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Abstract
Introduction Magnetic resonance imaging (MRI) is the most used medical modality for diagnosis and monitoring of multiple
sclerosis (MS). A segmentation process is an important task to quantify lesion and its progression. However, manual segmen-
tation of 3D images is tedious, time-consuming, and often not reproducible. The state of the art presents results with room for
improvements. Consequently, a semiautomatic segmentation process is proposed and described in this study.
Methods The method consists on a 3D segmentation semiautomatic process for MS lesions inMRI. It initiates by firstly carrying
out a preprocessing stage; thus, contrast adjustment is applied to enhance sclerosis regions from other brain information.
Secondly, a feature extraction block based on fuzzy connectedness is performed so as to isolate sclerosis lesions from other
brain regions. Finally, 3D brain reconstruction is executed along with sclerosis to provide a useful 3D information.
Results The robustness of this approach is demonstrated by high correlation between the results and their corresponding gold
standard. The results were also obtained by computing parameters of accuracy of image segmentation, as well as overlap Dice.
The proposed method reached true positive of 75.61%, false positive of 16.37%, and DICE of 78.23%.
Conclusion The high correlation between specialist and proposed approach outcome, a better monitoring of the disease, is
provided; the specialist can understand the patient’s symptoms, thereby increasing the patient’s quality of life.

Keywords Magnetic resonance imaging (MRI) . Multiple sclerosis (MS) . Segmentation . Fuzzy connectedness (FC) .
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Introduction

Multiple sclerosis (MS) is the major cause of non-traumatic
neurological disability in young adults in Europe and North
America, affecting approximately 2.5 million people world-
wide. It is an autoimmune disease of the central nervous sys-
tem (CNS), in which inflammatory demyelination of axons

causes focal lesions in CNS white matter (WM) (Roy et al.
2018; Tomas-Fernandez and Warfield 2015). Although the
cause of MS is still unknown, several studies suggest it may
be caused by combination among genetic, environmental, and
immunological factors (Tomas-Fernandez and Warfield
2015).

MS can present inflammatory and neurodegenerative com-
ponents. The acute demyelination and inflammatory axonal
transection may be responsible for the disease symptoms.
Degeneration appears to be the main reason for the disability
and progression in MS. Several putative therapeutic strategies
for remyelination and neuroprotection are now transitioning
from the laboratory to early phase clinical trials (Bhargava
et al. 2015).

Nowadays, magnetic resonance imaging (MRI) is used in
the diagnosis and monitoring of MS that is because the sensi-
tivity of structural MRI shows WM lesions in time and space
without contrast injection (Roy et al. 2018; Valverde et al.
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2017; Jain et al. 2015). These WM lesions are visible on a
MRI brain scan and appear hyperintense on T2-weighted or
fluid-attenuated inversion recovery (FLAIR) images.

Since MRI was introduced in the early 1980s to diagnose
and assess MS, this exam has become the primary imaging
modality to monitor its natural evolution (Tomas-Fernandez
and Warfield 2015). Assessment of the disease implication
using MRI for research and clinical trials requires quantifica-
tion of the volume on images. It has been shown that volume
and location of lesions by their segmentations are important
biomarkers of MS and can be used to detect its onset or track
its progression. However, lesions vary in size, shape, intensi-
ty, and location, which make their automatic and accurate
segmentation challenging (Dimitrova 1977).

Manual delineations are considered the gold standard (GS),
but segmenting lesions from 3D images is tedious, time-con-
suming, and often not reproducible (Jain et al. 2015; Roy et al.
2018). Besides that, errors can occur due to low lesion contrast
and unclear boundaries caused by changing tissue properties
and partial volume effects (Tomas-Fernandez and Warfield
2015). Furthermore, there is an inherent reliability challenge
associated with lesion segmentation. Images produced by any
imaging device are inherently fuzzy. This fuzziness comes
from several sources like spatial and temporal resolution lim-
itations, blur and/or noise, and background intensity variation.
In addition to these factors, different tissues, organs, and ana-
tomic structures manifest heterogeneity of intensity values of
object regions in acquired images (Udupa and Saha 2003).
This problem is accentuated in MRI, because this type of
exam does not have any uniform intensity scale (like comput-
ed tomography); acquisition of images in different scanners
and with different contrast properties can add complexity to
the segmentation (Roy et al. 2018).

