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Abstract
Purpose Retinopathies are the leading cause of eyesight loss, especially among diabetics. Due to the low contrast of blood vessels
in fundus images, the visual inspection is a challenging job even for specialists. In this context, this work aims to implement
image processing techniques to support contrast enhancement and segmentation of retinal blood vessels.
Methods The initial proposal consisted only of green channel separation, contrast limited adaptive histogram equalization, and
2D Gabor wavelet and mathematical morphology. The new proposal includes the edge and mask detection and the vessel
enhancement 2D to preserve image’s characteristics. The development and validation of this work, in MatLab® environment,
involved 40 images from Digital Retinal Images for Vessel Extraction (DRIVE), 20 images from Structured Analysis of the
Retina (STARE), and 45 images from High-Resolution Fundus (HRF) database.
Results In the unsupervised method context, the proposal presented the best performance regarding sensitivity and second place
for balanced-accuracy on all databases. A subjective validation involving eleven ophthalmology professionals showed higher
levels of acceptance (above 80%) after contrast limited adaptive histogram equalization (CLAHE) and vessel enhancement 2D
steps and 75.5% for overall quality system.
Conclusion The main contributions refer to the inclusion of techniques for automatic mask detection, image edge removal, and
suppression of vessels background to improve the retinal vessels segmentation process. In addition, this work made a compu-
tational interface named “Retinal Lab - A Tool for Fundus Image Analysis” available, which permits the users to adjust the
contrast and segmentation of blood vessels in retinal images.
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Introduction

Assertive and early diagnosis of diseases has always been a
great concern to public health (SBD 2018). The benefits are
diverse, such as cost reduction of medical treatments and early
detection of symptoms of potentially irreversible damages.

The medical examinations present the ongoing evolution dy-
namics aligned with the development of acquisition tech-
niques, processing, and image analysis. In the case of comput-
erized exams, image processing is a key factor that allows
emphasizing structures of interest for the identification of po-
tential anomalies (Singh and Kaur 2015).

Currently, several researches have been focusing on digital
processing of retinal imaging, aiming to identify and analyze
various diseases such as diabetic retinopathy, glaucoma, mac-
ular degeneration, atherosclerosis, hypertension, and cardio-
vascular diseases (Singh and Kaur 2015; Zhu et al. 2017).
Figure 1 shows images of a healthy retina and a retina with
signs of diabetic retinopathy, both from the Structured
Analysis of the Retina (STARE) database.

Usually, the blood vessels in the retinal images are manu-
ally marked, leading to an increase in the time required for
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analysis and in financial costs. Supervised or unsupervised
image methods intend to obtain automatic vessel segmenta-
tion and facilitate the marking process, where one of the main
challenges is to improve the low contrast of vessels in relation
to the background. Hereafter, the main works on unsupervised
methods, which is the same category of this proposal, will be
summarized. With few exceptions, all works made use of
Digital Retinal Images for Vessel Extraction (DRIVE) and
STARE databases.

Nugroho et al. (2018) applied the 2D Gabor wavelet trans-
form (2D-GWT) and morphological operations to fundus im-
ages to segment the retinal blood vessels. The pre-processing
step consists in extracting the green channel, followed by the
complement operation and contrast limited adaptive histo-
gram equalization (CLAHE) stages. In the segmentation step,
the 2D-GWT reduces the noise and improves the vascular
pattern. The closing operation connects the image points im-
properly disconnected in the previous processes. Eventually,
the morphological reconstruction approaches the object edges
through successive operations based on morphological dila-
tion and connectivity.

Neto et al. (2017) segmented the retinal vessels adopting a
coarse-to-fine approach, combining Gaussian smoothing, top-
hat morphological operator, and contrast enhancement for
vessel homogenization and noise reduction. Based on statis-
tics of spatial dependence and probability, the authors present
an approximation for the thicker vessels map with a local
adaptive threshold. Analyses of curvature and morphological
reconstruction refine the segmentation.

Fan et al. (2019) used a hierarchical strategy integrated in
the image matting model for blood vessel segmentation based
on a trimap created from the characteristics present in the
images, separating them in vessels, background, and unknown
regions. Then, a hierarchical image matting model defines the
pixels of unknown regions as vessel or background.

Sazak et al. (2019) introduced a method called bowler-hat
transform to enhance blood vessels in the retina. Based on
mathematical morphology, this method combines different
structuring elements and minimizes non-uniform illuminating

effects, resulting in the preservation of vessel junctions and
better detection of fine vessels.

