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Abstract
This study investigates the capability of micromechanical models of rubber elasticity to predict the deformation behaviour 
of soft materials under various modes of deformation. The free energy of individual chains is decomposed into a freely 
fluctuating chain contribution and a tube contribution representing topological constraints. Full-network averaging over all 
chain orientations is considered, along with three-chain and eight-chain approximations. The performance of various tube 
formulations is analysed in relation to their implicit (or in some cases explicit) dependence on the second invariant I2. We 
show that micromechanical models that involve the area-stretch of the macroscale continuum lead to I2 dependence when 
combined with the full-network averaging scheme, whereas micromechanical models that only involve the line-stretch of the 
continuum show much weaker I2 sensitivity. However, I2 sensitivity can emerge from line-stretch–based micromechanical 
models when three-chain averaging is used. Comparisons between model predictions and experimental data confirm the 
direct correlation between strong I2 sensitivity and fitting performance. Overall, our study suggests that micromechanical 
models of rubber elasticity should involve both the line-stretch and the area-stretch to elicit I2-dependent behaviour and 
reproduce experimental trends.

Keywords  Hyperelasticity · Rubber-like materials · Full-network model · Orientation averaging · Second strain invariant · 
Micromechanics

1  Introduction

Models of rubber elasticity can be broadly classified into two main groups: phenomenological models, and micromechanical 
models. Phenomenological models are obtained by constructing a free energy function written in terms of principal stretches 
or invariants in order to fit experimental stress–strain curves. In contrast, micromechanical models are obtained by averag-
ing the response of representative chains sampling the orientation space. In principle, micromechanical models can provide 
insights into structure–property relationships, and thus serve as a guide for the design of rubber-like materials. They also 
provide a framework to investigate phenomena where directional effects are significant, such as damage-induced anisotropy 
[13] or strain-induced crystallisation [10]. However, they often come at a higher computational cost, while their ability to 
outperform phenomenological models remains unclear, at least for a purely hyperelastic behaviour [8]. The purpose of this 
paper is to shed some light into the performance of micromechanical models through an analysis of their sensitivity to the 
second invariant I2 of the right and left Cauchy-Green deformation tensors.

The formulation of micromechanical models of rubber elasticity usually involves the following steps [5, 16, 34]:

1.	 The definition of a free energy function for individual chains in terms of micro-kinematic variable(s);
2.	 A localisation rule linking the micro-kinematic variable(s) to the macroscopic deformation;
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3.	 The averaging of the chain energy over representative chain orientations to obtain the macroscopic free energy function.

The free energy of individual chains can be estimated from non-Gaussian statistical mechanics considerations for a freely 
jointed phantom chain fluctuating between two crosslinking points. The relevant micro-kinematic variable is then the chain stretch 
λ, which under the assumption of affine motion of the crosslinks, is identified with the line-stretch of the continuum in the chain 
direction. Averaging the chain energy over a uniform distribution of chain orientations, one obtains the (affine) full-network 
model [41, 44]. By replacing full-network averaging with directional sampling in the three principal stretch directions, the three-
chain model is recovered [24]. The Arruda-Boyce eight-chain model [2] is obtained by only considering chains aligned with the 
diagonals of a cube with edges in the principal stretch directions. The average-stretch full-network model, proposed by Beatty 
[3], is another simplification of the full-network model, in which the macroscopic energy is obtained from the chain free energy 
evaluated for the average of the (squared) stretch over all orientations. The final constitutive equations are identical to those of 
the eight-chain model. In the limit of small stretches and Gaussian statistics, all these models reduce to the neo-Hookean model.

