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Abstract
The analytical network-averaging, an elegant homogenization scheme, has been proposed in Khiêm and Itskov (J. Mech. Phys.
Solids 95:254–269, 2016) to capture a wide range of mechanical phenomena in soft materials. These phenomena include
nonlinear elasticity observed in unfilled rubbers, anisotropic damage behaviors in mechanoresponsive elastomers, phase
transition occurring in natural rubbers, cross-effect of damage in double-network hydrogels, and irreversible fiber sliding
in textile reinforcements. While the effectiveness of the analytical network-averaging has been evidenced through various
illustrative examples, a thorough exposition of the theory remains elusive, primarily due to the concise nature preferred in
conventional scientific articles and the specific thematic emphasis of individual publications. In the first part of this review
series, an exhaustive theoretical examination of the analytical network-averaging concept is provided. Such theory postulates
the presence of an orientational distribution function of material directions, such as fibers or polymer chains. Utilizing this
distribution function,microscopic strainmeasures essential for solving homogenized boundary value problems can be obtained
by averaging of macroscopic strain measures. It is interesting that in all scenarios, analytical derivation of the microscopic
strain measures can always be obtained. Thus, such analytical homogenization scheme offers physically based invariants that
automatically guarantee realistic behaviors (such as non-affine deformation, material objectivity and material symmetry) in
stress response functions. This is particularly important in the age of data science and machine learning as it allows for the
choice of stress hypothesis without limitations, while ensuring a priori interpretability of results.

Keywords Analytical network-averaging · Homogenization · Non-affine deformation · Interpretability · Internal variables ·
Nonlinear elasticity

1 Introduction

Soft materials refer to a class of solids that can be easily deformed when subjected to external stimuli. These materials
encompass a wide range of substances, including polymers, colloids, biological macromolecules and textile reinforcements.
One of the defining features of soft materials is their network structure, which gives rise to fascinating mechanical properties
such as considerable stretchability or drapability. To ensure that soft materials meet the specific mechanical requirements for
their intended applications, the network structure properties should be carefully engineered. This highlights the importance of
employing physically based modeling approaches in optimization of soft materials, which helps avoid the resource-intensive
nature of traditional trial-and-error procedures. Nevertheless, the heterogeneous nature of the network structure inherent in
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soft materials leads to non-affine deformation, thereby posing challenges for the development of physically based constitutive
modeling of such materials.

To date, numerous homogenization schemes have been proposed for soft materials. They can be classified into two
subcategories based on the characteristic of their random variables. The first type is the discrete homogenization approach,
often referred to as the FE2 method. In such method, the inherent material heterogeneities are modeled using a representative
volume element (RVE). This approach involves the simultaneous solution of two sets of equations: one requires a finite element
(FE) analysis conducted on themacroscopic structure using a coarse mesh, while the other entails a finite element computation
performed on the RVE embedded within the macroscopic elements (see, for instance, [2, 3]). The macroscopic deformation
gradient at the coarse scale is utilized to prescribe boundary conditions to the RVE. The upscaling is achieved through the Hill-
Mandel condition [4, 5], resulting in a macroscopic stress as the averaging of the microscopic analog over the RVE. Although
the FE2 method is generally applicable to materials with periodic or statistically homogeneous microstructures, its discrete
nature necessitates significant computational resources. On the other hand, the continuous homogenization approach leverages
the network structure of soft materials to perform mathematical averaging. Many of these methodologies assume that the
homogenized stretch serves as the only kinematicmeasure for the boundary value problemof softmaterials. Beatty [6] assumed

isotropic distribution of polymer chains which facilitates an analytical solution for the average stretch �̄ =
√∫

S

1
4π

n
�2 dS =√

I1
3
, where

n
� is the macroscopic stretch in the direction n of a units sphere S and I1 is the first principal invariant of the right

Cauchy-Green tensor. Here, n serves as the continuous directional random variable. Miehe et al. generalized this method by

employing the p-root averaging �̄ =
(∫
S

1
4π

n
�p dS

) 1
p

[7]. Nevertheless, such averaging requires numerical integration over

the unit sphere which is prone to numerical error [1, 8]. By considering affine deformation, Wu and van der Giessen obtained

the free energy of an elastomer network as an isotropic averaging of its directional analogy as � = ∫
S

1
4π ψ

(
n
�

)
dS [9]. This

approach leads to the development of a family of microsphere models, as extensively reviewed in [10]. Tkachuk and Linder
[11] refined the microsphere model by introducing a non-affine stretch vector λ (n) into the constrained optimization problem
as � = min

λ

∫
S

1
4π ψ (‖λ (n)‖) dS subject to a particular condition

∫
S

1
4π λ (n) ⊗ ndS = 1

3F for tetrafunctional networks.