The following works use methods classified as supervised.
Roychowdhury et al. (2015) devised a vessel segmentation

method for retinas with abnormalities due to diabetic retinop-
athy. Initially, a high pass filter and an operation of morpho-
logical reconstruction generate two binary images using the
green channel. Hence, the pixels classified as vessels in both
images will constitute the major vessels (larger vessels).
Subsequently, a Gaussian mixture model (GMM) treats the
remaining pixels to match them back to the major vessels.

Liskowski and Krawiec (2016) proposed the segmentation
of retinal vessels using deep neural networks. The main char-
acteristics in this study are spatial arrangement, local connec-
tivity, parameter sharing, and grouping of hidden units.

In Zhu et al. (2017), a method based on the extreme learn-
ing machine (ELM) provides the retinal vascular pattern from
a training vector with 39 characteristics for each pixel. These
characteristics include the pixel intensity, the result of 2D
Gaussian filtering and its derivatives, morphological opera-
tions, and top-hat and bottom-hat transformations.

Considering the significance of retinal images in diagnos-
ing various diseases, this work deals with the application of
digital processing techniques for contrast enhancement, noise
filtering, and automatic retinal vessel segmentation in fundus
images. The work was developed in a MatLab®-Version
2017a environment using training and test images obtained
from public databases DRIVE (Staal et al. 2004), STARE
(Hoover et al. 2000) and HRF (Budai et al. 2013).

Methods

As shown in Fig. 2, this section presents the proposed struc-
ture for the contrast enhancement and retinal blood vessels
segmentation. Based on Nugroho et al. (2018), this new pro-
posal includes the edge and mask detection using the red
channel, retinal edge removal, and suppression of vessels
background to remove the retinal edge, preserve vessel

Fig. 1 Fundus images. a Healthy
retina (Image #82). b Presence of
diabetic retinopathy (Image #139)
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junctions, and reduce the noise level. As will be shown, these
modifications permitted working better with DRIVE, STARE,
and HRF databases.

Databases

The tests and validation were performed in three public data-
bases, commonly used in most related works. These are
DRIVE (digital retinal images for vessel extraction) from
Staal et al. (2004), STARE (structured analysis of the retina)
from Hoover et al. (2000) and HRF (high-resolution fundus
image database), available on www.isi.uu.nl/Research/
Databases/DRIVE/, http://cecas.clemson.edu/~ahoover/stare,
and https://www5.cs.fau.de/research/data/fundus-images/,
respectively.

The DRIVE database provides 40 color fundus images of
584 × 565 pixels size, captured by a Canon CR5 non-
mydriatic 3CCD camera with a 45-degree field of view
(FOV), in which 7 images present signs of mild early diabetic
retinopathy. The 40 images are available in training and test
sets, both containing 20 images (Staal et al. 2004).

The STARE database consists of 20 color fundus images of
700 × 605 pixels size, captured by a TopCon TRV-50 fundus
camera with a 35-degree FOV. The diagnostics list and the
expert annotations of manifestations visible in the images
are also available.

The HRF database provides 45 high-resolution color fun-
dus images of 3504 × 2336 pixels size, divided in 3 sets with
15 images of healthy patients, 15 images of patients with
diabetic retinopathy, and 15 images presenting with
glaucomatous.

All databases supply images with manual medical mark-
ings, named ground truth images, which allow performing
objective validations.

Pre-processing

The pre-processing techniques, indicated in Fig. 3, aim at
image enhancement, suppressing unwanted distortions, and
highlighting important characteristics for the segmentation
process. Figure 3 shows the fundus image #39 (Fig. 3a), avail-
able in the DRIVE database, and the resulting images in the
pre-processing stages (Fig. 3b–f).

Green channel extraction

The original images are available in the RGB color space
where the pixels intensity can vary from 0 to 255 (8 bits) for
each one of these colors. The green channel (Fig. 3b) is the
RGB component with the highest contrast between the blood
vessels and the background, the reason why this channel is
more adequate for the analysis of fundus images.

Complement operation

The complement operation (Fig. 3c) consists of subtracting
255 from the gray level values in the green channel image.
The result represents the inversion of image intensity levels,
making the blood vessels brighter than the retinal background.
The complement of an image A is:

Ac ¼ x; y;K−z
�
j
�
x; y; z

� �
∈A

n o
ð1Þ

where x and y are pixel coordinates, K = 2l − 1 and l is the

Fig. 2 Flowchart of the proposed
method. Pre-processing stage:
green and red channels extrac-
tions, edge and mask detections,
complement operation, retinal
edge removal, CLAHE, and sup-
pression of vessels background.
Segmentation stage: 2D Gabor
wavelet transform and closing
operation and morphological
reconstruction
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number of bits used to represent the intensity z (Gonzalez and
Woods 2018).

