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Abstract
In the paper Itskov (Mechanics of SoftMaterials 6:1, 20242), he gave a counterexample to show that elements of the functional
basis by Shariff (Q. J. Mech. Appl. Math. 76, 143–161, 2023) do not represent isotropic invariants of the vector and tensor
arguments and cannot thus be referred to as the functional basis. In this paper, we prove that his counterexample is incorrect.

1 Preliminary

Definition: A functional basis of a vector and tensor system is a set of their isotropic invariants such that every invariant can
uniquely be expressed in terms the basis. Since Itskov’s [1] paper only deals with two symmetric tensors, A1 and A2, any
scalar-valued isotropic function (invariant) of these tensors should satisfy the condition

f (A1, A2) = f (QA1QT , QA2QT ) , ∀Q ∈ Orth3 , (1)

where Orth3 denotes a group of all orthogonal transformations within the three-dimensional Euclidean space and QQT =
QT Q = I (the identity tensor). See also the Appendix.
The “classical" functional basis for tensors A1 and A2 contains, for example, the isotropic invariants [2]

tr A1 , tr A2
1 , tr A3

1 , tr A2 , tr A2
2 , tr A3

2 , tr(A1A2) , tr(A2
1A2) , tr(A1A2

2) , tr(A2
1, A

2
2) , (2)

where tr denotes the trace of a tensor.
The spectral functional basis of these two tensors [7] contains the isotropic invariants

λi , A(2)
i j = tr[A2(vi ⊗ v j ] = vi · A2v j , (3)

where λi and vi are, respectively, the eigenvalues and orthonormal eigenvectors of A1, i.e.,

A1 =
∑

i=1

λivi ⊗ vi (4)
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and we can express

A2 =
3∑

i, j=1

A(2)
i j vi ⊗ v j . (5)

It is shown in Shariff [7] all "classical" invariants such as those given in Eq. 2 can be explicitly expressed in terms of Shariff
[7] spectral invariants. For example, the classical invariant

tr A2
2 =

3∑

i, j=1

A(2)
i j A(2)

j i , tr A1A2 =
3∑

i=1

λi A
(2)
i i , (6)

Hence, λi , A
(2)
i j are spectral elements of a functional basis for the tensor set {A1, A2}.

In Shariff [6], he showed that spectral invariants (such as λi , A
(2)
i j ) can be expressed in terms of "classical invariants" (such

as those given in Eq. 2).
Itskov [1] claimed, via a counterexample, that the scalars A(2)

i j are not isotropic invariants. In this paper, we debunk Itskov’s
claim, but before we invalidate Itskov’s [1] counterexample, a few simple basic examples are given below to facilitate our
discussion and for clarity.

2 Examples

2.1 Example 1

Let B and C be tensors. The scalar function

f (B,C) = tr(BC) (7)

is a scalar-valued isotropic function since

f (QBQT , QC QT ) = tr QBQT QC QT = tr QBC QT = trBC QT Q = trBC = f (B,C) , ∀Q ∈ Orth3 .

2.2 Example 2

Let B be a symmetric tensor and C = a⊗ b, where ⊗ is the dyadic product, and a and b are arbitrary vectors. Consider the
function

f (B, a, b) = tr[B(a ⊗ b)] = a · Bb = b · Ba . (8)

It is clear f (B, a, b) is a scalar-valued isotropic function since

f (QBQT , Qa, Qb) = Qa · QBQT Qb = a · Bb = f (B, a, b) , ∀Q ∈ Orth3 . (9)

2.3 Example 3

In view of Eq. 4, the eigenvalues

λi (A1) = f (A1, vi ) = tr[A1(vi ⊗ vi )] = vi · A1vi , i not summed . (10)

The eigenvalues are isotropic function since

f (QA1QT , Qvi ) = Qvi · QA1QT Qvi = vi · A1vi = f (A1, vi ) , ∀Q ∈ Orth3 . (11)
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Equation 11 is true even if the eigenvectors of A1 are not unique.