Similarly, Govindjee and colleagues [12] extended the non-affine microsphere concept to viscoelastic media by introducing
mathematical constraints on the (elastic/viscous) microscopic Hencky strain tensor ln u (n) as

∫
S

1
4π ln u (n) dS = lnU, where

lnU represents the correspondingmacroscopic counterpart. Verron and Gros postulated a different interpretation of non-affine
deformation by employing an equal-force model for polymer molecules with varying chain lengths arranged in series [13].
Accordingly, the non-affine fluctuation arises due to the difference between the number of Kuhn segments in the real and
the representative chain. Recently, Britt and Ehret [14] proposed another homogenization scheme, in which the average free
energy of fiber network is obtained by utilizing a probability distribution of stretch as � = ∫

R+
ρ (λ)ψ(λ)dλ. In summary,

the emphasis on stretch as the only quantity of interest, coupled with an implicit assumption on isotropic distribution of the
random variable, has constrained the applicability of the aforementioned continuous homogenization methods to a particular
subset of materials and exclusively to a single deformation mode at large strain. Moreover, the extension of these approaches
to contexts beyond their original scope and kinematic measure remains questionable.

In contrast, a statistical homogenization scheme called analytical network-averaging has emerged. It yields explainable
invariants of the macroscopic strain tensor, such as average stretch, average area contraction, and average amount of shear
[1, 15–19]. The core of such theory is the presence of an orientational distribution function of material directions, such
as fibers or polymer chains, as observed via X-ray diffraction [20]. Unlike previous methods, this scheme does not fixate
on specific kinematic measures, rendering it applicable across a broad spectrum of soft materials and deformation states
when the associated boundary value problem is appropriately formulated. Furthermore, it accommodates deformation history
within a generally anisotropic distribution function of material directions, resulting in a unified formulation applicable not
only to nonlinear isotropic elasticity but also to anisotropic damage and anisotropic phase transition. Implementation of this
methodology to specific softmaterials, such as double-network hydrogels and textile reinforcements, facilitates the elucidation
of unique properties, including damage cross-effect and irreversible fiber sliding. While the effectiveness of the analytical
network-averaging homogenization scheme has been evidenced through various illustrative examples, a thorough exposition
of the theory remains elusive, primarily due to the concise nature preferred in conventional scientific articles and the specific
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thematic emphasis of individual publications. This review series addresses this gap, starting with an exhaustive theoretical
examination of the analytical network-averaging homogenization scheme.

The paper is organized as follows. Section2 presents the formulations of the analytical network-averaging concept, consid-
ering both two-dimensional and three-dimensional scenarios. In contrast to other homogenization schemes, this methodology
consistently yields analytical solutions for the homogenized kinematic measures circumventing numerical errors. Implemen-
tation of this approach guarantees the achievement of realistic and interpretable stress response functions, accounting for
non-affine deformation, material objectivity and material symmetry, as detailed in Sects. 3 and 4. Adoption of the homoge-
nized strain measures to the context of thermodynamics of internal variables furnishes a physical interpretation of the damage
cross-effect in double-network hydrogels (Sect. 5). Finally, Sect. 6 discusses a simple example elucidating the application of
the homogenization scheme in nonlinear isotropic elasticity of unfilled rubbers.

2 Analytical network-averaging theory

The analytical network-averaging homogenization scheme [1, 15–19] consists of three ingredients. First, it entails the con-
sideration of material direction n, representing structural element of soft materials such as fibers or polymer chains, as a
random variable distributed continuously at the material point. Second, it utilizes a unimodal probability distribution func-
tion of the material direction. The concentration parameter of this distribution function quantifies the degree of dispersion
of the material direction around a mean axis, which typically corresponds to the alignment direction of chains observed in
X-ray diffraction measurements. This probability distribution function captures any alterations in the material microstructure,
whether induced by damage or phase transition. Third, the scheme addresses the boundary value problem associated with the
RVE of the material microstructure. This boundary value problem yields microscopic kinematic measures of the RVE, which,
in turn, indicate the corresponding types of macroscopic strain measures. By means of the unimodal distribution function,
the microscopic kinematic measures of the RVE can be analytically derived through statistical averaging of the macroscopic
strain measures over the domain of the random variable. Subsequent sections will elaborate on the individual ingredients of
our homogenization scheme.

2.1 Unimodal probability distribution function of material direction

In this section, we will introduce two types of distribution function tailored for soft materials distinguished by their solid and
shell structures.