Edge and mask detections for retinal edge removal

Amask for the region of interest (ROI) is created from the red
channel using the Sobel operator and mathematical morphol-
ogy. As the ROI is not completely circular in some databases,
the images must be overlapped on a black rectangle with larg-
er dimensions than the original image to ensure the mask edge
detection by the Sobel operator.

As edges are regions characterized for abrupt variations in
pixel intensity, they present a high spatial gradient. Sobel op-
erator calculates the 2D spatial gradient in the image and em-
phasizes the pixels with high spatial gradient (Gupta and
Mazumdar 2013). For such, it used a pair of 3 × 3 convolution
matrices that slide over the image on the x and y axes,
resulting in their respective gradients of magnitude, Gx and
Gy. The gradient magnitude Gy is calculated by:

Gy ¼
1 2 1
0 0 0
−1 −2 −1

2
4

3
5I ð2Þ

where I is the image. Gx can be obtained in an analogous way,
taking the transposed matrix used for calculating Gy. The
gradient magnitude |G| is:

Gj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gx2 þ Gy2

p
ð3Þ

Subsequently, the magnitude image is binarized and dilated
using a diamond structuring element (SE)with size 2 to eliminate

possible gaps in the detected edge. Then, themask center is filled
with binary pixel of true value (1 or white) and smoothed by
erosion by a diamond SE with size 7, whose size is adjusted to
reduce the white area, keeping only the ROI. The dilation and
erosion of an imageA by a flat SEB, denoted byA⊕B andA⊖B,
respectively, are (Gonzalez and Woods 2018):

Dilation : A⊕B ¼ zj B̂̂
� �

z∩A
� �

⊆A
	 
 ð4aÞ

Erosion : A⊖B ¼ zj Bð Þz⊆A
	 


: ð4bÞ

Finally, there are the removal of borders and the application
of a mask to the resulting image from the complement opera-
tion, as shown in Fig. 3d. The mask has the same original
image dimensions.

CLAHE

The CLAHE is widely used in medical image processing. The
CLAHE algorithm divides the image into rectangular regions,
applying some threshold and equalization locally in each region.
After setting a threshold for the gray levels, occurrences above
this threshold are clipped to minimize saturation, followed by
uniform and recursive redistributions along the local histogram.
As a result, the background levels become more flattened, in-
creasing the background–vessels contrast (Pizer et al. 1990;
Zuiderveld 1994; Nugroho et al. 2018).

Based on the number of regions experimentally determined
by Zuiderveld (1994), the images were divided into 32 rows and
32 columns of tiles. The chosen distribution for the histogram
was the bell shape, also called Rayleigh, and the value for the clip
limit was set to 0.02 within a 0–1 range by successive

Fig. 3 Step-by-step of pre-
processing. a Original RGB
image. b Green channel
extraction. c Complement
operation. d Retinal edge
removal. e CLAHE. f
Suppression of vessels
background by vessel
enhancement 2D
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adjustments, allowing an adequate contrast enhancement with an
acceptable noise level for the next steps. Figure 3e shows the
enhanced image.

This step offers two different and independent techniques as
options to reduce the noise and effects of non-uniform illumina-
tion and brightness, preserving vessel junctions and small
vessels:

1) Opening operation: according to Gonzalez and Woods
(2018), the opening operation suppresses the brighter details
that are smaller than the structuring element (SE). For the
opening operation, the non-flat SE was defined as a ball, as
proposed byNugroho et al. (2018). The radius (r) and height
(h) defined for the SE through the offsetstrelMatLab® func-
tion were determined experimentally as 2 and 140, respec-
tively, aiming for the smallest SE and average grayscale
values. The increase of h makes the image background uni-
form, but eliminates thinner blood vessels.

2) Vessel enhancement 2D: Sazak et al. (2019) developed a
method based on Zana and Klein (2001) to enhance elon-
gated vessel-like structures in biomedical images. It
carries out a series of morphological openings with a
line-shaped SE across defined angles. According to
Sazak et al. (2019), the SE width is 1 pixel and its length
is the biggest vessel expected diameter. For each angle,
segments smaller than the SE are removed, whereas the
bigger ones remain unchanged. The final enhanced image
is a pixel-wise maximum among all images produced in
all considered orientations given in the following:

Iout ¼ maxθ I∘bθ : ∀θ∈ 0;
180

n
;…; 180−

180

n

� � �
ð5Þ

where Iout is the resulting image, I is the input image, the
symbols “∘” and bθ indicate the opening operation and the
SE respectively, and θ are the angles in the n selected orien-
tations. In this work, following the suggestions of Sazak et al.
(2019), the length of SE was set to 10 and the number of
orientations n was set to 12.