2.4 Example 4

In view of Eq. 32, we have

A(2)
i j = f (A2, vi ) = tr[A2(vi ⊗ v j )] = vi · A2v j . (12)

A(2)
i j are isotropic invariants, since

f (QA2QT , Qvi ) = Qvi · QA2QT Qv j = vi · A2v j = f (A2, vi ) , ∀Q ∈ Orth3 . (13)

Equation 13 is true even if the eigenvectors of A1 are not unique. This example clearly proves that A(2)
i j are isotropic

invariants; hence, no counterexample, including Itskov’s counterexample, can prove that they are not isotropic invariants. For
example, Pythagoras theorem has been proven to be correct; no counterexample can prove that the theorem is incorrect. This
clearly contradicts Itskov’s [1] claim that A(2)

i j are not isotropic invariants.

2.4.1 Remark

We emphasize that in Examples 3 and 4, λi and the scalar A(2)
i j are traces of two tensors, i.e.

λi = tr[A1(vi ⊗ vi )] , A(2)
i j = tr[A2(vi ⊗ v j )] . (14)

The fact that traces of tensors are isotropic invariants simply proves that λi and the scalar A(2)
i j are isotropic invariants

according to the definition (1).

2.5 Example 5

Consider the orthogonally transformed tensors

A′
1 = QA1QT = Q(

3∑

i=1

λivi ⊗ vi )QT =
3∑

i=1

λi Qvi ⊗ Qvi ,

A′
2 = QA2QT = Q(

3∑

i, j=1

A(2)
i j vi ⊗ v j )QT =

3∑

i, j=1

A(2)
i j Qvi ⊗ Qv j , ∀Q ∈ Orth3 . (15)

Note that A1 in Eq. 4 and A2 in Eq. 5 are both expressed using the basis S = {v1, v2, v3} (reference basis), and A′
1

and A′
2 in Eq. 15 are expressed using the basis S′ = {Qv1, Qv2, Qv3} (rotated basis). It is clear from above (and we

strongly emphasize) that the S-invariant components λi and A(2)
i j of A1 and A2, respectively, are the same as the S′-invariant

components of A′
1 and A′

2, respectively. Furthermore, we can express

A′
2 =

3∑

i, j=1

A′(2)
i j Qvi ⊗ Qv j =

3∑

i, j=1

Ā′(2)
i j vi ⊗ v j , (16)

where

A′(2)
i j = Qvi · A′

2Qv j = Qvi · (QA2QT )Qv j = vi · A2v j = A(2)
i j (17)

and

Ā′(2)
i j = vi · A′

2v j = vi · QA2QT v j �= A(2)
i j . (18)
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It is obvious in Eq. 18 that the S components Ā′(2)
i j of A′

2 are not isotropic functions and their values change with respect
to different values of Q; this fact is important because Itskov’s counterexample uses the reference basis S (instead of the

rotated basis S′) to describe the transformed tensor A′
2 and hence obtained the tensor components Ā′(2)

i j that are not isotropic
functions.

2.6 Example 6

Consider the special case

A2 =
3∑

i=1

λ̄i vi ⊗ vi = λ̄1 v1 ⊗ v1 + λ̄2 v2 ⊗ v2 + λ̄3 v3 ⊗ v3 . (19)

We then have

A′
2 = QA2QT =

3∑

k=1

λ̄k Qvk ⊗ Qvk . (20)

It is clear from Eqs. 19 and 20 that the S-invariant components λ̄i of A2 and the S′-invariant components of A′
2 are the

same. This is as expected, since λ̄i are eigenvalues of A2, they are isotropic functions and their values should not change.
However if we express A′

2 in using the reference basis S, we obtain

A′
2 =

3∑

i, j=1

(vi · A′
2v j ) vi ⊗ v j , (21)

where on using Eq. 20

vi · A′
2v j =

3∑

k=1

λ̄k(vi · Qvk)(v j · Qvk) . (22)

