic settings, during a routine medical assessment for
psychiatric patients. In the case of healthy patients, the recordings were made in different environments. Recordings
were pre-processed, excluding non-participant voices. We extracted 33 features. We used the particle swarm optimi-
zation algorithm for feature selection.
Results The classifiers’ performance was analyzed with four metrics: accuracy, sensibility, specificity, and kappa index. Best
results were achieved when considering all 33 extracted features. Within machine models, support vector machines (SVM)
models provided the greatest classification performance, with mean accuracy of 91.76% for PUK kernel. Our results outperform
those from most studies published so far for the detection of schizophrenia based on acoustic patterns.
Conclusion The use of machine learning classifiers using vocal parameters, in particular SVM, has shown to be very promising
for the detection of schizophrenia. Nevertheless, further experiments with a larger sample will be necessary to validate our
findings.
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Introduction

Current clinical practice in psychiatry depends on diagnostic
criteria built entirely on expert consensus, instead of relying
on objective biomarkers (Bzdok andMeyer-lindenberg 2018).
Such criteria, described in the Diagnostic and Statistical
Manual, 5th Edition (DSM-5), and in the International
Classification of Diseases (ICD-10), are still considered the
gold-standard for diagnosis in psychiatry (American
Psychiatric Association 2013). Nevertheless, those diagnostic
systems have been criticized due to their absence of clinical
predictability and neurological validity (Bzdok and Meyer-
lindenberg 2018), and their poor diagnostic stability (Baca-
Garcia et al. 2007). This ultimately leads to trial-and error
treatment (Petzschner et al. 2017). While other medical fields
hold markers of disease presence and severity, such as tumor
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volume measurement and biochemical blood tests, psychiatry
still lacks routine objective tests (Bedi et al. 2015; Mundt et al.
2012).

Assessment and treatment in psychiatry are historically
based on reports from patients and on clinical evaluation
(Mundt et al. 2007). This makes diagnosis and therapeutic
decision extremely sensitive to memory and subjectivity
biases (Jiang et al. 2018). In this context, there was an intense
search for biomarkers for diagnosis and follow-up of psychi-
atric patients in the last decade (Iwabuchi et al. 2013; Mundt
et al. 2012). However, most of them are expensive and inva-
sive (Higuchi et al. 2018). Therefore, despite all efforts, ob-
jective measures for assessment of mental disorders are still
unknown (Mundt et al. 2007).

Other major challenges psychiatry faces are that nosology
and clinical practice do not benefit from advances in neuro-
sciences. These difficulties can be tackled by computational
psychiatry, which applies machine learning (ML) with focus
on clinical applications and single-subject treatments (Bzdok
andMeyer-lindenberg 2018; Petzschner et al. 2017). Machine
learning has successful implementations in problem-solving
tasks in several medical fields, like supportive diagnostic tools
based on neuroanatomical structures for Alzheimer’s disease
(dos Santos et al. 2009; W. P. dos Santos et al. 2007), breast
cancer (Cruz et al. 2018; de Lima et al. 2016; de Santana et al.
2018), and multiple sclerosis diagnosis (Commowick et al.
2018).

Schizophrenia is a group of severe psychotic disorders with
heterogeneous etiologies, clinical presentations and responses
to treatment (Sadock et al. 2017). It is characterized by hallu-
cinations, delusions, thought and behavior disorder or catato-
nia, and “negative symptoms,” such as diminished emotional
expression and avolition (American Psychiatric Association
2013). Since the first descriptions of this disorder, speech/
language deficits have been described as remarkable features
of schizophrenia, and are often associated with core negative
symptoms and social impairment (Alberto et al. 2019). These
symptoms comprise poverty of speech, disorganized speech,
derailment, tangentiality, neologism, incoherence, mutism,
perseveration, echolalia, thought blocking (Mac-Kay et al.
2018) inappropriate affect prosody or aprosodia
(Chakraborty et al. 2018a; Covington et al. 2012; Elite et al.
2014). Also known as flattened speech intonation, aprosodia
consists of diminished vocal emphasis (Alpert and Anderson
1977); reduced inflection and fluency (Alpert et al. 2000); and
prosody comprehension deficits, such as difficulties in recog-
nizing intonation patterns (Elite et al. 2014) Overall, these
speech abnormalities result from disruptions in cognitive pro-
cesses and contribute to the frequent communication deficits
in schizophrenia (Mac-Kay et al. 2018).