Affine full-network models and their reduced orientation sampling approximations generally show limited capability in 
reproducing different loading conditions with a single set of material parameters [5, 8, 22, 39]. Improving the fitting perfor-
mance of micromechanical models can however be achieved by including a contribution from topological constraints to the 
chain free energy. The most popular approach consists in assuming that chain fluctuations are restricted to a confining tube 
[14]. Existing tube formulations differ in their statistical mechanics treatments and in the assumed relationship between the 
tube dimensions and the macroscopic deformation. Most tube models express the change in tube diameter in terms of the 
chain stretch λ. Examples include affine tube models [15, 19], constant volume tube models [20, 33], and non-affine tube 
models [21, 38]. A general presentation, which encompasses the previously mentioned models as special cases, has recently 
been proposed by Darabi and Itskov [9], in combination with three-chain averaging. We refer to tube models that relate the 
change in tube dimensions to the chain stretch, and hence to the line-stretch of the continuum, as “λ-based” tube models. 
In contrast, Miehe et al. [34] introduced the tube area contraction ν as a second independent micro-kinematic variable, and 
further proposed a (non-affine) relationship between the tube area contraction and the area-stretch of the continuum. These 
authors implemented their tube model within a full-network averaging scheme. This approach was recently simplified by 
considering eight-chain averaging (or, equivalently, area-stretch averaging in the sense of Beatty [3]); see [1, 29, 30]. We 
call tube models that relate the tube area contraction to the area-stretch of the continuum as “ν-based” tube models.

In the context of phenomenological approaches, it is well established that comprehensive models of rubber elasticity 
must depend on both I1 and I2 to capture different loading modes [1, 8, 12]. Therefore, the question arises as to whether the 
improved performance of (some) tube formulations is linked to the introduction of stronger I2 sensitivity. This is very clear 
in the case of ν-based eight-chain (or area-stretch average) tube models, where the I2 dependence appears explicitly [1, 29, 
30]. However, for λ-based tube formulations and other orientation averaging schemes, the emergence of the second invariant 
I2 in relation to fitting performance remains unclear. Previous comparisons of tube models [8, 22, 32] with relation to fit-
ting performance do not focus on the systematic differences that arise from different kinematic assumptions, which we find 
to be central to the problem. Moreover, the difference in performance shown by a given tube model under the three-chain, 
eight-chain, and full-network schemes has not been systematically investigated before. Finally, the connection between fit-
ting performance on multiaxial data and I2 dependence has not always been explicitly drawn in previous studies [8, 22, 32].

This contribution aims to systematically assess the capability of tube models of rubber elasticity to elicit I2 dependence, 
and further to relate their I2 sensitivity to their ability to fit experimental data under different loading modes. To focus on 
the effect of the tube contribution on the mechanical response, we adopt the freely jointed chain model for the phantom 
contribution under the affine stretch assumption in all cases. Tube models are assessed using full-network averaging, as well 
as three-chain and eight-chain approximations. Our results show that λ-based tube models are only weakly sensitive to I2 in 
their full-network implementation; however, stronger I2 dependence can emerge in the three-chain averaging approxima-
tion. In contrast, ν-based tube models show strong I2 sensitivity under all orientation averaging schemes. Our results further 
confirm that I2 sensitivity is directly correlated to fitting performance.

2 � Micromechanical models

2.1 � Chain free energy

We describe the behaviour of rubber-like materials by considering a distribution of individual chains. The end points of the 
chains are fixed at crosslinking points, and we write r and r0 the distances between crosslinking points in the current and reference 
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configurations, respectively. Chain fluctuations are limited to a tube, representing topological constraints due to other chains. We 
write d and d0 the diameters of the tube in the current and reference configurations. Following Miehe et al. [34], we introduce 
two micro-kinematic variables: the chain stretch λ and the tube area contraction ν, defined as:

We assume that the free energy ψ of individual chains in the network can be additively decomposed into two contributions:

where ψf represents the free energy of the phantom chain (i.e. free of topological constraints) and ψc accounts for topological 
constraints due to the surrounding chains.

2.1.1 � Phantom contribution

The free energy of the phantom chain ψf is obtained from the entropy of conformation for a freely jointed chain consisting of N 
Kuhn segments of length b; see e.g. [5]. The free energy of the freely jointed phantom chain is expressed as:

where kB is the Boltzmann constant, T is the absolute temperature, and L−1(x) is the inverse Langevin function. Here, we 
use the Padé approximant [7]:

Making the assumption that crosslinking points move affinely with the macroscale continuum, the chain stretch is given by:

where � denotes the line-stretch of the continuum: For a chain aligned with direction n ( |�| = 1 ) in the reference configura-
tion, the line-stretch is calculated from the macroscopic deformation gradient F as:

We note that non-affine localisation rules have also been proposed as an alternative to Eq. (5); e.g. [18, 34, 40]. However, 
these are not considered in this work.