It is clear from Eq. 22 that the tensor components vi · A′
2v j are not isotropic functions. For example, consider the special

case for Q given in Itskov’s [1] Eq. 7, we have

Qv1 = −v2 , Qv2 = v1 , Qv3 = v3 , (23)

we have from Eqs. 22 and 23

A′
2 = λ̄2 v1 ⊗ v1 + λ̄1 v2 ⊗ v2 + λ̄3 v3 ⊗ v3 , (24)

where the tensor components of A2 in Eq. 19 are not the same as those of A′
2 in Eq. 24.

2.7 Important remark

To avoid confusion, especially when two or more eigenvalues have the same value, we write

A1(λ1, λ2, λ3, v1, v2, v3) = λ1v1 ⊗ v1 + λ2v1 ⊗ v2 + λ3v3 ⊗ v3 , (25)

with the following symmetrical properties,

A1(λ1, λ2, λ3, v1, v2, v3) = A1(λ2, λ1, λ3, v2, v1, v3) = A1(λ3, λ2, λ1, v3, v2, v1) = etc . (26)
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and

QA1QT = λ1Qv1 ⊗ Qv1 + λ2Qv1 ⊗ Qv2 + λ3Qv3 ⊗ Qv3 = A1(λ1, λ2, λ3, Qv1, Qv2, Qv3) . (27)

For example, the identity tensor, where the eigenvalues have the same value,

I = A1(λ1 = 1, λ2 = 1, λ3 = 1, v1, v2, v3) (28)

and

QI QT = A1(λ1 = 1, λ2 = 1, λ3 = 1, Qv1, Qv2, Qv3) . (29)

Consider the case when Qvi take the values given in Eq. 23. We then have

QI QT = A1(λ1 = 1, λ2 = 1, λ3 = 1,−v2, v1, v3) = A1(λ1 = 1, λ2 = 1, λ3 = 1, v1, v2, v3) . (30)

In Itskov’s counterexample, discussed below, he used the incorrect relation A1(λ1 = 1, λ2 = 1, λ3 = 1, v1, v2, v3)
for QI QT and hence, used the incorrect eigenvectors vi to evaluate the components of QA2QT instead of the correct
eigenvectors Qvi .

We are now in position to address Itskov’s [1] counterexample.

3 Itskov’s counterexample

In Itskov’s paper, [1] he uses

A1 = I , (31)

In view of the repeated eigenvalues λ1 = λ2 = λ3 = 1, the eigenvectors of A1 are not unique. A1 can be represented by
infinitely many different bases associated with different orthonormal eigenvectors, i.e.,

A1 = I =
3∑

i=1

vi ⊗ vi =
3∑

i=1

v̄i ⊗ v̄i =
3∑

i=1

v̂i ⊗ v̂i = etc. , (32)

where the bases {v1, v2, v3}, {v̄1, v̄2, v̄3}, {v̂1, v̂2, v̂3} etc. are different.
Consider, for example, the case v̄i = Qvi . For Q �= I , some of the v̄i �= vi and the bases S = {v1, v2, v3} and

S′ = {v̄1, v̄2, v̄3} are different. In Itskov’s paper, he lets vi = ei and Q is given in his Eq. 7. We then obtain

v̄1 = −e2 , v̄2 = e1 , v̄3 = e3 , (33)

which gives the basis S′ = {−e2, e1, e3} and it is not the same as the basis S = {e1, e2, e3}. Itskov expresses

A1 = I =
3∑

i=1

ei ⊗ ei . (34)

We then have

A′
1 = QA1QT =

3∑

i=1

Qei ⊗ Qei =
3∑

i=1

v̄i ⊗ v̄i = A1(λ1 = 1, λ2 = 1, λ3 = 1,−e2, e1, e3)

= A1(λ1 = 1, λ2 = 1, λ3 = 1, e1, e2, e3) (35)
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(see Section 2.7).
In view of Eq. 32, we have A′

1 = A1. However, it is important to note that although A′
1 = A1, their bases are not unique.