A semiautomatic or automatic MS segmentation method is
required to reduce the time of this task and intra-rater variabil-
ity uncertainty among segmentation made by different spe-
cialists (Egger et al. 2017; Udupa et al. 1997). This will be
especially important for large clinical trials, since many im-
ages need to be analyzed and processed. For clinical practice,
this segmentation method would allow the measurement of
lesion volumes, standardizing and quantifying MRI observa-
tion (Jain et al. 2015).

Significant works on MS segmentation have been pub-
lished in recent years (Beaumont et al. 2016; Egger et al.
2017; Roura et al. 2015). In a study by Beaumont et al.
(2016) is presented an automatic segmentation from mul-
timodal graph cutting. The results of this segmentation are
good, but they vary because they depend on the input pa-
rameters of the algorithm, which are directly associated
with the total load of the lesion. The automation of this
method is complicated because the initialization of the pa-
rameters is very important to achieve satisfactory results.
Egger et al. (2017) evaluated the Schmidt et al. (2012)

algorithm in an independent dataset and compared the re-
sults with data from three experienced raters. In this work,
they determine the MS lesion using two algorithms that
runs under the two statistical parametric mapping (SPM)
packages: Lesion growth algorithm based (LGA) on
SPM8, LGA on SPM12, and lesion predicting algorithm
(LPA) based on SPM12. In this evaluation, they found a
strong correlation between manual and automated segmen-
tation, obtaining DICE 0.6, 0.53, and 0.57 for LGA SPM8,
LGA SPM12, and LPA SPM12, respectively. In Roura
et al. (2015), an automated segmentation using T1w and
FLAIR images is explored. This approach consists of two
steps: segmentation of the brain tissue according to gray
matter, white matter, and cerebrospinal fluid in T1w im-
ages, followed by the segmentation of the lesions as out-
liers to the brain tissue in the FLAIR image. In the study of
Roura et al. (2015), the quantitative evaluation reached
DICE of 0.3, 0.33, and 0.43 in three distinct databases.

These automatic targeting methods prevent user variability
and reduce time consumption, but the accuracy of these
methods has not yet achieved their highest possible potential.
This feature is less pronounced in semiautomatic segmenta-
tions that require a specialist to initialize. In the literature, there
is still no viable standard tool for daily clinical practice.
Automatic detection of multiple sclerosis lesions is still a chal-
lenging problem, living room for, in a primary step, focus on a
reliable semiautomatic method.

In this paper, a semiautomatic segmentation based in
fuzzy connectedness (FC) was introduced as a robust
method for WM lesion segmentation on 3D FLAIR
MRI. The method is independent of scanner and acquisi-
tion protocol and also does not require a huge large train-
ing image database of expert lesion segmentations.
Consequently, the objective of this study is to construct
and validate a proposed segmentation method for a 3D
segmentation, using as core operation fuzzy connected-
ness with fixed weights to compute the affinity level be-
tween pixels. In addition, the evaluation was performed in
a set of MRI scans to compute its accuracy; hence, results
were compared quantitatively and qualitatively with GS
made manually by specialists. The applied parameters of
accuracy were extracted from the proposed approach: a
framework for evaluating image segmentation algorithms
(Udupa et al. 2006) and overlap Dice (Dice 1945); thus,
punctual comparison with the results obtained with the
literature was allowed.

The project is running under a strong collaboration of com-
plementary work teams from Federal University of São Paulo
(UNIFESP), specifically, between the Medical Imaging
Processing Group of Institute of Science and Technology
(ICT-UNIFESP) coordinated by Prof. Dr. Matheus Cardoso
Moraes and the group of DDI-UNIFESP coordinated by Prof.
Dr. Nitamar Abdala.
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Material and methods

In this study, a semiautomatic segmentation of MS areas was
constructed and evaluated in a set of 32MS lesions in different
MRI exams made by scanners Philips Achieva 3TX and
Siemens Skyra 3TX. Each exam contains about 143 slices in
DICOM-format, 16-bits resolution, with positive values. The
exams were provided by the Department of Imaging
Diagnosis of the São Paulo School of Medicine (DDI-
UNIFESP) through XNAT platform: PACS Research
Management and storage of data and clinical images of re-
search projects in DDI-UNIFESP. The ethics committee with
the number 03830718.9.0000.5505 approved the study proto-
col to allow the medical images manipulation.