Under the affine assumption (5), and taking r0 as the most probable random walk end-to-end distance r0 =
√
Nb the free 

energy (3) of the freely jointed phantom chain can be rewritten as:

Equation (7) shows that maximum extensibility of the chain is reached when � →

√
N , at which point the energy diverges. In 

the limit of small chain extension, the free energy (7) recovers the expression obtained under the assumption of Gaussian statistics:

As a rule of thumb, the Gaussian approximation holds for r ≤ 0.3Nb , or, using r0 =
√
Nb and � = � , � ≤ 0.3

√
N.

2.1.2 � Tube contribution

The free energy contribution associated with the reduction in conformational entropy arising from the tube constraint is 
taken of the following form [14, 34]:

(1)� =
r

r0
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d2
0

d2

(2)� = �f + �c

(3)�f = NkBT
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where α is a geometry factor pertaining to the shape of the tube cross section.

λ‑based models  Most existing tube models relate the tube area contraction ν to the chain stretch λ, so that the two micro-
kinematic variables are effectively not independent. Under the affine stretch assumption (5), here we consider a model of 
the general form:

The kinematic relation (10) together with the tube free energy expression (9) gives the tube free energy as:

where k and β are here treated as fitting parameters. The superscript (λ) has been added to clarify the functional dependence 
of the tube free energy on the line-stretch only.

Expression (11) coincides with the non-affine tube model proposed by Heinrich and coworkers [21]. The early affine tube 
model, which assumes d = �d0 [15, 19], is recovered taking � = −2 . The constant volume tube model [20, 33] corresponds 
to � = 1 . Recently, Darabi and Itskov proposed a generalised tube model with free energy of the form: �c = k

(
�
�
+ �

�
)
 , 

with � as an additional fitting parameter. The Darabi-Itskov model is obtained as the superposition of two tube contributions 
of the form (11) with different powers. Various �-based tube models of the literature are summarised in Table 1.

ν‑based models  Miehe et al. [34] proposed to relate the tube area contraction ν to the area-stretch v of the continuum by a 
non-affine relation:

The area-stretch is obtained from the macroscopic deformation gradient F and the chain direction n using Nanson’s 
formula:

where J = det(�) . The area-stretch v represents the ratio of deformed area to reference area of a surface element with out-
ward unit normal n in the reference configuration. Substituting Eq. (12) into expression (9) of the tube free energy, the tube 
contribution takes the general form:

where k and β are fitting parameters and the superscript (ν) indicates the functional dependence of the free energy on the 
area-stretch.

(9)�c = �NkBT

(
b

d0

)2

�

(10)� = �
�

(11)� (�)
c

= k�
�

(12)� = �
�

(13)� = J|�−T
�|

(14)� (�)
c

= k�
�

Table 1   Overview of λ-based tube models of the literature

Tube model �
c

Affine tube [15, 19]
k�

−2

Constant volume tube [20, 33] k�

Heinrich et al. [21]
k�

�

Rubinstein and Panyukov [38]
k(� + �

−1
)

Darabi and Itskov [9]
k(�

�
+ �

�
)
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2.2 � Macroscopic free energy

The macroscopic free energy Ψ of the network is obtained by averaging the chain free energy over representative orienta-
tions. We consider three averaging schemes, respectively corresponding to the full-network, three-chain, and eight-chain 
models.

Full‑network averaging  The full-network (FN) approach to rubber elasticity considers a uniform distribution of chain ori-
entations in the reference configuration. The macroscopic free energy is given by:

where n is the number density of polymer chains and integration is carried out over the unit sphere S . Using Eq. (2), the 
macroscopic free energy can be additively split into its phantom and tube contributions:

where ΨFN
f

 and ΨFN
c

 respectively represent the phantom and tube contributions to the macroscopic free energy. The macro-
scopic phantom contribution is independent of the the specific tube model being considered. The macroscopic tube contribu-
tion differs depending on whether a �-based or �-based tube model is used. For a �-based model:

where � (�)
c

 is a function of the line-stretch and is given by Eq. (11), while for a �-based tube model:

where � (�)
c

 is a function of the area-stretch and is given by Eq. (14).
Evaluation of the integral over all the orientations generally requires numerical quadrature. Here, we adopt the 900-point 

scheme proposed in Ref [17] to minimise integration errors; see also [23, 42].