In this framework, computational psychiatry has shown to
be a promising method to deal with the complexity of psychi-
atric diagnosis, translating neuroscientific advances to clinical

applications. Its data-driven approach applies machine learn-
ing techniques to high-dimensional data in order to improve
classification diagnosis, treatment selection and even treat-
ment outcomes (Huys et al. 2016). The use of ML models is
appropriate for individual-level predictions, which would pro-
vide personalized therapeutic decisions in the future (Bzdok
and Meyer-lindenberg 2018). Moreover, it may also enable
mobile monitoring of patients and telemedicine applications
that are accessible for clinical use (Cohen et al. 2016). In the
context of speech-language deficits, vocal acoustic analyses
using ML classifiers appear to be a promising venue for un-
derstanding their role within mental disorders (Cohen et al.
2012).

Thinking about this, this work proposes the application of
ML techniques in audio-recordings to perform binary classi-
fication. For this, we collected data from 31 patients, divided
into 2 groups: group of patients diagnosed with schizophrenia,
and a control group, composed of healthy patients. In this
context, we pre-processed all recordings in order to minimize
environment noises. After that, we extracted 33 features from
each 10 s-window of the signals. Finally, multiple classifiers
were tested. Our goal is to provide an intelligent tool that
performs accurate and non-invasive schizophrenia diagnosis
with low computational cost.

This paper is organized as follows: Section 2 describes
studies related to the characterization of schizophrenia based
on vocal parameters. In Section 3, an instrument for the de-
tection of schizophrenia is introduced and implemented.
Results are presented and discussed in Sections 4 and 5, re-
spectively. Section 6 states our conclusions with suggestions
for future studies on this subject.

Related works

As speech-language abnormalities are a hallmark in schizo-
phrenia, several related studies have been published, most of
which on natural language processing and semantics/syntax
(Bedi et al. 2015; Chakraborty et al. 2018a; Elvevåg et al.
2010; Kayi et al. 2017; Tovar et al. 2019), and a limited num-
ber of studies about vocal patterns in schizophrenia (Tahir
et al. 2019).

Patients with schizophrenia tend to show slowed speech,
reduced pitch variability, significantly increased number of
pauses, and decreased variability in syllable timing than
healthy individuals. These characteristics were observed in a
semi-automatic analysis of vocal pitch or fundamental fre-
quency (F0) during an emotionally neutral reading task per-
formed by Martínez-sánchez et al. (2015). In a sample of 80
subjects, they reported a discrimination accuracy of 93.8%
between schizophrenic patients and controls using signal pro-
cessing algorithms. They also observed remarkable intergroup
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differences, with patients exhibiting slowed speech, low vol-
ume, and many pauses.

Likewise, Rapcan et al. (2010) compared vocal pitch,
temporal, and energy parameters of 39 schizophrenic
patients and 18 healthy controls during an emotionally
neutral reading task. Their results demonstrated signifi-
cant differences between groups, with patients showing
decreased mean utterance duration, and increased values
in number of pauses, proportion of silence, mean pause
duration, total length of pauses, and relative variation in
energy. On the other hand, no statistical significance
was reported for total length of utterances and relative
variation in vocal pitch. However, the lack of education-
al level matching between groups with reading task may
represent an important limitation to their findings, be-
cause different educational status may translate into dif-
ferent reading speed and fluency between patient and
control samples.

Vocal acoustic analysis is also capable of measuring
the severity of negative symptoms such as aprosodia.
Compton et al. (2018) analyzed audio recordings of
schizophrenic patients with aprosodia, schizophrenic pa-
tients without aprosodia, and healthy controls, and com-
pared variability in pitch (F0), first (F1) and second
(F2) formants, and intensity/loudness. Their results
showed significant differences among groups, with the
group with aprosodia showing reduced variability in
pitch, F2, and intensity/loudness than other groups.