The evaluation was performed by computing the mean and
standard deviation of true positive (TP), false positive (FP),
false negative (FN) (Udupa et al. 2006), overlap (OR)
(Kupinski and Giger 1998), and overlap Dice (OD) (Dice
1945) was also calculated to compare the results obtained
previous work. Experts manually made and revised the gold
standards under the collaboration described above.

Three main stages are applied to describe the segmentation
methodology. The contrast adjustment is performed to intensify
the pixels of the region with MS during preprocessing. The
feature extraction is firstly performed by acquiring information
from the region of interest (ROI) in three dimensions by con-
structing a connectivity map using fuzzy connectedness

methodology (Udupa and Samarasekera 1996). It is followed
by post-processing using binarization, and mathematical mor-
phology takes place to enhance the previously extracted infor-
mation. In the final step, the 3D reconstruction of brain volume
with the segmented MS is carried out, hence providing better
visualization of the brain regions affected by MS. The block
diagram shown in Fig. 1 resumes the segmentation process.

Stage 01 ➔ preprocessing This stage is divided in two steps:
brain isolation and contrast adjustment. Medical images are
characterized by a composition of small differences in signal
intensities between different types of tissues, noise, manufac-
ture, etc. Hence, differences, ambiguities, and uncertainties
are, by default, introduced during image formation. These
imprecisions could make difficult a thorough discrimination
of the exact location and area of the ROI (Pednekar and
Kakadiaris 2006). Because of these circumstances, an intensi-
ty level normalization process takes place by contrast en-
hancement, hence normalizing and minimizing possible dif-
ference among scanners, providing an intensity levels normal-
ization concerning sclerosis’ intensities and surrounding.

Since MS is better observed in T2 and FLAIR images as a
region with high-intensity pixels, the contrast of the image is
adjusted to enhance the demyelinated regions. And to normal-
ize the input images, it is needed to preprocess the images with
filters and contrast adjustments. This makes the method robust
and independent of the sensor used.

Fig. 1 Overview methodology of
the proposed semiautomatic
segmentation
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Figure 2 displays the input and output of this stage with one
slice from an MRI exam utilized in this work.

Step 01 ➔ brain isolation At the beginning of this step, the
original image Io (Fig. 3a ) is the input. First, from Io an image
with contrast elongation Iac at the lower threshold of 0.15 and
greater than 0.2 was created (Chang and Wu 1998). Second,
an image with an equalized histogram Ihe was generated from
Io. Consequently, we multiplied these two results, Iac by Ihe,
and applied Otsu binarization process, obtaining Iotsu (Otsu
1979). With Iotsu, an opening operation was carried out with
a sphere of radius 6 voxels to isolate the brain, which is the
ROI, from other regions and information included in the im-
age. The brain Ibrain (Fig. 3b) was located as the binarized
region with the largest volume. This step was carried out with
the purpose of improving the next step of contrast adjustment
of the original image, prioritizing the pixels only pertinent to
the cerebral volume of the exam.

Step 02➔ contrast adjustment Firstly, Io and Ibrain were mul-
tiplied, isolating only brain information, resulting in the brain

with values of the original image Ibo (Fig. 3c). After that, we
applied a spatial Gaussian filter obtaining Ifilt (Fig. 3d), the
parameters of filtering were kernel of 9 × 9 pixels, and the
mean of the local intensities is covered by the kernel and
standard deviation (sigma) of 0.8. Next, a flat-field correction
(Seibert et al. 1998), resulting in Iflat followed by an edge
sharpening obtaining Isharp was serially performed to reduce
shading distortion (Fig. 3e and f ). Finally, the image histo-
gram was adjusted with a narrowing at 0.2 and 0.7 thresholds
resulting Ia (Fig. 3g).

The used parameters’ values were found empirical, by first-
ly visually evaluating the resultant value that mainly empha-
sizes the ROI. The number of trying and spend time during
this analytical/empirical process was not measured.

Stage 02 ➔ Feature Extraction This stage combines opera-
tions to acquire and polish the most of MS information.
First, fuzzy connectedness methodology (Udupa and
Samarasekera 1996; Udupa et al. 1997) is applied to increase
discrimination between MS tissues and the rest of image.
Secondly, a polishing and enhancement of the discriminated
information are carried out by a binarization and mathematical
morphology process.