Aiming to work with high-resolution images such as the
ones available at HRF database, this proposal included an
automatic adjustment for sizes of SEs used in the pre-
processing stage. This adjustment is based on the size ratio
between the DRIVE training and the test images, taking the
number of columns or rows of those images into account.

Segmentation

The segmentation aims to extract the blood vessels from the
retinal background. Figure 4 shows the resulting images for
each segmentation step, consisting of 2D-GWT (Fig. 4a), a

closing operation (Fig. 4b), and final image, after the morpho-
logical reconstruction (Fig. 4e). Figure 4f shows the corre-
sponding ground truth image from DRIVE. Figure 4c and d
highlights the same regions from the results of 2D-GWT and
closing operation, respectively.

2D Gabor wavelet transform

According to Jain and Farrokhnia (1990), a 2D Gabor func-
tion corresponds to a sinusoidal plane wave, with certain fre-
quency and orientation, modulated by a two-dimensional
Gaussian envelope, where the image information is extracted
by measuring the energy in small windows. Blood vessel ex-
traction by 2D-GWT (Fig. 4a) is due to its ability to provide
spatial information, orientation selectivity, and spectral char-
acteristics, which makes it possible to detect directional struc-
tures and high frequency regions, such as blood vessel edges.
The 2D-GWT is defined as (Soares et al. 2006):

ψG xð Þ ¼ exp jk0xð Þexp −
1

2
Axj j2

� �
ð6Þ

where A ¼ diag ϵ−
1
2 ; 1

h i
is a 2 × 2 diagonal matrix and k0 is a

vector. ϵ ≥ 1 indicates the filter anisotropy, i.e., its elongation
in any direction, and k0 is the complex frequency.

In this work, the orientation starts from 0 to 165o, in steps
of 15o, resulting in 12 directions in which the vessel charac-
teristics are extracted. According to Soares et al. (2006), ϵwas
set to 4 and the frequency was set to 4 for both databases.

Closing operation

The closing operation (Fig. 4b) suppresses dark details smaller
than the SE. This operation allows fulfilling the central parts
of larger vessels not fully detected by the 2D-GWT due to its
distance from the vessel edges (low frequency region) as well
as to link up disconnected vessels especially at junctions. The
closing of A by SE B, denoted A ¥ B, is:

A
È
E B ¼ A⊕Bð Þ⊖B ð7Þ

which indicates that the closing of A by B is the dilatation (⊕)
of A by B followed by the erosion (⊖) of this resulting image
by B (Gonzalez and Woods 2018).

The SE was defined as flat diamond (Nugroho et al. 2018)
and the distance between the origin and the edge was adjusted to
2, the minimum value available, aiming to fill the larger vessels.
Values greater than 2 made the vessels wider and linked different
vessels at junctions, increasing the number of pixels wrongly
detected as vessels. To illustrate the filling of one vessel after
the closing operation, Fig. 4c and d presents pixel details
resulting from 2D-GWT and closing operation, respectively.
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Morphological reconstruction

The morphological reconstruction involves two images, named
marker and mask, and an SE. The marker contains the starting
points for the transformation after which the image will suffer
successive dilations until it reaches the mask. The mask function
is to limit the marker transformation and the SE defines the
connectivity. The morphological reconstruction by geodesic di-

lation of size n, denoted by D nð Þ
G Fð Þ, is defined as (Gonzalez and

Woods 2018):

D nð Þ
G Fð Þ ¼ D 1ð Þ

G D n−1ð Þ
G Fð Þ

h i
;With D 1ð Þ

G Fð Þ ¼ F⊕Bð Þ∩G ð8Þ

where G, F, and B are themask, marker, and the SE, respectively.
The final image (Fig. 4e) is the result from morphological

reconstruction. The resultant image from the closing operation
makes up the mask while the 2D-GWT image functions as the
marker. Fig. 4f shows the respective ground truth image
marked by a specialist, provided by DRIVE database.