Similarly, Covington et al. (2012) analyzed F0, F1, and F2
of 25 video-recorded interviews. They investigated tongue
movement as an indicator of the severity of negative symp-
toms in first-episode schizophrenia-spectrum patients. Their
study concluded that F2, a measure of variability of tongue
anterior or posterior position, was significantly correlated with
the severity of negative symptoms.

Chakraborty et al. (2018b) employed low-level speech sig-
nals (or low-level descriptors, LLD) alone or in combination
with body movements to predict negative symptoms of
schizophrenia using automatic classifiers. For that purpose,
they applied support vector machines (SVM), a supervised

machine learning technique widely used in classification
problems (Russell and Norvig 2016). They reported a classi-
fication accuracy of 79.49% using low-level speech signals
alone, and of 86.36% for their combination with body
movements.

Likewise, Tahir et al. (2019) investigated conversa-
tional and prosodic features as objective measures of
negative symptoms in schizophrenia. Conversational fea-
tures relate to duration of speech, speaking turns, inter-
ruptions, and interjections, while prosodic features com-
prise F0, F1, F2, and F3; mel frequency cepstral coef-
ficients (MFCCs); and amplitude (minimum, maximum
and mean volume, entropy). The performance of some
ML algorithms in discriminating between patients and
healthy controls was evaluated in their article: SVM,
multilayer perceptron (MLP), random forest (RF), and
ensemble (bagging). The best results were reported for

Table 1 Sample characteristics:
the 31 participants were divided
into two groups: control group
composed of healthy patients, and
the group of people diagnosed
with schizophrenia. In both
groups, there is a predominance
of males. The average age of the
control group is 30 years, while in
the second group it is 36 years

Group Number of participants Age Gender

(male:female)

Rating scale Mean scores

Healthy control 11 30.09 years

(± 12.58 years)

6:5 SRQ-20 3.00 points

(± 1,86)

Schizophrenia 20 36.00 yrs.

(± 12.39 years)

12:8 BPRS 44.55 points

(± 11.28)

p value – p = 0.223

(t29 = 1.2463)

p = 0.768

χ2

– –

Notes: BPRS, Brief Psychiatric Rating Scale; SRQ-20, Self-Reporting Questionnaire

Fig. 1 Block diagram of data acquisition: audio-recordings of the schizo-
phrenia sample were acquired during an interview with a psychiatrist.
After that, a trained clinician assessed their symptoms using BPRS.
Healthy controls were audio-recorded in different environments. They
were also asked to answer SRQ-20 questionnaire. BPRS and SRQ-20
scores were calculated. The SRQ-20 cut-off score of 6/7 was considered,
while all diagnosed patients with SCZ were included, regardless of the
obtained scores. After participants’ selection, we did the audios editing,
aiming to remove voices from other people besides the patients
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MLP (accuracy = 81.3%), with speaking rate, frequency,
and volume entropy showing significant differences be-
tween groups.

In a meta-analysis of 46 papers about acoustic pat-
terns in schizophrenia, Alberto et al. (2019) compared
three categories of study design: qualitative ratings,
quantitative univariate analyses, and multivariate ML in-
vestigations. Machine learning studies provided superior
results, with overall out-of-sample accuracy of 76.5–
87.5%, and appeared to be more promising. They also
identified remarkable differences in acoustic patterns be-
tween schizophrenic patients and healthy controls, with
the patient group showing decreased proportion of spo-
ken time, reduced speech rate, and increased duration of
pauses. These abnormalities were directly related to flat
affect and alogia. Additionally, they observed that stud-
ies with dialogical and free speech provided the greatest
differences between groups, in contrast with studies
using constrained monologs.