Step 01→ fuzzy connectedness is a semiautomatic segmen-
tation method based on region growing. The process relies on
a combination of criteria that takes into account homogeneity
and intensity features from a selected region (Cardenas et al.
2013). The fuzzy connectedness process starts with a MS ROI
selected and a seed defined (initialization). Then, a voxel of a
ROI must be selected by user, as it is a semiautomatic method.
Second, the image homogeneity and intensity features are
combined among a seed and its neighbors in a parameter
called affinity (Udupa and Samarasekera 1996). Thirdly, by
using the Dijkstra graph theory methodology, the connectivity
map among the planted seed and each voxel of the image is
finally constructed. Please, for more details about fuzzy con-
nectedness algorithm, refer to (Nyúl et al. 2002; Udupa and
Samarasekera 1996; Wilcox and Hirshkowitz 2015).

During the initialization process, a pixel of Ia ROI should
be selected (first seed). With the selected pixel, the mean and
standard deviation of the local homogeneity (m1 and s1) and
intensity (m2 and s2) of the objects were calculated (Cardenas
et al. 2013; Nyúl et al. 2002; Udupa and Samarasekera 1996;
Wilcox and Hirshkowitz 2015). Specifically, for this ap-
proach, the ROI was acquired by choosing a slice containing
aMS region and clicking in this ROI’s central voxel to acquire
the required intensity information in a window of 15 by 15
pixels over the slice’s ROI. We chose a 15 by 15 window size,
since it showed to be sufficient to acquire the information and
is sufficiently small to not overcome ROI regions.

Once this is done, the affinity of the first seed with its six
neighbors (north, south, east, west, back, and front) was cal-
culated. The highest affinity values of this first interaction

Fig. 2 Preprocessing stage. a Original image, Io. b Brain isolated with
contrast enhancement, Ia
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were used as reference for a stop condition criterion, proposed
for this application to avoid computing the complete image
Connectivity, decreasing computational cost. The established
value was empirically defined as 70% of the highest affinity.
Hence, the region growing is performed until the connectivity
drops to the mentioned value.

While the stopping condition is not reached, a growth loop
(GL) process is still running. This process provides the intrin-
sic fuzzy connectedness interactions (Cardenas et al. 2013;
Nyúl et al. 2002; Udupa and Samarasekera 1996; Wilcox
and Hirshkowitz 2015). Hence, first we compute the homoge-
neity μψ(c, d) and intensity μϕ(c, d) between the current seed
(c) and the analyzed pixel (d), computed through:

μΨ c; dð Þ ¼ e
−0:5 f cð Þ− f dð Þj j−m1

s1

� �2

ð1Þ

μΦ c; dð Þ ¼ e
−0:5 0:5� f cð Þþ f dð Þð Þ−m2

s2

� �2

ð2Þ
in which f(c) and f(d) are respectively the values of the image
at the position of the seed pixel and the neighbor pixel ana-
lyzed. With these two parameters, GL computes the similarity
level μɑ(c,d) between analyzed pixel and current seed,
denominated affinity, and determined by:

μα c; dð Þ ¼ w1 � μΨ c; dð Þ þ w2 � μΦ c; dð Þ ð3Þ

where w1 and w2 are respectively the weights assigned to
homogeneity and intensity with values of 0.3 and 0.7.
Values were calibrated and chosen by focus on the best seg-
mentation result during a parameter calibration stage.

Consequently, the connectivity (pixel pertinence level in
the ROI) of the analyzed pixel μk(d) is updated as the mini-
mum between μɑ(c,d) and the connectivity of the current seed
μk(c) from:

μk dð Þ ¼ min μα c; dð Þ;μk cð Þð Þ ð4Þ
with Eq. 4, the affinity value is not able to increase, con-
tinuing the same value of seed connectivity or decreasing
until reaching the stop condition. As mentioned above, this
is carried out for the 6 neighbors of the current seed. If the
neighbor was already assigned previously as a seed, we
call it an ex-seed; hence, the calculations are not performed
for that pixel, since, by being a seed, it was already classi-
fied as part of the desired object. The neighbors that were
analyzed are added as new seeds in a queue of seeds and
sorted according to connectivity. The seed that was the
current one is removed from this queue and placed an in-
dicator of ex-seed. The dynamic of the process considers
the pixel that has the highest current connectivity as the
new seed.