The integrated computational interface

The algorithmwas implemented inMatLab® environment and a
graphical user interface named “Retinal Lab-ATool for Fundus
Image Analysis”was developed as an application for monitoring
images through pre-processing, contrast enhancement, and seg-
mentation steps, with parameter adjustments as well as perfor-
mance indexes. This interface is available at https://github.com/
DouglasAbreu/RetinalLab.

On an Intel Core I5 and 4GB RAM computer, the full
processing of an image in MatLab® environment took an
average time of 2.6 s for DRIVE and STARE databases and
58.67 s for HRF, involving all processing stages. Figure 5
shows the developed graphical user interface, whose opera-
tion begins from selecting an image stored in the same com-
putational environment.

Results

The validation included comparative analyses using objective
metrics usually applied in medical image processing and content
validity tests performed by ophthalmologists and retinal special-
ists using the “Retinal Lab-ATool for Fundus Image Analysis.”

Objective validation

For objective evaluation, the tests used the 20 remaining im-
ages from the DRIVE and all images available in the STARE
and HRF databases. After submitting the selected image to all
proposed steps, the segmented image was then compared with
the respective ground truth image, available in the databases.

The validation criteria according to the sensitivity, specific-
ity, accuracy, and balanced-accuracy are (Nugroho et al. 2018;
Neto et al. 2017):

Sensitivity : Se ¼ TP
TP þ FN

� 100% ð9Þ

Fig. 4 Segmentation process: a
2D-GWT, b closing operation, c
and d highlighted vessels after
2D-GWT and closing operation,
respectively, e final segmented
image, after morphological re-
construction operation, and f
ground truth
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Specificity : Sp ¼ TN
TN þ FP

� 100% ð10Þ

Accuracy : Acc ¼ TP þ TN
TP þ FP þ TN þ FN

� 100% ð11Þ

Balanced−Accuracy : BAcc ¼ α Seþ β Spð Þ � 100% ð12Þ

TP (true positive) and TN (True Negative) are the numbers
of pixels correctly detected as vessels and as background,
respectively, while FP (false positive) and FN (false negative)
indicate the numbers of pixels wrongly detected as vessels and
as fundus, respectively. In Eq. 12, the weights α and β were
adjusted to 0.5 to equally balance the sensitivity and specific-
ity (Neto et al. 2017).

Aiming to validate this proposal, the obtained results were
compared with the main works in available literature, separat-
ed into supervised and unsupervised classes, since they in-
volve different methodological approaches. Table 1 shows
the average results achieved, based on images from DRIVE,
STARE, and HRF, highlighting in bold the highest rates for
each category and database.

Subjective validation

The accomplishment of subjective validation involved eleven
ophthalmology professionals, including four retinal specialists.
Aiming to evaluate the image quality after the 5main test phases,
as well as the system overall quality, the doctors assessed the
resultant images of each processing phase using the retinal lab
interface and images on DRIVE and STARE databases, random-
ly selected by the participants. The score tests consisted of dis-
crete grading scales between 1 and 20, encompassing 1–4 (bad),
5–8 (poor), 9–12 (reasonable), 13–16 (good), and 17–20 (excel-
lent), subsequently converted to a 1–100 continuous range. The
statistical analysis was performed in R software environment.

Considering the 5 questions in the tests, the answers pro-
duced 55 scores while the overall quality was inferred from
the scores attributed to the steps previously evaluated.
Figure 6 shows typical boxplots for the test results, with the
exclusion of one participant (outlier) that did not complete all
test steps. The results show the evaluation of image quality
after the green channel extraction (median score 82.5),
CLAHE (median score 90), suppression of vessels back-
ground (median score 80), highlighting of vessels (median
score 72.5), removal of details (median score 77.5), and over-
all quality (median score 75.5).

Discussion

Based on Nugroho et al. (2018), this proposal included steps
for automatic mask detection and image edge removal through
the red channel, using Sobel operator and mathematical mor-
phology. Furthermore, two additional options for the suppres-
sion of vessel background consisted of opening operation and
vessel enhancement offer better conditions to the following
steps, CLAHE and 2D-GWT, normally used in applications
to improve image contrast and segmentation.

From the supervised methods, according to Table 1, on the
DRIVE database, Liskowski and Krawiec (2016) and Zhu
et al. (2017) presented the best performances regarding sensi-
tivity, specificity, accuracy, and balanced-accuracy. On the
STARE database, Liskowski and Krawiec (2016) showed
the best results in relation to sensitivity and balanced-
accuracy and, Staal et al. (2004) and Roychowdhury et al.
(2015) for accuracy and specificity, respectively. A disadvan-
tage of supervised methods refers to the need for prior train-
ing, which implies an additional cost in computation and clas-
sification time.