Methods

In this study, a sample of 31 volunteers over 18 years old was
selected and divided into two subsamples:

& Healthy control: 11 healthy participants (6 males) were
selected through the Self-Reporting Questionnaire (SRQ-

20), a screening instrument for common mental disorders
(Gonçalves et al. 2008; K. O. B. Santos et al. 2010);

& Schizophrenia: 20 patients previously diagnosed with
schizophrenia (12 males) were assessed using the Brief
Psychiatric Rating Scale (BPRS; Overall and Gorham
1962), one of the most widely used instruments for the
evaluation of symptom severity in schizophrenia (Leucht
et al. 2005).

All individuals from the schizophrenia sample (mean age =
36.00; SD = 12.39; 54.5% male) fulfilled DSM-5 diagnostic
criteria for schizophrenia and were previously diagnosed by
an independent psychiatrist. Data for this group were collected
at outpatient settings and at inpatient psychiatric units in
Hospital das Clínicas, Federal University of Pernambuco,
and in Hospital Ulysses Pernambucano, both in Recife,
Northeast Brazil. Participants with coexistent neurological
disorders or who made professional use of their voices were
excluded.

Meanwhile, the control sample (mean age = 30.09;
SD = 12.58; 60.0% male) was matched with the patient
sample for age, gender and region of origin (Brazilian
Northeast). The same exclusion criteria were applied to
this group. Participants from both groups were literate,
but the control sample had a higher educational level
(p < 0.001). Unfortunately, it was not possible to match
subsamples with reference educational level, as this was
a challenging co-variable to match for in this particular
population. Although this represents a limitation to our
study, a similar approach was made in some previous
studies (Cannizzaro et al. 2005; Cohen et al. 2008;
Rapcan et al. 2010). Sample characteristics are present-
ed in Table 1.

The use of SRQ-20 was designed to remove partici-
pants with current mental illnesses from the control
sample. The SRQ-20 cut-off score of 6/7 was consid-
ered (Santos et al. 2010), whereas in the schizophrenia
sample, participants with prior diagnosis were included,
irrespective of their BPRS score. The mean BPRS score
of schizophrenic patients in this sample was 44.55 and
corresponded to moderate illness severity (Leucht et al.
2005). All participants have given written consent, and
this study was conducted only after approval of a local
Research Ethical Board.

Fig. 2 Boxplots with comparison of performance using different window
overlaps: 10%, 25%, and 50%. The boxplot shows that an overlap of 50%
achieved greater accuracy values and less dispersion of values

Table 2 Recording duration after
audio editing Group Number of participants Total recording duration Mean recording duration

Control 11 (6 males) 5816 s

(96.9 min)

528.7 s (8.8 min)

± 138.7 s

Schizophrenia 20 (12 males) 7541 s

(125.7 min)

377.1 s (6.28 min)

± 270.4 s
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Acquisitions of voice samples

A Tascam™ 16-bit linear PCM recorder was used, at
44.1 KHz sampling rate, in WAV format, without file com-
pression. Audio-recordings of the schizophrenia sample were
acquired during an interview with a psychiatrist in naturalistic
settings, i.e., patients were recorded during a routine medical
assessment at outpatient offices or inpatient units. After each

interview, a trained clinician assessed their symptoms using
BPRS. Meanwhile, healthy controls were audio-recorded in
different environments (e.g., office, classroom, gym).
Participants from this sample were asked to answer SRQ-20,
as this questionnaire is self-applied. No duration limit was set
for the recordings. As conversations were thoroughly record-
ed, voices from the clinician and possible third parties were
also acquired and needed to be further removed. The total

Table 3 Equations of the 33 extracted parameters

Parameter Equation Parameter Equation

Mean (μ)
μ ¼ 1

N ∑
N

n¼1
xn

Waveform length
WL ¼ ∑

N−1

n¼1
jxnþ1−xnj

Variance
var ¼ 1

N−1 ∑
N

n¼1
xn−μð Þ2 Zero crossing

ZC ¼ ∑
N−1

n¼1
sgn xn � xnþ1ð Þ∩ xn−xnþ1j j≥ threshold½ �

sgn xð Þ ¼ 1; if x≥ threshold
0; otherwise

�

Standard deviation (σ)
σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N−1 ∑
N