Upon reaching the stop condition, GL is terminated, and
we have the 3D connectivity matrix (Mc) with values between
0 and 1 (Fig. 4 Mc) . The stop condition was designed and
calibrate to terminated as soon as the region growing process

Fig. 3 Results of each preprocessing calculation. aOriginal image, Io. b Binarized isolated brain, Ibrain. c Isolated brain with original image values, Ibo. d
Ibo with Gaussian filtering, Ifilt. e Shade flat field correction, Iflat. f Edge sharpening, Isharp. g Preprocessing final image with histogram adjust, Ia
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leaves the MS area. As mentioned above, it assures the extrac-
tion of the lesion and enormously decreases computational
cost.

Step 02➔ post-processing In this step, Mc is binarized (Ob)
without threshold, since the stop condition makes Mc,

contains only MS information all values is transformed
to 1 resulting in (Fig. 4 Ob). Next, with the binary object,
we perform mathematical morphology (Haralick and
Sternberg 1987) closing operation in Ob to fill any small
apertures caused by noise resulting in Of (Fig. 4 Of).
Figure 4 demonstrates a one slice process; nevertheless,
the procedure is occurring in a 3D space, since front and
back voxels were considered during connectivity
computation.

(b) Connectivity matrix resulting from FC. (c) Binarized
object. (d) Object after closing operation

Stage 03➔ 3D reconstruction The brain 3D reconstruction is
performed to facilitate visualization of the brain volumes

affected by MS, improving medical analysis, and enormously
increase the success of clinical decisions. Accordingly, in an
accurate and overall view, the specialists will be able to take
advantage of special details regarding the MS volume and
location, leading to a better understanding of the symptoms
that the patient presents or will present. In addition, with the
follow-up through examinations, it will be possible to observe
the volumetric growth of the disease.

In this step, we need the MS extracted Of, (Fig. 5) which
was described above and the complete brain isolated Ibrain
(Fig. 5) computed in preprocessing stage.With DICOMvoxel
information, a interpolation process is performed, and the
brain volume is rebuilt along with segmented MS, Of

(Paluszek and Thomas 2017).

Fig. 5 Reconstruction stage. a Binarized brain. b Segmented MS. c
Reconstructed brain with MS.

Fig. 4 Feature extraction stage. a Image after contrast enhancement.
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Results

To evaluate the method outcomes, the proposed method was
applied in 32 MS lesions from FLAIRMRI exams of patients
with MS performed on the Philips Achieva 3TX and Siemens
Skyra 3TX, containing about 143 slices by exam. The exams
were provided by DDI-UNIFESP XNAT platform: PACS
ResearchManagement and storage of data and clinical images
of research projects. The computational cost was based on a
computer with an Intel® Core™ i7-4790 K CPU@ 4.00GHz
processor, 16GB RAM, Windows 10 64-bit and MATLAB
2016a software from the Image and Signal Processing
Laboratory without any code optimization. The MRI exams
have been segmented and compared with GSmade by experts
from DDI-UNIFESP.

In Figs. 6 and 7, some results of the proposed method are
displayed. Figure 6 shows that the corresponding boundaries
of segmented lesions by the proposed method can reach ROI
boundaries. However, some pixels with lower intensity (seen
with gray color in figure), excluded by the proposed method
as part of the lesion, can, in fact, belong to the lesion. In Fig. 7,
the high similarity between the images segmented by this
approach and their GS is noticeable.

The statistical evaluation was carried out by applying the
proposed methodology in the 32 MS lesion volumes. Next,
each segmented result was compared with its corresponding
gold standard (GS) made manually by an expert. The numerical
assessment of accuracy was obtained by computing corre-
sponding parameters of accuracy true positive (TP), false pos-
itive (FP), and false negative (FN) (Udupa et al. 2006), as well
as overlap (Kupinski and Giger 1998) and overlap Dice (Dice
1945). The parameter of all 32 volumes is shown in Table 1,
and the mean and standard deviation is shown in Table 2.

As can be observed in Table 1, the results obtained have
high accuracy with TP around 75% and an FP near 16%. FN is

complementary to TP. The high FN value means the voxel
that the method did not register as belonging to the lesion.
This can occur due to the low sensitivity in the method of
weights applied empirically or also by the value of the stop
condition to decrease or use the computational value.

To compare with other results, we calculated the DICE
which was 78.23%. Dice similarity coefficient values range
from 0 to 1, where 0 corresponds to no overlap between two
objects and 1 corresponds to perfect overlap. The false-
positive fraction and true-positive fraction were computed
for each lesion (Fig. 8) to indicate the percentage of voxels
correctly or incorrectly classified as lesion by the method.