This contradicts Itskov’s statement ST:
“Due to the fact that A′

1 = A1 the eigenvectors (5) remain unchanged."
Hence, Itskov’s statement ST is false and he contradicts his own statement in the last paragraph of his paper stating that

“Alternatively, the students can use arbitrary orthonormal bases since every of them represents a set of eigenvectors of the
identity tensor A1."

Alternatively, without using basis, we can show that A′
1 = A1, via the relations A′

1 = QA1QT = QI QT = I = A1. In
Itskov’s paper,

A2 =
3∑

i=1

A(2)
i j ei ⊗ e j , A(2)

i j = ei · A2e j . (36)

For A′
2, we have

A′
2 = QA2QT =

3∑

i=1

A(2)
i j v̄i ⊗ v̄ j . (37)

It is clear from Eqs. 362 and 37 that A
(2)
i j remain unchanged under the orthogonal transformation given in Eq. 7 of Itskov’s

paper. In fact Section 2.4 proves that the values of A(2)
i j remain unchanged under any orthogonal transformation, provided

that A′
2 is described by the basis S

′ = {Qv1, Qv2, Qv3}. However, we strongly make a point that Itskov incorrectly uses the
basis S (instead of correctly using the basis S′ for A′

1—see Section 2.7) to represent A′
2, i.e.,

A′
2 = QA2QT =

3∑

i=1

Bi j ei ⊗ e j , Bi j = ei · (QA2QT )e j . (38)

Thematrix given in the author’s Eq. 8 is Bi j (there is a typo in Itskov’s Eq. 8, A′
2 = QA1QT should be A′

2 = QA2QT ).

Note that the “tensor" components A(2)
i j are isotropic invariants, and it is clear fromEq. 382 that Bi j are not isotropic invariants,

Bi j �= A(2)
i j and, clearly, the Bi j values depend on the values of Q, as exemplified in Itskov’s Eq. 8.

4 Proof by contradiction

4.1 Proof 1

In this section, we use

A1 =
3∑

i=1

ei ⊗ ei , A2 =
3∑

i=1

λ̄i ei ⊗ ei , (39)

instead of A2 given in Itskov’s Eq. 4 to invalidate his counterexample by proving (via contradiction) that if Itskov’s coun-
terexample is correct then the eigenvalues λ̄i are not isotropic functions. For simplicity, we let the eigenvalues λ̄i to take the
values

λ̄1 = 1 , λ̄2 = 2 , λ̄3 = 3 (40)

We note that

λ̄i = A(2)
i i , A(2)

i j = 0 , i �= j . (41)
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Since λ̄i are isotropic invariants, A
(2)
i i are also isotropic invariants (another example showing that A(2)

i j are isotropic scalar
functions). With respect to the basis S′ = {Qe1, Qe2, Qe3}, we have, for the transformed tensor,

A′
2 = QA2QT =

3∑

i=1

λ̄i Qei ⊗ Qei = 1Qe1 ⊗ Qe1 + 2Qe2 ⊗ Qe2 + 3Qe3 ⊗ Qe3 , (42)

for Q given in Itskov’s (7). Since λ̄i are isotropic invariants, their values are not expected to change in the transformed tensor,
as shown in Eq. 42. However, Itskov uses the basis S = {e1, e2, e3} for A′

2. Following the work given in Section 2.6, we
obtain

A′
2 = QA2QT = 2e1 ⊗ e1 + 1e2 ⊗ e2 + 3e3 ⊗ e3 , (43)

which implies

λ̄1 = 2 , λ̄2 = 1 , λ̄3 = 3 . (44)

Hence, if the basis S is assumed to be the corret basis for the transformed tensor, then the different values of the eigenvalues
given in Eqs. 40 and 44 show that the eigenvalues λ̄i are not isotropic invariants: This false conclusion further invalidate
Itskov’s counterexample.