2.1.1 Unimodal spherical distribution

The unimodal spherical distribution of material directions is particularly relevant to soft materials characterized by solid-like
structures, such as elastomers and biological tissues. Such distribution function can be defined on the basis of the even von
Mises-Arnold-Fisher distribution function [15, 21, 22] as

ρ (n) = ρ̂ (θi , ςi ,M) = ςi

4π sinh (ςi )
cosh (ςi · cos θi ) , (1)

where θi is the angle between the material direction n and the mean axis M. ςi denotes the concentration parameter to be
discussed later. The vectors n and M are normalized to unit magnitude.

In statistics,we are particularly interested in the secondmomentM of the distribution function ofn as it provides information
about local dispersion of directional data. The second moment of the distribution (1) can be given by [15]

M =
2π∫
0

π∫
0

ρ (n) n ⊗ n sin θi dϕi dθi = (1 − wi )
I
3

+ wiM ⊗ M. (2)
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Therein, I denotes the three-dimensional identity tensor, while the volume fraction of oriented material directions wi can
be expressed as [15]

wi =
2π∫
0

π∫
0

ρ̂ (θi , ςi ,M)
(
cos2θi sin θi − sin3θicos

2ϕi

)
dϕi dθi = ς2

i − 3 coth (ςi ) ςi + 3

ς2
i

. (3)

The physical interpretation of wi can be elucidated through asymptotic analysis of Eq. 3. Specifically, in the scenario
where lim

ςi→∞ wi = 1, all material directions align towardM. Conversely, when lim
ςi→0

wi = 0, material directions are uniformly

distributed in the unit sphere.

2.1.2 Unimodal circular distribution

The unimodal circular distribution of material directions finds applicability in the analysis of soft materials possessing a
shell-like structure, exemplified by textile reinforcements including dry non-crimp fabrics and dry woven fabrics [23]. Such
materials are defined by a thickness that is much smaller than their other dimensions. Consequently, the normal stress acting
on the mid-surface of the shell can be assumed negligible. Thus, it necessitates the development of a distinct distribution
function to address such unique feature.

The unimodal circular distribution function of material direction can be defined as [19]

ρ (n) = ρ̂ (θi , ςi ,Mi ) = exp (ςi min (θi , 2π − θi )) + exp (−ςi min (θi , 2π − θi ) + πςi )

4 (exp (πςi ) − 1)
, (4)

where θi = arccos(n · Mi ) represents the angle between the material direction n and the mean direction Mi .
The second moment of the distribution (4) is calculated as [19]

Mi =
2π∫
0

ρ (n) n ⊗ ndθi = (1 − wi )Ni ⊗ Ni + wiMi ⊗ Mi . (5)

Therein, the material direction can be expressed as n = cos θiMi + sin θiNi and the unit vector Ni is perpendicular toMi .
The coefficient wi can be expressed as follows [19]

wi =
2π∫
0

ρ̂ (θi , ςi ,Mi ) cos
2θi dθi = ς2

i + 2

ς2
i + 4

. (6)

wi denotes the area fraction of oriented material directions with two asymptotic cases wi = lim
ςi→∞

ς2
i +2

ς2
i +4

= 1 for perfectly

aligned material directions and wi = lim
ςi→0

ς2
i +2

ς2
i +4

= 1
2 for isotropically distributed material directions on the unit circle.

2.1.3 Concentration parameter

X-ray diffraction measurements show that the alignment of material directions in soft materials depends on deformation
(see, e.g., [20, 24]). To account for such evolution of the distribution function of material directions, we postulated that the
concentration parameters of the aforementioned unimodal probability distribution functions (1) and (4) are dependent on the
deformation history. Thus, a general formulation of the concentration parameter can be expressed at time t , omitting explicit
reference to the material point X, as follows [15]

ςi (t) = M
τ∈(−∞,t]

[F (τ ) ,�] , (7)
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where τ denotes a past point in time. Here, the response functionalMmaps the history of deformation into the concentration
parameter ςi , F represents the deformation gradient and � denotes an internal variable. ςi can be obtained from the inverse
function w−1

i (ςi ), where wi (ςi ) are given by Eqs. 3 or 6.
Distinct forms of the response functional M can govern various mechanisms, such as elastically non-affine deformation,

damage, or phase transition (Fig. 1). Specific formulations for each scenario will be elucidated in the subsequent part of this
series, see also [1, 16, 17, 25].