The average segmentation time of all lesions was 2.97 s ±
0.331 s, much faster than manual targets that can last for
minutes. This manual segmentation was performed by the
specialist collaborator of this project. This result can be im-
proved by code optimization and/or by using different pro-
gramming language such as C++ or Python.

In this graph, we can see that in most of the lesions, the TP
was above average, and the FP was below average. The le-
sions that do not obey this rule can be for reasons such as
possible imprecision of the specialist segmentation moment
in regions that are not intense but are homogeneous, and as
our method is mathematical, it is possible to carefully evaluate
the relevance of the pixel in ROI. And small lesions that have
a reduced area for initialization of segmentation may not pres-
ent adequate values of intensity and/or homogeneity, so that
the method may not ideally initialize, compromising targets,
neighboring pixels of the first seed.

Discussion

The use of MRI to diagnose demyelinating diseases makes it
necessary to develop computational methods that assist the
specialist (Roy et al. 2018; Storelli et al. 2016). However,
despite efforts, lacking accurate methods and results makes
the task of MS segmentation challenging.

This research was carried out to evaluate the performance
of fuzzy connectedness in the segmentation of MS in MRI,
seeing that a non-manual segmentation method is required for
this task. The developed method is working fast, saving the
specialist’s time when performing MS segmentation. The ob-
tained results, computed in 3D domain with challenge images,
also indicate a relatively high correlation with manual seg-
mentation from specialists, making the follow-up of the dis-
ease less susceptible to subjective interpretation of the differ-
ent specialists.

The methodology presented in this work for the segmenta-
tion ofMS in the brain was divided into three stages. The first,
preprocessing, the contrast of the image is adjusted in order to
evidence the ROI. The second, feature extraction, uses fuzzy
connectedness to calculate the connectivity matrix for ROI,

Fig. 6 A ROI of MS lesions (Io) and their corresponding boundaries of
segmented lesions by the proposed method (result)
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binarization, and mathematical morphology. Finally, the brain
with MS is reconstructed in three dimensions to obtain volu-
metric visualization of the regions affected by the disease.

The high TP value and low FP value indicate that this
segmentation method has a smaller variation comparing with
the segmentations performed by a specialist or different spe-
cialists (Udupa et al. 1997). Moreover, taking into account the
difficulties of the images because they are from different
sources, the accuracy and robustness of the method are veri-
fied, thus offering a new semiautomatic alternative to carry
out the segmentation of one of most common demyelinating
diseases.

Concerning previous work in the literature, a thorough
comparison of outcomes from different works is beyond the
scope of this study, since the datasets, evaluation indexes, and

computational resources are different. Nevertheless, compare
and contrast corresponding outcome are important to help
corroborate efficiency. The work produced by Jain and col-
leagues (Jain et al. 2015) compare 3 unsupervised classifica-
tion methods of automatic segmentation based on stochastic
modeling of voxel intensity distribution Msmetrix, LST, and
Lesion-TOADS with Dice 0.69 ± 0.14, 0.71 ± 0.18, and 0.63
± 0.17, respectively. Although it is tempting to propose auto-
matic segmentation, these methods of unsupervised classifica-
tion do not yet present high accuracy. In comparison, in our
proposed approach, the proposed method reached DICE of
78.23 ± 8.51 with a semiautomatic segmentation method.
According to the literature in this field, recent techniques pro-
posed for MS lesion segmentation include supervised learning
methods such as decision random forests, ensemble methods,

Fig. 7 Results obtained with the proposed method. In the left side the
contours of the GS are displayed, the contour of the segmentationwith the
proposed method is in the middle, and on the right is exposed the 3D

reconstruction of the brain with the MS lesion (in green the lesion
segmented by specialist and in brown by the proposed method)
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non-local means, and k-nearest neighbors (Valverde et al.
2017). This type of classification has good results in the train-
ing dataset but contains disadvantages such as the construc-
tion of a considerably large training dataset that encompasses
MS lesions of all possible forms, intensities, and heteroge-
neous textures in WM (Jain et al. 2015).