Three‑chain averaging  The macroscopic free energy of the three-chain (3C) model is obtained by restricting the orientation 
averaging to chains that are initially aligned with the principal stretch directions. Let λi (i = 1, 2, 3) be the principal stretches, 
and νi be the area-stretches in the principal directions. According to Eq. (13), the latter are given by: ν1 = λ2λ3, ν2 = λ1λ3, and 
ν3 = λ1λ2. The macroscopic free energy of the three-chain model is given by:

where the superscript (i) refers to a chain aligned with the ith principal direction. More explicitly, the macroscopic phantom 
contribution to the free energy is given by:

The macroscopic tube contributions for the λ-based and ν-based tube models are respectively given by:

and:
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f
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c
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c
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Eight‑chain averaging  The eight-chain (8C) model only considers chains aligned with the diagonals of a cube with edges 
aligned with the principal directions. In a coordinate system aligned with the principal axes, � = (±1∕

√
3,±1∕

√
3,±1∕

√
3) . 

Direct application of formulas (6) and (13) in each of the eight-chain directions gives:

and:

where the superscript (i) refers to the ith chain ( i = (1, 8)) . Equations (23) and (24) show that all the representative chains 
experience the same line-stretch and the same area-stretch; and therefore, all representative chains have the same energy. 
Averaging of the chain energy over the eight directions then directly gives:

The macroscopic phantom contribution is given by:

The macroscopic tube contributions in the λ-based and ν-based schemes are respectively given by:

and

2.3 � Macroscopic stress–strain response

In this work we assume that the material is incompressible (J = 1). The Cauchy stress is given by:

where p is an arbitrary scalar to be determined from boundary conditions. The principal stresses are obtained from Eq. (29) as:

The shear modulus G obtained with the different models can be calculated from the stress-stretch response in a uniaxial 
tensile test along direction 1 as:

The shear modulus can be additively decomposed into a phantom contribution Gf and a tube contribution Gc. Assuming 
that the Gaussian limit holds in the reference configuration, which is the case if N ⪆ 11, then the phantom modulus is simply 
given by Gf = nkB T, which holds for the full-network, three-chain, and eight-chain averaging methods. (For a smaller num-
ber of Kuhn segments N, chains are pre-stretched beyond their Gaussian regime in the reference configuration, so that finite 

(23)�(i) =

√
�2
1
+ �2

2
+ �2

3

3
≡ �8C

(24)�(i) =

√
(�2�3)

2 + (�1�3)
2 + (�1�2)

2

3
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(25)Ψ8C = n� = n�f + n�c ≡ Ψ8C
f

+ Ψ8C
c

(26)Ψ8C
f

= n�f (�
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(27)Ψ8C(�)
c

= n� (�)
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(�8C)

(28)Ψ8C(�)
c

= n� (�)
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T − p1
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��i
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(31)3G = lim
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d�1

d�1
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extensibility effects must be included in the expression of the modulus.) In contrast, the tube contribution to the shear modulus 
depends on the chosen averaging method. For the full-network, three-chain, and eight-chain models, we respectively find:

Note that identical expressions are found for the �-based and �-based tube models. When the tube energy is quadratic, i.e. 
� = 2 , all three moduli coincide: Gc =

2nk

3
.