2.2 Microscopic boundary value problems

The microscopic boundary value problem for the RVE in our homogenization scheme is defined by

Div
(
P̄ (ᾱ)

) = 0, (8)

where P̄ denotes the generalized first Piola-Kirchhoff stress at the micro level and ᾱ represents the generalized microscopic
kinematic measure tensor whose eigenvalues ᾱk correspond to microscopic kinematic measures. Note that the dimensions of
P̄, ᾱ and 0 depend on the required number of microscopic kinematic measures. The constitutive law can be specified through
a free energy density function �, the definition of which will be elucidated in Sect. 2.3. Accordingly,

P̄ = ∂� (ᾱ)

∂ᾱ
. (9)

Thus, once the microscopic kinematic measures are specified, the microscopic boundary value problem can be solved.
In our homogenization scheme, the microscopic kinematic measures can be defined as the root mean square of the

macroscopic kinematic measures

ᾱk =
〈
n
αk

〉
RMS

=
[∫

S
ρ (n)

(
n
αk

)2
dS

] 1
2

, (10)

where
n
αk are the corresponding macroscopic kinematic measures.

This principlewill be exemplified through two common scenarios encountered in the analysis of softmaterials, characterized
by solid-like and shell-like structures.

2.2.1 Kinematic measures for macromolecular networks

In macromolecular networks, external forces are applied to the macromolecules via both chain ends and neighboring chains
forming topological constraints. Consequently, the RVE of such networks can be conceptualized using a tube model char-
acterized by an end-to-end distance L and a diameter D (Fig. 2). Thus, the microscopic kinematic measures for the RVE of

macromolecular networks are tube stretch �̄ = l

L
and tube contraction ϒ̄ = d2

D2 , where l and d are the length and diameter

of the tube in the current configuration, respectively. At the macroscale, the corresponding kinematic measures are the change

in length
n
� = √

C : n ⊗ n in the direction n and the change in area
n
ϒ = √

cof C : n ⊗ n of the cross-section with the normal
vector n, where C is the right Cauchy-Green tensor, and cof C = C−T detC denotes its cofactor.

Fig. 1 Illustration of the spherical
distribution function of material
directions for examples for: (a)
damage, (b) rubber elasticity, and (c)
phase transition

(a) (b) (c)
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Fig. 2 Homogenization scheme and the RVE for macromolecular networks. The filled circles indicate the cross-sections of adjacent chains

In view of Eqs. 10 and 2, two kinematic measures for macromolecular networks are given by

�̄ =
〈
n
�

〉
RMS

=
⎡
⎣C :

2π∫
0

π∫
0

ρ (n)n ⊗ n sin θi dθi dϕi

⎤
⎦

1
2

,

= [C : M]
1
2 =

[
(1 − wi )

I1
3

+ wiC : M ⊗ M
] 1

2

, (11)

ϒ̄ =
〈
n
ϒ

〉
RMS

= [cof C : M]
1
2 =

[
(1 − wi )

I2
3

+ wi cof C : M ⊗ M
] 1

2

, (12)

where I2 is the second invariant of the right Cauchy-Green tensor. It is easily seen that (11) and (12) represent two invariants
of the right Cauchy-Green tensor C with physical meaning of average stretch and average area contraction.

2.2.2 Kinematic measures for textile reinforcements

For dry textile reinforcements (such as woven fabrics and non-crimp fabrics) characterized by the presence of two yarns, the
orientation of fibers within each yarn is described by two independent random variables, denoted as m and n. When fibers
within a yarn do not align perfectly in a single direction, the dispersion of fibers around the mean direction Mi in family i
is captured by a concentration parameter ςi (i = 1, 2). Consequently, the distribution of fibers in the two families can be
written as ρ(m) = ρ̂ (m, ς1,M1) and ρ(n) = ρ̂ (n, ς2,M2), where the unimodal distribution function ρ̂ is given by Eq. 4.
Since the random variables m and n are independent of each other, the joint probability distribution of the fiber dispersion
can be written as ρ(m,n) = ρ(m)ρ(n).

Furthermore, the fibers in a textile reinforcement can be considered inextensible so that the only in-plane deformation
mode is shear. Thus, the boundary value problem for an RVE constructed by two material directions m and n is defined by
the microscopic shear deformation γ̄ (Fig. 3). At the macroscale, the corresponding kinematic measure is the sine of the shear
angle � (m,n) = C : m ⊗ n.

In view of Eq. 10, the microscopic kinematic measure of the representative volume element for textile reinforcements can
be written as

γ̄ = 〈� (m,n)〉RMS =
√√√√∫

Sn

∫
Sm

ρ (m,n) (C : m ⊗ n)2dSmdSn, (13)
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Fig. 3 Homogenization scheme and the RVE for textile reinforcements. The two yarns are in gray and green

where Sm and Sn denote the unit circles of integration.
Leveraging the identity (C : m ⊗ n)2 = C 
 C :: m ⊗ n 
 m ⊗ n = C 
 C :: m ⊗ m ⊗ n ⊗ n and employing (5), the

microscopic kinematic measure (13) transforms into

γ̄ = √
C 
 C :: M1 ⊗ M2. (14)

whereMi are the second moment of the unimodal distribution (4) for each fiber family i , and ⊗ and 
 are fourth-order tensor
products defined by (A ⊗ B) : C = ACB and (A 
 B) : C = A (B : C), respectively. The operator :: denotes the scalar
product of two fourth-order tensors [26], and wi is the area fraction of fibers in the family i .