Fig. 5 Stand-alone application
retinal lab developed in MatLab®
environment
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Considering the unsupervised methods presented in
Table 1, which are the research subject in this study, the pro-
posed method presented the best results regarding sensitivity

on all databases. Regarding specificity, Sazak et al. (2019)
reached the highest rates on DRIVE (herewith Fan et al.
(2019)) and on all the other databases. In relation to accuracy,
Fan et al. (2019) obtained the best results on DRIVE and
Sazak et al. (2019) on STARE and HRF. With regard to bal-
anced-accuracy, Nugroho et al. (2018), Fan et al. (2019), and
Sazak et al. (2019) presented the best results on DRIVE,
STARE, and HRF, respectively.

In summary, the proposed method presented the best per-
formance in terms of sensitivity without significant losses of
other parameters, and the second place for balanced-accuracy
on all the databases. A limitation of this method refers to the
presence of lesions with dimensions comparable to biggest
blood vessels. These lesions are not fully removed by vessel
enhancement 2D and, therefore, are accounted as false–
positives.

Based on the subjective validation results, images obtained
after green channel extraction, CLAHE, and vessel back-
ground suppression stages achieved higher levels of accep-
tance (above 80%). On the other hand, there was a decrease
regarding the results of vessel highlighting and detail removal.
From the overall quality, one can infer a positive acceptance
from the experts consulted.

Table 1 Comparison between the proposed method and related works

Category Database Method Se (%) Sp (%) Acc (%) BAcc (%)

SUPERVISED DRIVE Staal et al. 2004 - - 94.42 -

Soares et al. 2006 - - 94.66 -

Roychowdhury et al. 2015 72.5 98.3 95.2 85.4

Liskowski and Krawiec 2016 92.3 92.41 91.6 92.36

Zhu et al. 2017 71.4 98.68 96.07 85.04

STARE Staal et al. 2004 - - 95.16 -

Soares et al. 2006 - - 94.8 -

Roychowdhury et al. 2015 77.2 97.3 95.1 87.25

Liskowski and Krawiec 2016 92.07 93.04 93.09 92.56

UNSUPERVISED DRIVE Nugroho et al. 2018 80.75 97.13 95.87 88.94

Neto et al. 2017 79.42 96.31 - 87.87

Aguirre-Ramos et al. 2018 78.54 - 95.03 87.58

Fan et al. 2019 73.6 98.1 96.0 85.85

Sazak et al. 2019 71.8 98.1 95.9 84.95

Proposal 81.06 95.93 94.62 88.50

STARE Hoover et al. 2000 67.51 95.17 92.67 81.34

Nugroho et al. 2018 78.74 90.45 89.46 84.595

Neto et al. 2017 76.95 95.37 - 86.16

Aguirre-Ramos et al. 2018 71.16 94.54 92.31 82.85

Fan et al. 2019 79.1 97.0 95.7 88.05

Sazak et al. 2019 73.0 97.9 96.2 85.45

Proposal 79.32 96.64 95.33 87.98

HRF Aguirre-Ramos et al. 2018 73.35 94.04 91.38 83.70

Sazak et al. 2019 83.1 98.1 96.3 90.6

Proposal 83.30 95.79 94.82 89.54

Fig. 6 Graphical results showing test responses and system overall
quality, with Q1-green channel extraction, Q2-CLAHE, Q3-suppression
of vessels background, Q4-highlighting of vessels, Q5-remotion of de-
tails, and Q6-overall quality
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Conclusion

The main contributions refer to the inclusion of techniques for
automatic mask detection, image edge removal, and suppres-
sion of vessels background.

In this proposal, the sensitivity had higher priority due to its
importance in the early diagnosis of diabetic retinopathy in the
proliferative phase when the disease causes the emergence of
new vessels in the retina, which grow towards the vitreous
interface and may progress to irreversible loss of eyesight
(Bosco et al. 2005).

Another contribution of this work is the computer interface
“Retinal Lab-ATool for Fundus Image Analysis”, developed
in MatLab® environment and later made available in an exe-
cutable version at https://github.com/DouglasAbreu/
RetinalLab, which allows users to access retinal blood vessel
contrast and segmentation adjustments.

In future works, it is expected the usage of broader
databases, which will allow training and testing steps in
a wider range of images and to incorporate other tech-
niques to the computational platform aiming to extend
the detection to other retinal structures and pathology
characterization.
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