4.2 Proof 2

In this section, we prove that an existence of a non-isotropic function A(2)
i j leads to a self-refuting result.

Proof. Assuming, as claimed by Itskov, there exist a set of eigenvectors {g1, g2, g3} that indicates that A(2)
i j (gi ⊗ g j , A2)

are not isotropic functions. Since

A(2)
i j (gi ⊗ g j , A2) = gi · A2g j = Qgi · QA2QT Qg j = A(2)

i j (Qgi ⊗ g j Q
T , QA2QT )

which proves that A(2)
i j are isotropic invariants.

5 Remark

Let, for example, a free energy function

We = W̄ (A1, A2) = W̄ (QA1QT , QA2QT ) = W (λi , A
(2)
i j ) . (45)

As explained in the literature [3, 4, 7, 8], it is important to note W must contain spectral invariants that satisfy the P-
property, to deal with symmetry and coalescence of eigenvalues. For example, a general spectral invariant to describe W is
of the form [5]

I =
3∑

i=1

g(λi )vi · Tvi , (46)

where T is a second-order tensor. For example, the invariants

tr A2
2 =

3∑

i, j=1

A(2)
i j A(2)

j i , g(λi ) = 1 , T = A2
2 , (47)

tr(A1A2) =
3∑

i=1

λi A
(2)
i i , g(λi ) = λi , T = A2 , (48)

tr A2
1 =

3∑

i=1

λ2i , g(λi ) = λ2i , T = I . (49)
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In Shariff [8], it is shown that all “classical" invariants can be explicitly expressed in terms of the spectral invariants
developed in [8].

6 Subjective student scenario

We personally believe that if one has given a robust and correct counterexample, then one need not give a subjective scenario,
such as the student scenario given in [1], to further justify one’s counterexample. Since, the student scenario is subjective,
we are reluctant to address it. However, for the readers’ benefit, we will discuss it in this section. We strongly emphasize that
such a subjective scenario does not prove whether a scalar function is isotropic or not. For example, consider two students
who do not know each other and are asked independently to construct the “classical" functional basis for A1 and A2. Since
they do not know each other, there is a possibility that student 1 will construct the functional basis given in Eq. 2 and student
2 will construct the functional basis

I1 , I2 , I3 , tr A3
2 , tr(A1A2) , tr(A2

1A2) , tr(A1A2
2) , tr(A2

1, A
2
2) , (50)

where

I1 = tr A1 , I2 = λ1λ2 + λ1λ3 + λ2λ3 , I3 = λ1λ2λ3 . (51)

They were then asked to evaluate the values of their invariants for A1 and A2 given in Itskov (4). Student 1 will obtain the
values

tr A1 = tr A2
1 = tr A3

1 = 3 , etc. (52)

and student 2 will obtain the values

I1 = I2 = 3 , I3 = 1 , etc. . (53)

The different numerical values in Eqs. 52 and 53 may make the students think that elements of their functional basis are
not isotropic functions. The above different values do not prove, at all, that the classical invariants are not isotropic functions.
A similar but somewhat different situation occurs in Itskov’s student scenario.

Itskov constructs a scenario, where student 1 is asked to obtain the components of A1 and A2, and student 2 to obtain the
components of A1(= A′

1) and A′
2. He has given the condition the students do not know each other and are asked independently

to calculate the spectral invariants (3). We discuss this via the following two scenarios, taking note that A1 and A2 are those
given in Itskov (4) and Q is given in Itskov (7).
Scenario 1: Students 1 and 2, by chance (or cheated), both use the same eigenvectors ei for A1 = I .