The physical significance of the invariant (14) becomes apparent when considering orthotropic continuum media, such as
dry woven fabrics. In this case, the microscopic kinematic measure (14) can be expressed as

γ̄ =
√

((1 − w1) (1 − w2) + w1w2) |M1CM2|2 + (1 − w1) w2 I 241 + (1 − w2) w1 I 242, (15)

where I4i = C : Mi ⊗ Mi and i = 1, 2. This formulation characterizes the microscopic kinematic measure for textile
reinforcements as the average amount of shear, defined by the sine of the positive shear angle. Indeed, Eq. 15 represents a
weighted averaging of the fiber interaction between two extreme cases: fibers in both families perfectly align in their respective
preferred directions, and fibers in one family orient toward the other preferred direction.

2.3 Upscaling transition

In this section, the energetic consistency between two levels of representations is enforced by free energies at these scales.
Accordingly, the macroscopic free energy W of the material can be obtained by statistical averaging of the microscopic free
energy over the directional data domain S (i.e., unit sphere(s) or unit circle(s) for soft materials with solid-like and shell-like
structures, respectively) as

W =
∫
S

ρ (n)�

(
n
ᾱ

)
dS. (16)

Themicroscopic kinematic measures
n
ᾱk are allowed to vary around the macroscopic strain measures

M
αk through fluctuating

fields fk [27, 45, 46] as expressed by the following relation

n
ᾱk = fk

M
αk, (k = 1, 2, . . . ,m), (17)
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wherem is the number of eigenvalues of the second-order tensor
n
ᾱ. Note thatm presents the dimension of the homogenization

space, not the material body space.
It is further required that micro- and macroscopic kinematic measures take the same values after analytical averaging via

Eq. 10 as 〈
n
ᾱ

〉
RMS

= ᾱ. (18)

According to the principle of minimum potential energy in composite homogenization [7, 28, 29], fluctuation fields
represent a solution of the unconstrained optimization

max
p

min
fk

∫
S

ρ (n)�

(
n
ᾱ

)
dS + p :

(〈
n
ᾱ

〉
RMS

− ᾱ

)
, (19)

where p is the Lagrange multiplier tensor.
The minimization of the Lagrangian results in

pk = −∂W

∂ fk

1
M
αk

, (k = 1, 2, . . . ,m),

where pk are eigenvalues of p, which should not depend on the spherical coordinates. Thus, a non-affine solution of Eq. 19
is expressed by

n
ᾱk =

〈
n
ᾱk

〉
RMS

= ᾱk, (20)

independent of the random variable, where the last identity results from Eq. 18. In other words, resolving a single governing
equation in the RVE, as outlined in Sect. 2.2, is sufficient for our analytical homogenization scheme.

Furthermore, the macroscopic free energy can be expressed as

W =
∫
S

ρ (n)� (ᾱ) dS = � (ᾱ) , (21)

which results in the aforementioned microscopic constitutive law (9).

3 Non-affine deformation

In contrast to other continuous homogenizationmethods, the analytical network-averaging does not fixate on specific kinematic
measures, rendering it applicable across a broad spectrum of soft materials and deformation states. This section analyzes the
influence of the concentration parameter on the non-affine deformation in multiple contexts, including stretch and area
contraction within macromolecular networks, and shear due to fiber sliding in textile reinforcements.

To this end, the average stretch (11) and the average area contraction (12) under uniaxial tension are plotted at different
values of the concentration parameter (Fig. 4a, b). Furthermore, by considering mechanically equivalent and inextensible
fibers (i.e., w1 = w2 and I41 = I42 = 1), the average amount of shear (i.e., average sine of the positive shear angle) (15) can
be depicted across various values of ςi (Fig. 4c).