n¼1
xn−μj j2

s
Slope Sign Changes

SSC ¼ ∑
N−1

n¼1
f xn−xn−1ð Þ � xn−xnþ1ð Þ�½ �

f xð Þ ¼ 1; if x≥ threshold
0; otherwise

�

Root mean square
RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N
n¼1 xnð Þ2
N

q
Hjorth parameter activity

Hjorthactivity ¼ 1
N−1 ∑

N

n¼1
xn−μð Þ2

Average amplitude changes
AAC ¼ 1

N ∑
N

n¼1

d x tð Þ
dt

��� ���
� �

Hjorth parameter mobility
Hjorthmobility ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var d x tð Þ

dtð Þ
var x tð Þð Þ

r

Difference absolute
deviation DASDV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N ∑

N

n¼1

d x tð Þ
dt

� �2
s

Hjorth parameter
complexity Hjorthcomplexity ¼ Hjorthmobility

d x tð Þ
dtð Þ

Hjorthmobility x tð Þð Þ

Integrated absolute value
IAV ¼ ∑

N

n¼1
xn

Mean frequency MNF ¼ ∑M
j¼1 f jP j

∑M
j¼1P j

Where fj,Pj are the frequencies and power of the
spectrum,
respectively, and M is the length of the frequencies

Logarithm detector LOGD ¼ eð
1
N∑

N
n¼1log xnj jð Þ Median frequency

MDF ¼ 1
2 ∑

M

j¼1
P j

Simple square integral
SSI ¼ ∑

N

n¼1
xn2

Mean power
MNP ¼ ∑

M

j¼1

P j

M

Mean absolute value
MAV ¼ 1

N ∑
N

n¼1
jxnj Peak frequency PKF =max(Pj)

Mean logarithm kernel
MLOGK ¼ 1

N ∑
N

n¼1
xn

����
���� Power Spectrum ratio PSR ¼ PKF

∑M
j¼1P j

Skewness (s) s ¼ 1
N∑

N
n¼1 xn−μð Þ3

σ3
Total power

TP ¼ ∑
M

j¼1
Pj

Kurtosis kurt ¼ 1
N∑

N
n¼1 xn−μð Þ4

σ4
First spectral moment

SM1 ¼ ∑
M

j¼1
f jP j

Maximum amplitude MAX =max(xn) Second spectral moment
SM2 ¼ ∑

M

j¼1
f j

2Pj

Third moment
M3 ¼ 1

N ∑
N

n¼1
xnð Þ3

����
���� Third spectral moment

SM3 ¼ ∑
M

j¼1
f j

3Pj

Fourth moment
M4 ¼ 1

N ∑
N

n¼1
xnð Þ4

����
���� Variance of central

frequency
VCF ¼ SM2

TP − SM1
TP

	 
2
Fifth moment

M5 ¼ 1
N ∑

N

n¼1
xnð Þ5

����
����
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duration of the recordings of both samples was 407.3 min
(6.79 h). The process of data acquisition is summarized in
Fig. 1.

Audio editing

After data collection, voice signals from the interviewer and
any potential companion were manually removed using
Audacity audio software (version 2.3.2). This process yielded
222.6 min of recorded audio from participants (3.71 h) as
follows: 96.9 min for the control sample and 125.7 min for
the schizophrenia sample. Recording duration of both samples
after audio editing is shown in Table 2.

Feature extraction

All recordings were submitted to a vocal feature extraction on
GNU Octave™; a free open-source signal-processing soft-
ware. Rectangular windows, with frame length of 10 s. In
order to determine the window overlap percentage, three over-
lap sizes were tested: 10% (1 s), 25% (2.5 s), and 50% (5 s).
For this, the random forest classifier was used. We performed
these experiments 30 times, using 10-folds cross validation in
Weka environment. Boxplots in Fig. 2 shows the accuracy
results for these three scenarios. As shown in the figure,
50% overlap outperforms the others. It reached higher mean
accuracy value, as well as less dispersion.