Student 1, using the reference basis S = {e1, e2, e3}, will obtain the spectral invariants λi = 1 , A(2)
i j , for, respectively,

A1 and A2, and student 2, using the correct the rotated basis S′ = {Qe1, Qe2, Qe3}, will also obtain the same spectral
invariants λi = 1 and A(2)

i j for, respectively, A′
1 and A′

2. However, if by mistake student 2 (thinking that the identity tensor I
has a unique basis and assuming that the bases S and S′ are the same) uses the unrotated basis S for A′

1 and A′
2, he/she will

then obtain different tensor components Bi j = ei · (QA2QT )e j �= A(2)
i j for A2. This scenario does not prove that A(2)

i j are
not isotropic invariants
Scenario 2: Since A1 = I has infinitely many bases, there is a high probability that students 1 and 2 will use different
eigenvectors to describe A1. For example, student 1 will use

A1 =
3∑

i=1

ei ⊗ ei (54)
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and obtain the components A(2)
i j for A2. Student 2 will use

A1 =
3∑

i=1

ēi ⊗ ēi , ēi �= ei (55)

and obtain Ā(2)
i j = ēi · A2 ē j for A2. Student 2, using the correct rotated basis S′ = {Qē1, Qē2, Qē3}, will also obtain Ā(2)

i j

for A′
2. Although Ā(2)

i j �= A(2)
i j , this scenario does not prove that invariants Ā(2)

i j and A(2)
i j are not isotropic invariants: Both

of them are isotropic invariants as exemplified in Section 2. It is important to note that, as explained in Section 5 (see also
reference [5]), to satisfy the P-property the spectral invariants must be of the form Eq. 46. Consider the following examples
(for λi = 1):

I =
3∑

i=1

g(λi )A
(2)
i i =

3∑

i=1

g(λi ) Ā
(2)
i i = g(1)tr A2 ,

tr(A1A2) =
3∑

i=1

λi A
(2)
i i =

3∑

i=1

λi Ā
(2)
i i =

3∑

i=1

A(2)
i i =

3∑

i=1

Ā(2)
i i = tr A2 , (56)

where they have the same values even though Ā(2)
i j �= A(2)

i j .

Important: Even though A(2)
i j have different values for different coordinate systems (material frames), in view of the P-

property [5], they will give the same values for the strain energy or stresses at the same strain. Spectral invariants, such
as A(2)

i j , together with the P-property, have been used in the literature (see reference [8] and references within) to model
mechanical behaviors in solid mechanics.

7 Conclusion

Itskov’s [1] objective is to prove, via a counterexample, that Shariff spectral invariants [7] are not isotropic scalar functions. In
Section 3 (also in Section 2.4), we prove that his counterexample is wrong because, from his statement “Due to the fact that
A′
1 = A1 the eigenvectors (5) remain unchanged," he incorrectly assumes that the basis for the identity tensor I is unique;

hence, he uses the reference basis (instead of the rotated basis) to evaluate the transformed tensors and obtains an incorrect
result. In Section 2 and in the literature [6, 7], we have shown that Shariff spectral invariants are isotropic scalar functions. In
Section 6, we address the subjective students’ scenario.

Appendix

In view of Eq. 4, we can write

f (A1, A2) = g(λ1, λ2, λ3, v1, v2, v3, A2) , (A1)

with the symmetry property

g(λ1, λ2, λ3, v1, v2, v3, A2) = g(λ2, λ1, λ3, v2, v1, v3, A2) = g(λ3, λ2, λ1, v3, v2, v1, A2) = etc. . (A2)

Since g is an isotropic scalar function, we have,

g(λ1, λ2, λ3, v1, v2, v3, A2) = g(λ1, λ2, λ3, Qv1, Qv2, Qv3, QA2QT ) , ∀Q ∈ Orth3 . (A3)

Since vi · v j = δi j (the Kronecker delta), we then have, the basis containing the spectral elements

λi , A(2)
i j (A4)
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that are isotropic functions.
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