Because it is semiautomatic, this method requires the spe-
cialist to identify the area with sclerosis and initialize the seg-
mentation. In lesions of medium and large region, the method

is very robust and fast. A not so high accuracy when small
sclerosis regions are concerning may be seen as a limitation,
as the method may end up computing regions that do not
belong to the sclerosis that is because the mean and standard
deviation of the region of interest may not be representative
enough for small regions. Another possible reasons are the
empirical values found in the initiation and applied filters.
Thus, inaccurately initializing the segmentation process may
limit the possible best outcome. Moreover, if a region without

Table 1 Assessment of accuracy
of the individual lesions,
connected with corresponding
value

Lesion number Lesion volume (mm3) TP (%) FN (%) FP (%) Time Dice (%)

1 1635.95 42.87 57.12 0.5 3.28 59.81

2 813.85 78.45 21.54 4.18 2.8 85.92

3 1584.38 58.65 41.34 1.3 2.82 73.34

4 678.72 41.64 58.35 1.51 2.61 58.18

5 399.19 77.26 22.73 14.17 3.24 80.72

6 474.49 89.13 10.86 44.56 3.03 76.28

7 578.67 86.09 13.9 7.48 2.8 88.95

8 621.99 80.43 19.56 12.6 2.52 83.34

9 604.46 56.48 43.51 0.51 3.39 71.96

10 393.00 77.95 22.04 5.24 3.12 85.11

11 771.56 86.09 13.9 6.14 2.68 89.57

12 269.22 72.03 27.96 32.56 3.57 70.42

13 236.21 86.46 13.53 50.21 3.06 73.07

14 750.93 76.78 23.21 7.55 3.14 83.31

15 787.03 77.71 22.28 18.47 3.2 79.23

16 756.09 73.53 26.46 5.04 2.84 82.36

17 794.25 94.93 5.06 27.27 2.96 85.45

18 550.82 57.3 42.69 11.79 2.71 67.78

19 325.95 90.5 9.49 40.5 3.59 78.36

20 241.37 84.61 15.38 24.35 3.25 80.99

21 148.54 78.47 21.52 31.94 2.66 74.59

22 1202.72 73.75 26.24 12.17 2.99 79.34

23 456.95 66.59 33.4 14.89 2.2 73.39

24 298.10 55.7 44.29 5.19 3.52 69.24

25 204.24 87.87 12.12 44.94 2.59 75.49

26 19,302.05 50.32 49.67 7.52 3.34 63.76

27 429.10 83.65 16.34 4.56 3.11 88.89

28 685.94 76.63 23.36 15.11 2.84 79.94

29 615.80 87.81 12.18 27.06 2.67 81.74

30 470.36 97.48 2.51 27.8 3.17 86.55

31 396.09 73.68 26.31 0.00 2.73 84.85

32 962.38 98.95 1.04 16.92 2.76 91.68

Table 2 Mean and standard
deviation of the accuracy
assessment of the proposed
approach

TP (%) FP (%) FN (%) Overlap (%) DICE (%)

75.61 ± 15.02 16.37 ± 14.54 24.37 ± 15.02 64.98 78.23 ± 8.51
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MS is selected, through the affinity among voxels, it will be
wrongly segmented; hence, the correct choice of specialist is
important.

Conclusion

Themethodology developed and applied in this study present-
ed high TP and low FP values. The segmentation time, 2.97 s
± 0.331 s, comparing with the manual, is much faster than
manual ones, in which can last for minutes; in addition, man-
ual segmentation may become a hard and time-consuming
task depending on the dataset size. Consequently, with this
study, it was possible to observe the robustness of fuzzy con-
nectedness in the segmentation of multiple sclerosis, using
simple weights to calculate the affinity between voxels. The
main contributions of this work were (i) a preprocessing stage
to enhance MS areas and volumes; (ii) the specific weight’s
values to improve fuzzy connectedness in MS segmentation
and evaluation; (iii) a set of mathematical morphology opera-
tions to reconstruct a binary version of MS volume; and (iv) a
3D reconstructed brain with MS regions segmented and
highlighted, so as to improve clinical analysis allowing the
specialist to observe encephalon affected by the disease.

In order to overcome the limitations mentioned at the end
of the Discussion section, as well as increasing accuracy, fu-
ture works will focus on increasing dataset to be able to asso-
ciate deep and/or machine learning methods for this applica-
tion. Consequently, in future work, we will investigate the
potential of Bhattacharyya affinity and dynamic weight func-
tions for FC allied to CNN to make segmentation more reli-
able, overcoming initialization dependence, making it
completely automatic, and improving accuracy (Roy et al.
2018; Valverde et al. 2017). We also can create a machine

learning to find the best parameters for weights, filters, and
windows size to start the method.
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