3 � Evaluation of I2 dependence

In this work, we aim to relate the fitting performance of various tube model formulations to their dependence on the second 
invariant I2 of the left Cauchy-Green deformation tensor � = ��T . Under the assumption of incompressibility, the invari-
ants are given by:

or, in terms of the principal stretches:

For future reference, we also recall the following expression of the Cauchy stress for an incompressible material:

and the principal stresses follow as:

3.1 � Direct calculation of @�
@I

2

The most direct way to evaluate the I2 dependence of a hyperelastic model or experimental data is to calculate the partial 
derivative ∂Ψ/∂I2. For an incompressible, hyperelastic material subjected to plane stress deformation (σ3 = 0), the partial 
derivatives of the free energy with respect to the invariants can be expressed in terms of the principal stretches and stresses 
as [1, 37]:

Note that these expressions are only valid when all three principal stretches are distinct; i.e. they do not apply to uni-
axial tension or equibiaxial tension. Furthermore, their evaluation is problematic in the small deformation regime where 
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all principal stretches approach 1. The stresses �1 and �2 must approach 0 sufficiently rapidly for a finite value of �Ψ∕�I1 
and �Ψ∕�I2 to be reached. Numerical or experimental noise can interfere with this limit and renders it challenging to make 
statements about the I2 dependence with confidence. For this reason, Rivlin and Saunders in their seminal work do not apply 
Eqs. (39)–(40) for deformations where I1, I2 < 5.

3.2 � Universal relations

To circumvent the aforementioned difficulties associated with the direct calculation of the partial derivatives (39)–(40), we 
also consider universal relations to evaluate the emergence of I2 dependence in micromechanical models and experimental 
data. Universal relationships are relationships between principal stresses and stretches that hold true irrespective of the 
specific form of the free energy function belonging to a certain class. If the stress-stretch response predicted by a specific 
model violates a universal relationship associated with the class of material behaviour, then the model does not belong to that 
class. Several universal relations have been proposed for the class of free energy functions defined as Ψ = Ψ(I1) (i.e. where I2 
dependence of the free energy function is excluded) [1, 43]. In the following, we recall an existing universal relation valid for 
general biaxial loading (i.e. when all three principal stretches are distinct), and further propose two new universal relations 
respectively applicable to uniaxial and equibiaxial loading, and to uniaxial tension and compression.

General biaxial tension  Consider first a general biaxial loading with σ3 = 0. Then the general stress–strain relation (38) gives:

If the free energy only depends on I1, then the following universal relation for general biaxial test should hold [1, 43]:

This universal relation is applicable when the three principal stretches are distinct (general biaxial loading). This somewhat 
limits its applicability, as experimental data for general biaxial loading are not commonly reported in the literature. Therefore, 
here, we formulate two alternative universal relations which respectively apply to uniaxial and equibiaxial loading, and to 
uniaxial tension–compression loading.
Uniaxial and equibiaxial tension  Consider uniaxial (UT) and equibiaxial (EBT) tensile tests with σ3 = 0. In these two loading 
cases, the non-zero stresses are respectively given by:

If the free energy depends only on I1, and if λU T and λEBT are evaluated at the same value of I1, then the following relation 
between principal stresses and stretches should hold:

The condition that the stretches in the two loading cases correspond to the same I1 requires that:
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Factorising the above relation gives:

Therefore, the tensile stretches in the uniaxial and equibiaxial tension tests which give the same I1 are related by:

(The other admissible root �UT = �−2
EBT

 corresponds to a uniaxial compression test and is not considered.) The uni-
versal relation (47) can be used to assess I2  dependence from uniaxal and equibiaxial tensile data in the following way. 
For each tensile stretch value in the equibiaxial test, calculate the stretch in the uniaxial tension test which gives the 
same I1  using relation (49). Next evaluate condition (46). If it is not satisfied, it implies that the free energy function 
depends on I2.  Note that the converse is generally not true: satisfaction of condition (46) at a given I1  does not neces-
sarily guarantee that Ψ is independent of I2.
Uniaxial tension and compression  Now consider the non-zero stresses in uniaxial tension (UT) and compression (UC) tests:

Evaluating these expressions at the same value of I1 , and assuming that the free energy is independent of I2 , we 
obtain:

The axial stretches in uniaxial tension and compression tests which give the same value of I1 are related by:

which is readily obtained from Eq. (49) by noting the correspondence between the stretches in a tensile equibiaxial test and 
in a compressive uniaxial test: �UC = �−2

EBT

The universal relation (52) can be verified graphically using the Mooney stress, which is defined as:

The universal relation (52) means that the Mooney stress M , when represented as a function of I1, should be the 
same in uniaxial tension and uniaxial compression for the material response to be independent of I2.