It can be seen that in all scenarios, affine deformation only occurs at ςi = ∞, signifying perfect alignment of material
directions. Of particular interest is the microscopic amount of shear γ̄ at the reference configuration when ςi takes a positive
but finite value. This non-zero amount of shear at the reference state is attributed to the fiber dispersion. Moreover, in case

of isotropic fiber distribution, represented by ςi = 0, the mathematically expected positive shear angle is
π

4
, resulting in

γ̄ (C = I) = 1√
2
. Note that such a rigorous interpretation of non-affine deformation is, to the best of our knowledge, absent

in other continuous homogenization schemes.
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Fig. 4 (a) Microscopic stretch and (b) microscopic area contraction under uniaxial tension; (c) microscopic amount of shear at different values of
the concentration parameter

4 Material objectivity andmaterial symmetry

In accordance with Noll’s seminal work [30], stress response functions must adhere to certain constitutive principles to ensure
their reliability for data analysis. These include the principle ofmaterial objectivity (invariance under observer transformations)
and the concept of material symmetry (invariance under orthogonal transformation of the reference configuration within the
symmetry group Go). It is easily seen that all proposed kinematic measures (11), (12) and (15) are defined in terms of C
which is invariant under observer transformations, therefore stress response functions expressed in terms of those invariants
automatically fulfil the principle of material objectivity.

Soft materials’ constitutive formulations defined on the basis of our homogenization scheme are characterized by the
following symmetry group

Go =
{
Q ∈ Orth | QMi ⊗ MiQT = Mi ⊗ Mi

}
,

123



    5 Page 10 of 18

where i = 1, 2, . . . , n with n representing the number of mean directions utilized in the homogenization scheme and Orth
is the three-dimensional orthogonal tensor space.

The microscopic kinematic measures obtained from the analytical network-averaging (11), (12) and (15) guarantee a priori
that rotations and reflections determined by orthogonal tensors among the symmetry group Go do not affect the response
function of the constitutive formulations. Indeed, it can be shown that

�̄
(
QCQT,QMi ⊗ MiQT

)
= �̄ (C,Mi ⊗ Mi ) ,

ϒ̄
(
QCQT,QMi ⊗ MiQT

)
= ϒ̄ (C,Mi ⊗ Mi ) ,

γ̄
(
QCQT,QM1 ⊗ M1QT,QM2 ⊗ M2QT

)
= γ̄ (C,M1 ⊗ M1,M2 ⊗ M2) ∀Q ∈ Go.

In conclusion, stress response functions (21) inherently adhere to thematerial objectivity andmaterial symmetry principles.

5 Thermodynamics of internal variables

Constitutive theories concerning macromolecular networks often employ maximal principal stretches acquired during defor-
mation history as internal variables [31]. It is now widely accepted that such internal variables capture independent damage
mechanisms across different principal directions of deformation. In particular, such anisotropic damage is very pronounced
in filled elastomers [15, 32]. Nevertheless, in materials involving multiple networks, such as double-network hydrogels [33],
these mechanisms are not present due to the interpenetration of the networks. Recent multi-axial experimental findings [34]
have revealed a damage cross-effect in double-network hydrogels, characterized by the simultaneous influence of damage
history in one direction on the damage in other directions. This section illustrates how a straightforward implementation of our
microscopic kinematic measures within a thermodynamical framework of internal variables provides a physical interpretation
of the damage cross-effect in double-network hydrogels.

To this end, let the maximal microstretch �̄max
i previously reached in the deformation history of double-network hydrogels

be defined by [18]

�̄max
i = max

τ∈(−∞,t]�̄i (τ ) , (22)

where i = 1, 2, 3 specifies the index of the principal direction of the right Cauchy-Green tensor, while the microscopic stretch
�̄i is defined by Eq. 11. Thus, �̄max

i serve as internal variables whose evolution law results from the principle of maximum
damage dissipation [15, 25, 35].

For illustrative purposes, one may consider the following directional damage function [18]

Di = 1 − �0 exp

(
ᾱ

4π

[
n̄ sin

2π�̄max
i L̄

n̄
− 2π�̄max

i L̄

])
, i = 1, 2, 3, (23)

where �0 = exp
(

ᾱ
4π

[
2π L̄ − n̄ sin 2π L̄

n̄

])
is the normalization factor. ᾱ, n̄ and L̄ denote here positive material parameters

whose physical meaning can be found in [18].
The damage cross-effect can be understood by analyzing the evolution of directional damage Di under a pure shear

experiment with stretch ratio up to 2.5 (Fig. 5). Note that damage occurs in the second direction (Fig. 5b — top), despite
being constrained (Fig. 5a). Conversely, in models based on maximal principal stretches, no damage happens in the second
(unstretched) direction (Fig. 5b — bottom). In the context of double-network hydrogels, our homogenization scheme cap-
tures such damage cross-effect through the volume fraction of the first network, wi = 0.35, which signifies the degree of
interpenetration between the two networks. In an extreme scenario of a material with only a single network (wi = 1), the
damage mechanism exhibits independent behavior across different directions, a trend consistently supported by experimental
observations [32].
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Fig. 5 Difference between damage cross-effect and independent damage mechanisms: (a) deformation history, the sample is subject to a cycle of
pure shear; (b) top: damage cross-effect in models based on our microscopic kinematic measure with wi = 0.35 (ᾱ = 20, n̄ = 15 and L̄ = 1); (b)
bottom: independent damage in models using maximal principal stretches

6 Isotropic application

This section presents a simple example elucidating the application of the analytical network-averaging concept to model
unfilled rubbers.