As raw audio data were used, no filtering process
was applied. Consequently, background noise was also
captured. However, we believe such noise would not be
able to interfere significantly, given the homogeneous
spectral behavior of the acoustic features selected for
extraction. At this stage, the following 33 parameters
were extracted: skewness; kurtosis; zero crossing; slope
sign changes; variance; standard deviation; mean abso-
lute value; logarithm detector; root mean square; aver-
age amplitude change; difference absolute deviation; in-
tegrated absolute value; mean logarithm kernel; simple
square integral; mean value; third, fourth and fifth mo-
ments; maximum amplitude; power spectrum ratio; peak
frequency; mean power; mean frequency; median

frequency; total power; variance of central frequency;
first, second and third spectral moments; Hjorth param-
eter activity, mobility and complexity; and waveform
length. The corresponding mathematical expressions of
these attributes are presented in Table 3.

The choice of the above parameters relies on their accurate
representation of input signals to computational models, once
decision-making process of machine learning classifiers is not
associated with human interpretation. Additionally, attributes
from different domains (e.g., temporal and spectral) were se-
lected so as to avoid feature selection biases. Furthermore,
such parameters have already been successfully used for
representing other biomedical signals, such as electroenceph-
alography. Subsequently, the most relevant parameters were
selected using particle swarm optimization (PSO), a feature
selection method for dimensionality reduction within classifi-
cation problems (Xue et al. 2012).

Feature selection using particle swarm optimization

Particle swarm optimization (PSO) algorithms were cre-
ated by James Kennedy and Russel Eberhart in 1995,

Fig. 3 Block diagram of proposed solution: After editing each of audio-
recordings, 33 attributes were extracted from each sample window (10 s
with 50% overlap) in Octave environment. Then, and .ARFF file was

generated, and multiple classifiers were tested in the Weka software.
The tested classifications were binary, seeking to differentiate healthy
patients from patients diagnosed with schizophrenia

Fig. 4 Accuracy boxplots for comparison of classifiers performance. In
most classification experiments, the performance of the classification
with all the extracted attributes exceeds the classification performance
using the attributes selected with PSO. Considering the boxplots with
all the attributes (white color), we can see that the Support vector
machines have higher accuracy values
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respectively a social psychologist and an electrical engi-
neer (Kennedy and Eberhart 1995). PSOs are based on
the behavior and movement of flocks of animals, such
as fish and birds, therefore being algorithms based on
theories that describe animal social behavior, having el-
ements in common with genetic algorithms and with
evolutionary programming (Eberhart and Kennedy
1995; Kennedy and Eberhart 1995; Santos and Assis
2013).

Similar to genetic algorithms, PSO is initialized with a
random initial population. However, while in the genetic al-
gorithms, the individuals in this initial population are repre-
sented by chromosomes, in the PSO a position vector and a

velocity vector are associated with each individual. In addi-
tion, in the PSO there are no mutations or selection of indi-
viduals. Thus, at each iteration, only positions and speeds of
different individuals are adjusted in the direction of the best
global position and the best individual position, according to a
certain objective function, according to the following canoni-
cal expression (Eberhart and Shi 2011; Chuanwen and
Bompard 2005; Van der Merwe and Engelbrecht 2003; Hu
et al. 2003; Trelea 2003; Shi and Krohling 2002):

xi t þ 1ð Þ ¼ xi tð Þ þ vi t þ 1ð Þ; ð1Þ
since

vi t þ 1ð Þ ¼ wvi tð Þ þ c1r1 pi tð Þ−xi tð Þ½ � þ c2r2 pg tð Þ−xi tð Þ
h i

; ð2Þ

for 1 ≤ i ≤m, wherem is the number of particles in the cluster;w
is the inertia factor, where 0 <w < 1; r1(t) and r2(t) are numbers
randomly uniformly distributed in the interval [0, 1]; c1 and c2
are constriction constants, also called coefficients of accelera-
tion, so that c1 + c2 = 4 (typically, c1 = 2 +D and c2 = 2 −D,
where D ≈ 0), where c1 is the weight due to consciousness of
the particle, individual consciousness or local consciousness,
depending on the implementation, while c2 is the weight due
to global awareness; xi is the position, while vi is the speed of ith
particle; pg is the best global position, while pi is the best indi-
vidual or local position in relation to the ith particle.