4 � Results

In this section, we use the various tube formulations described in Sect. 2 to reproduce experimental stress–strain curves 
reported in the literature for several representative rubber-like materials. We also apply the universal relations described 
in Sect. 3.2 to assess I2 dependence in theoretical and experimental stress–strain curves.
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4.1 � Data of Kawabata et al. (1981)

We first consider the experimental data of Kawabata et al. [26] for an isoprene rubber vulcanisate. The loading conditions 
correspond to general biaxial tension with σ3 = 0, where λ1 is held constant and λ2 is varied, covering different modes of 
deformation from uniaxial tension to equibiaxial tension. We fitted λ-based and ν-based micromechanical models using 
the experimental data for uniaxial and equibiaxial tension, and subsequently kept the parameters constant for predicting 
the response under general biaxial loading. Fitting was carried out using least squares minimisation as implemented in 
the Python Scipy optimisation toolbox. The fitting error to be minimised is defined as:

where Np represents the number of data points, �(i)
e

 the ith experimental stress data point, and �(i)
m

 the corresponding stress 
calculated using the model. Best-fit parameters and the minimised fitting error for each model are reported in Table 2.

Figure 1 shows the full-network model predictions considering λ-based (Fig. 1a) and ν-based (Fig. 1b) tube models, along 
with experimental data for uniaxial and equibiaxial tension. Both models predict a stiffer response under equibiaxial tension 
than under uniaxial tension. However, the λ-based full-network fails to capture the response under equibiaxial tension accu-
rately. In contrast, the ν-based full-network tube model provides an excellent fit. (Note that modelling and experimental curves 
for equibiaxial tension practically coincide.) Model predictions for general biaxial loading using the same set of parameters 
are compared to experimental data in Fig. 2. In the figures, each line corresponds to a constant value of the principal stretch 
λ1, as indicated. The λ-based model predictions (Fig. 2a and b) deviate significantly from the experimental data, particularly 
at the highest values of λ1. For a given value of λ1, the error is the smallest under uniaxial states of deformation, and increases 
monotonically with λ2. In contrast, the ν-based model captures the general biaxial response well for all modes of deformation 

(55)� =

Np∑

i=1

(
�(i)
e
− �(i)

m
)
)2

Table 2   Best-fit parameters for models fitted simultaneously to the uniaxial and equibiaxial tensile data of Kawabata et al. [26] under different 
averaging schemes

Tube model Integration scheme nk
B
T  (MPa) N nk (MPa) � Fitting 

error 
(MPa)2

� (�)
c

= k�
� Full-network 0.32 2500 0.12 −3.5 0.42

Three-chain 0.27 2500 2.0 −0.55 0.011

Eight-chain 0.21 12 740 0.00079 0.69

� (�)
c

= k�
� Full-network 0.28 620 0.56 0.66 0.016

Three-chain 0.27 630 2.3 0.52 0.012
Eight-chain 0.29 630 0.36 0.73 0.017

Fig. 1   Comparison between 
model predictions and experi-
mental data of Kawabata et al. 
[26] for uniaxial (UT) and 
equibiaxial tension (EBT). 
Non-affine tube models are 
considered, with a λ-based 
and b ν-based tube models. 
Full-network averaging is used
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and all degrees of deformation. Both σ1 and σ2 are well predicted. Note that Kawabata et al. [26] also reported experimental 
data for 1.04 ≤ λ1 ≤ 1.12. For these smaller λ1 values, the agreement between experimental data and theoretical predictions 
increases for both models. For clarity of presentation, here we only show results for the highest λ1 values.