6.1 Microscopic kinematic measures

For an isotropic solid-like material, the directional distribution function takes the form (1) with concentration parameter
ςi = 0, which results in (Fig. 1b)

ρ (n) = 1

4π
. (24)

According to Section 2.2.1, the RVE of the rubber network is a tube with two kinematic measures: microscopic stretch �̄

and microscopic area contraction ϒ̄ . In view of Eqs. 3, 11 and 12, these microscopic kinematic measures are given by

�̄ =
√

I1
3

, (25)

ϒ̄ =
√

I2
3

. (26)

It can be seen that the microscopic stretch in this instance coincides with the formulations proposed by Beatty [6], the
4-chain model [36] and the 8-chain model [37]. Nevertheless, our model diverges from theirs due to a distinct choice of the
RVE, which incorporates an additional pivotal kinematic measure ϒ̄ .
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6.2 Constitutive formulation

The free energy of the rubber network can be postulated as [1]

� = μcn ln
sin

π√
n

· �̄

sin

(
π√
n
�̄

) + μt
[
ϒ̄ − 1

]
. (27)

where μc is the phantom shear modulus, n is the average number of chain segments in the representative tube, and μt is
the topological shear modulus. In (27), a non-Gaussian free energy, as proposed by Khiêm and Itskov [1], is used instead of
the classical inverse-Langevin based strain energy. This is motivated by two key factors: (1) such non-Gaussian free energy
derives from a closed-form representation of the non-Gaussian distribution [38], and (2) it ensures quadratic convergence in
finite element computations [1].

By regarding unfilled rubber as incompressible, the principal nominal stress can be formulated as

Pi = μc

3

[
n

�̄
− π

√
n cot

π�̄√
n

]
�i

�̄
+ μt

3

�i

ϒ̄

[
�2

j + �2
k

]
− pc

�i
, (28)

where i �= j �= k �= i = 1, 2, 3 and pc is a Lagrange multiplier resulting from the incompressibility constraint.

6.3 Results

In this section, the performance of the proposed model is validated by comparison with various sets of experimental data from
[39–41] and unfilled silicone rubbers [42].

First, the material constantsμc, n, andμt are found (Table 1) by training (27) with experimental data by Treloar on uniaxial
tension, pure shear and equibiaxial tension of vulcanized rubbers containing 8phr sulfur [39]. To emphasize the significance of
selecting an appropriate RVE for the homogenized constitutivemodel (Sect. 2.2), the predictive capability of the 8-chainmodel
[37] is demonstrated following its training using the identical dataset. Note that the 8-chain model demonstrates limitations
in its performance (Fig. 6b), attributable to an improper choice of microscopic kinematic measures, which solely relies on I1.
In contrast, the Treloar data can be perfectly fitted by our model (Fig. 6a).

Next, we tested our model on a series of biaxial tension data [40], employing the same set of material parameters.
The rubber samples in both experiments [40] and [39] were reported to have similar chemical composition and mechanical

response [43]. The biaxial tension experiments were conducted under various fixed values of stretch �1, with concurrent
adjustments to the stretch �2 in the orthogonal direction, transitioning from uniaxial tension to equibiaxial tension. One
observes relatively good agreement between predictions of the model (27) with testing data (Fig. 7). Note that the present
model exhibits a slight underperformance in these tests when compared to the original model by Khiêm and Itskov [1], which
is likely due to a simpler stress hypothesis. Interested readers are directed to [15] for a comprehensive exploration of the
underlying physics governing the stress hypothesis.

Second, the model is evaluated in comparison to experimental data by Yeoh and Flaming [41]. This dataset comprises
a series of tension, compression and simple shear experiments performed on vulcanized natural rubbers differing solely in
amounts of curatives (sulfur and accelerator): 0.5 (A), 1.0 (B), 1.5 (C) and 2.0 phr (D). Thus, it is anticipated that the phantom
shearmodulus will be proportional to the amount of sulfur and accelerator present. Furthermore, the number of chain segments
in the model (27) can be directly derived from the macro-stretch at failure �rupture (under uniaxial tension) as a result of the
chain extensibility limit [1]. Accordingly,

n = �2
rupture

3
+ 2

3�rupture
. (29)

Therein, the macro-stretches at rupture �rupture were determined according to the ASTM D412 standard [41].