Local and global best positions are considered accord-
ing to local and global maxima of a determined objective
function, whilst the position xi defines the i-th solution
candidate. In this classification problem, we defined xi as
a n-dimensional binary vector in which each coordinate
is associated to the presence (“1” values”) or absence
(“0” values) of the corresponding selected characteristic.
Therefore, each solution candidate is associated to train-
ing and test sets composed by dimension-reduced feature
vectors. As objective function, we used a J48 decision
tree returning classification accuracies. The parameters
w, c1, c2, r1, and r2 were all set to 0.33. We used a
population of 20 individuals evolving in 500 generations.
This solution was implemented in Java using the Java
machine learning library Weka (Moraglio et al. 2007;
García-Nieto et al. 2009).

Classification

Both databases (with all features extracted and after
PSO selection) were balanced through the addition of
artificial instances on Weka™ artificial intelligence en-
vironment. This is essential to avoid computational
biases towards the class with more representativeness,
in this case the schizophrenia sample. Edited audio sam-
ples were submitted to classification experiments using

Fig. 5 Kappa index boxplots for comparison of classifiers performance.
Similarly to the accuracy values, the results of the Kappa index are higher
for cases in which all 33 attributes extracted initially were considered. In
addition, SVMs also performed better

Table 4 List of 12
attributes after selection
with particle swarm
optimization

PSO selected attributes

Zerocrossings

Hjorth parameter complexity

Average amplitude changes

Mean absolute value

Kurtosis

Third moment

Fourth moment

Maximum amplitude

Peak frequency

Power spectrum ratio

Mean power

Total power

39Res. Biomed. Eng. (2021) 37:33–46



the following ML algorithms on Weka™: multilayer
perceptron (MLP), logistic regression, random forest
(RF), decision trees, Bayes net, Naïve Bayes, and
SVM with different kernels (linear, polynomial kernel,
radial basis function or RBF, PUK, and normalized
polynomial kernel). Given the relatively small number
of subjects in each sample, experiments were performed
with 10-fold cross-validation in order to maximize train-
ing samples. Figure 3 illustrates the steps of the predic-
tion system.

Results

Initially, computational experiments were performed
using classifiers in their default settings. Subsequently,
different setups for all algorithms with adjustable settings
were tested (MLP; polykernel and normalized polykernel
SVM, SVM PUK kernel, and random forest). The best
performances for each classifier type are presented in the
boxplots of the Figs. 3 and 4 below. Figures 3 and 4
show the accuracy and kappa index values, respectively.
They also compare the classifiers’ performances using all
33 extracted attributes (white boxplots), and using the

attributes selected by the PSO method (gray color).
Using PSO, 12 attributes were selected, which are listed
in the Table 4. As can be seen in Figs. 4 and 5, most
classifiers have a better performance when considering
all attributes. The exception occurs only for classifiers
based on Bayes’ theory. However, the latter are classi-
fiers with low performance for this problem. Thereby,
they were not chosen. Furthermore, Table 5 presents ac-
curacy, kappa index, sensibility, and specificity values
for the best classifiers.

The results above demonstrate that classification accu-
racy for SVM models varied significantly (72.93–91.76%),
depending on which kernel was used. SVM PUK kernel
achieved mean accuracy of 91.76% (sensibility 91.9%;
specificity 91.6%), which was the best performance of all
classifiers used in this study. The confusion matrix of this
kernel is shown in Table 6. SVM normalized polynomial
kernel also achieved accuracy above 90%. The greatest
performances of different SVM kernels in this dataset sup-
port findings from previous studies, which possibly indi-
cate the superiority of this algorithm for classification tasks
using vocal parameters.