The relative performance of the λ-based and ν-based full-network models can be correlated to their I2 sensitivity. To 
this end, we first consider the universal relation (46), which applies to uniaxial and equibiaxial tension data. For conveni-
ence, we define the following indicator function as a measure of deviation from the universal relation:

so that G1 = 0 corresponds to I2 independent response. In Eq. (56), �UT and �EBT are tensile stretches calculated from I1 for 
uniaxial and equibiaxial tension, respectively. The indicator function calculated for experimental and modelling data reported 
in Fig. 1 is shown in Fig. 3. Experimental data show a clear deviation from the universal relation, which is well reproduced 
by the ν-based full-network model. In contrast, the λ-based full-network model is much less sensitive to I2 (the magnitude of 
the indicator function is smaller). We also note that the experimental indicator function corresponding to the ν-based model 

(56)G1(I1) ∶=

(
�2
UT

− �−1
UT

)
(
�2
EBT

− �−4
EBT

) −
�UT

�EBT

Fig. 2   Comparison between 
the prediction of the full-
network (a, b) λ-based tube 
model and (c, d) ν-based tube 
model, and the experimental 
data of Kawabata et al. [26] 
for general biaxial loading

Page 11 of 25  6



G. Kumar, L. Brassart 

1 3

tends to a plateau at large stretches, which is in agreement with experimental data, whereas the indicator function for the 
λ-based model keeps increasing as the stretches increase.

Alternatively, we may also consider the universal relation (43), which applies to general biaxial tension with distinct 
principal stretches. Similarly to the previous case, we define an indicator function:

so that G2 = 0 corresponds to an I2 independent response. The indicator functions calculated based on the experimental data 
for general biaxial loading (neglecting data points with repeated principal stretches) and model predictions for the λ-based and 
ν-based models are shown in Fig. 4. Again, the experimental data show I2 dependence ( G2 is non-zero). The ν-based model 
(Fig. 4b) is able to recover the experimental I2 dependence at large values of λ1 and λ2, where the λ-based model shows little 
sign of I2 dependence (Fig. 4a). For smaller values of λ1, both models fail to recover the experimental trend. However, in 
this regime, the indicator function is extremely sensitive to measurement errors as both denominators in Eq. (57) tend to 0.

We next consider the three-chain and eight-chain averaging schemes as a simplification of the full-network model. Model 
parameters obtained by fitting the experimental data for uniaxial and equibiaxial tension are shown in Table 2. Comparisons 
between experimental data and model fits are shown in Fig. 5a and b for the λ-based and ν-based models, respectively. Cor-
responding values of the indicator function (56) are shown in Fig. 5c and d. The eight-chain λ-based model, similar to the 
λ-based full-network model, is unable to predict both responses simultaneously. However, the λ-based three-chain model is 
able to achieve good agreement with the data for both loading modes. In contrast, the ν-based models are able to predict the 
experimental response equally well under any averaging scheme. The ability of all of these models to capture simultane-
ously the uniaxial and equibiaxial responses is reflected in the indicator function. The λ-based three-chain model and all of 
the ν-based models are able to capture the experimental curve, whereas the λ-based full-network model shows limited I2 
dependence. The eight-chain λ-based model is independent of I2.

(57)G2(�1, �2) ∶=

(
�4
1
�2
2
− 1

)
(
�2
1
�4
2
− 1

) −
�1

�2

Fig. 3   The I2 indicator func-
tion G1 (I1)  for uniaxial and 
equibiaxial tension, Eq. (56), 
applied to the experimental 
data of Kawabata et al. [26] 
and to model predictions using 
full-network λ-based and 
ν-based tube models

Fig. 4   The I2-indicator func-
tion G2(�1, �2) for general 
biaxial loading, Eq. (57), 
applied to the experimental 
data of Kawabata et al. [26] 
and model predictions using 
full-network a λ-based and b 
ν-based tube models
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4.2 � Data of Dechnarong et al. (2021)

We next consider experimental data reported by Dechnarong et al. [11] for a thermoplastic elastomer (SEBS) subjected 
to uniaxial and equibiaxial tension. A similar fitting procedure was adopted as in the previous section, and best-fit 
parameters for the various tube models are reported in Table 3.

Figure 6a and b show the model predictions along with the experimental data. The λ-based models show different fitting 
performances under the different averaging schemes. The full-network model describes the uniaxial response well at small 
deformations, but departs from the experimental curve at large deformation and underpredicts the equibiaxial response up to 
moderate deformation. The eight-chain λ-based model insufficiently distinguishes the different responses and underpredicts 
the initial slope of the stress-stretch curve. In contrast, the three-chain λ-based model achieves near perfect agreement. The 
ν-based model gives good agreement with the experimental data under all of the averaging schemes considered.