Table 1 Model parameters for
Treloar’s data

μc[MPa] n μt[MPa]
0.2367 24.9591 0.2020
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Fig. 6 Predictions of (a) the model (27) and (b) the 8-chain model versus Treloar’s data [39]

In order to verify this concept, two material constants μc and μt of the model are found by training with the experimental
data from sample D (see Fig. 8). Subsequently, to predict the behavior of samples A, B, and C, the phantom shear moduli are
further considered linearly dependent on the amount of curatives as follows

μc(i) = μcDϕ(i), (30)

where ϕ(i) = Nc0(i)

Nc0D
denotes the ratio between curative contents, and i = A,B,C. Furthermore, recent molecular dynamics

simulation demonstrated that the topological shear modulus remains constants for cross-linked networks with low network
density [44], so that μt(i) = μtD = 0.22. The so-obtained values of material constants are given in Table 2.

Fig. 7 Testing of the model (27) on a series of biaxial tensions by [40]: (a) at small values of �1, and (b) at large values of �1. Material constants
used in this calibration are given in Table 1
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Fig. 8 Training of the proposed model versus stress-strain responses of sample (D) from the experiments by [41]. Fitted parameters: μc =
0.4082[MPa] and μt = 0.220[MPa] (cf. [1])

Table 2 Model parameters for Yeoh’s
data

Sample μc[MPa] n μt[MPa] �AST M
rupture

D 2.0phr 0.4082 12.9209 0.2200 6.2

C 1.5 0.3062 15.5114 0.2200 6.8

B 1.0 0.2041 20.8877 0.2200 7.9

A 0.5 0.1021 21.9523 0.2200 8.1

Fitted parameters are italicized

Fig. 9 Testing of the proposed model versus stress-strain responses of samples (A), (B) and (C) versus experimental data by [41]: (a) uniaxial
tension, and (b) simple shear
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Fig. 10 Evaluation of the model prediction with the experimental data [42] in training: (a) equibiaxial tension, (b) constrained compression, (c)
constrained tension, and testing: (d) uniaxial tension and compression

Despite using only two fitting parameters, relatively good agreementwith experimental results can be observedwhen testing
with samples A, B, and C (see Fig. 9). By means of Eqs. 29 and 30, the model demonstrates the capability to forecast the
mechanical response of the same rubber compound across various network densities using only one set of fitting parameters.
Slight discrepancy between the model prediction and the experimental data at large strain could be due to chain alignment
resulting from strain-induced crystallization in natural rubbers (see Eq. 3 and further details in [17]), a factor not accounted
for within (27).

Finally, the model is trained with experimental data by Meunier et al. [42] encompassing constrained compression and
tension (pure shear), and equibiaxial tension of an unfilled silicone rubber (see Fig.10a–c). The resultant material parameters
are given in Table 3. It is worth mentioning that silicone rubber, containing Si atoms in its backbone, classifies as an inorganic

Table 3 Model parameters for
Meunier et al.’s data

μc[MPa] n μt[MPa]
0.2438 4.1357 0.0012
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polymer. Consequently, the average number of chain segments for this rubber is significantly lower than that of organic
polymers (cf. Table 1).

Furthermore, predictive performance of themodel, evaluated against testing data from tensile and compressive experiments
on the same rubber as depicted in Fig. 10d, demonstrates its generalization capacity.

7 Conclusion

In this paper, we presented a comprehensive review of the theoretical foundation of the analytical network-averaging homoge-
nization framework. It highlighted three fundamental constituents of our continuous homogenization approach: the directional
random variable, its generally anisotropic distribution function, and the boundary value problem associated with the RVE
of the material microstructure. We assert that validation of these constituents, whether through experimental or theoretical
domain expertise, ensures the applicability of the proposed homogenization scheme and yields stress response functions that
are both interpretable and physically meaningful. By a priori guaranteeing non-affine deformation, material objectivity, and
material symmetry, our framework enhances its utility in diverse soft materials characterized by both solid-like and shell-like
behavior. Furthermore, by extending the theory to encompass the thermodynamics of internal variables, we facilitated the
interpretation of phenomena such as the newly observed damage cross-effect, a distinctive feature of modern soft materials
like multiple-network hydrogels. To further demonstrate the interpretability of the constitutive formulation derived from our
homogenization scheme, we presented an illustrative modeling example focusing on isotropic nonlinear elasticity. This exam-
ple was applied to multi-axial experimental data obtained from a diverse range of unfilled rubbers. It is important to emphasize
that regardless of the efficacy or limitations observed in the evaluation of the model, such outcomes are always explainable
using our homogenization scheme. We contend that such interpretability, rather than fitting capability, is paramount in the
age of data science, as it is what humans truly learn from data.
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