Discussion

This paper presents a study on discriminating schizo-
phrenic patients and healthy subjects based on vocal fea-
tures and machine learning classifiers. The process of
data acquisition was designed to provide high transla-
tional power, as this is the first study to collect audio-
recordings during actual psychiatric interviews. A feature
extraction algorithm has been locally developed for the
reliable extraction of 33 acoustic features, which have

Table 6 Confusion matrix for the model with the highest performance
(SVM PUK): 91.59% instances from the control group were correctly
classified, while 91.89% instances from the Schizophrenia group were
correctly classified

Classified as control Classified as schizophrenia

Control 91.59% 8.41%

Schizophrenia 8.11% 91.89%

Table 5 Classification
performances of machine learning
models (schizophrenia vs. healthy
control). SVM with PUK kernel
presented the best results in all
four evaluated metrics (accuracy,
kappa index, sensitivity, and
specificity). It achieved an
average accuracy of 91.76%,
mean kappa index of 0.8352,
sensibility of 91.9%, and
specificity of 91.6%

Model Accuracy Kappa Index Sensibility Specificity

Multilayer perceptron (MLP) 88.22% 0.7644 88.8% 87.6%

Random forest 89.53% 0.7907 90.0% 89.0%

Decision trees 82.13% 0.6427 83.6% 80.7%

Logistic regression 78.47% 0.5694 75.1% 81.9%

SVM linear 77.96% 0.5592 72.4% 83.6%

SVM 2-degree polynomial 89.07% 0.7815 86.7% 91.4%

SVM 3-degree polynomial 89.94% 0.7987 88.3% 91.6%

SVM PUK 91.76% 0.8352 91.9% 91.6%

SVM normalized polynomial 90.37% 0.8073 89.2% 91.5%

SVM RBF 72.93% 0.4585 64.7% 81.2%

Bayes net 69.12% 0.3825 74.4% 63.9%

Naive Bayes 63.97% 0.2794 47.2% 80.7%

Abbreviations: MLP multilayer perceptron, PUK Pearson universal VII kernel, RBF, radial basis function, SVM
support vector machines
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successfully been used for modeling classification prob-
lems in neurology and psychiatry. Some machine learn-
ing models tested in this paper have achieved high per-
formances; in particular, SVM with PUK kernel yielded
high classification accuracy both for schizophrenic pa-
tients and healthy controls. With the exception of
Martínez-sánchez et al. (2015), our results outperformed
those from similar studies using vocal parameters for the
detection of schizophrenia.

Nevertheless, although promising, findings reported in
this article should be considered preliminary due to limita-
tions in study design. For instance, the small sample size
and not controlling for possible confounding factors, such
as smoking history and use of medications, may limit sta-
tistical analyses. Additionally, an important caveat is the
difference in educational level between samples, given the
fact that educational background is related to speech flu-
ency. In future studies, we aim to address these limitations
and perform the same experiments on a larger number of
subjects. In Table 7 below a comparative analysis between
some of the studies mentioned in this article and this study
is presented.

Conclusion and future works

Current psychiatric diagnosis still lacks objective bio-
markers and relies mostly on specialist opinion based
on diagnostic systems. Nevertheless, these criteria have
been criticized due to their lack of correlation with the
neurobiology and etiopathogenesis of mental disorders,
leading to trial-and-error treatments. In this context, pa-
tients with schizophrenia may present with vocal acous-
tic abnormalities that may be used as objective parame-
ters for the identification and assessment of this
disorder.

Therefore, this paper aimed at the development of ob-
jective measures of schizophrenia to aid clinical practice
in the future. For this purpose, we extracted vocal acous-
tic features and performed experiments using different
automated classification techniques based on machine
learning. Some of the most widely used machine learning
classifiers were tested in this work. Our results demon-
strate the viability of an inexpensive and non-invasive
tool for the detection of schizophrenia based on vocal
acoustic analysis through machine learning algorithms.
In future studies, we intend to perform the same experi-
ments in a larger sample, and also with gender-based
datasets. We would like to evaluate if schizophrenia af-
fects vocal acoustic properties from men and women in a
different fashion, and if so, how these differences influ-
ence the performance of automated classifiers.T
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