Fig. 5   Comparison between 
model predictions and experi-
mental data of Kawabata et al. 
[26] for uniaxial (UT) and 
equibiaxial tension (EBT), 
using a λ-based tube models 
and b ν-based tube models 
in combination with the full-
network (FN), three-chain 
(3C), and eight-chain (8C) 
averaging schemes. I2 indica-
tor function (56) for c λ-based 
and d ν-based tube models

Table 3   Best-fit parameters for models fitted simultaneously to the uniaxial and equibiaxial tensile data of Dechnarong et al. [11] under different 
averaging schemes

Tube model Integration scheme nk
B
T  (MPa) N nk (MPa) � Fitting 

error 
(MPa)2

� (�)
c

= k�
� Full-network 0.28 2500 0.46 −3.0 39

Three-chain 0.18 2500 1.1 −0.98 1.1

Eight-chain 0.48 1700 3200 −0.00054 100

� (�)
c

= k�
� Full-network 0.15 39 0.95 0.88 0.89

Three-chain 0.15 85 1.5 0.91 1.1

Eight-chain 0.15 21 1.0 0.76 0.32
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Figure 6c and d show the indicator function (56) corresponding to the results in Fig. 6a and b. The full-network λ-based 
model shows I2 dependence only at moderate stretches, whereas the three-chain λ-based model shows I2 dependence 
consistent with experimental data. The eight-chain λ-based model is independent of I2. The indicator function calculated 
for the ν-based models is very close to the experimental one for all averaging schemes. The degree of I2 dependence 
exhibited by all of these schemes correlates with their ability to distinguish between uniaxial and equibiaxial tension.

4.3 � Data of Bechir et al. (2006)

Finally, we consider the tension–compression data reported by Bechir et al. [4] for a carbon black-filled natural rubber. 
In the experiment, the material has been pre-conditioned to render it effectively hyperelastic and eliminates the Mullins 
effect. The data are shown in Fig. 7 with model predictions obtained with the λ- and ν-based models under different 
averaging schemes. Corresponding best-fit parameters are shown in Table 4.

All models are able to capture the upturns in the stress-stretch curve under tension and compression and achieve broadly 
similar fits in the moderate stretch region except for the λ-based eight-chain model, which fails to capture the stress upturn in 
compression. Close inspection of the phantom and tube contributions for each model reveals that the stress upturn in tension 
arises from the extensibility limit in the freely jointed chain model (as expected), whereas the stress upturn in compression is 
due to the tube contribution, which in the λ-based eight-chain model is unable to capture the experimental trend. I2 depend-
ence is investigated by plotting the Mooney stress (54) against I1; see Fig. 8a and b. Experimental curves show a different 
response under uniaxial tension and compression, which indicates I2 dependence according to the universal relation (52). 
This is well predicted by the λ-based full-network and three-chain models. However, the λ-based eight-chain model shows 
the same Mooney stress under uniaxial tension and compression, implying that this model is I2 independent. In contrast, all 
three ν-based formulations predict significant I2 dependence in general agreement with the experimental data.

Equivalently, we may define an additional indicator function measuring deviation from the universal relation (52):

Fig. 6   Comparison between 
model predictions and experi-
mental data of Dechnarong 
et al. [11] for uniaxial (UT) 
and equibiaxial tension (EBT), 
using a λ-based tube models 
and b ν-based tube models 
in combination with the full-
network (FN), three-chain 
(3C), and eight-chain (8C) 
averaging schemes. I2 indica-
tor function (56) for c λ-based 
and d ν-based tube models
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such that I2 independence implies G3 = 0 . Figure 8c and d show this indicator for the data of Bechir et al. [4]. As expected, 
Fig. 8c and d convey the same information as Fig. 8a and b: all models are able to recover the experimental I2 dependence, 
except the λ-based eight-chain model, which is independent of I2. Here, we included both the Mooney-I1 plot and the indica-
tor function plot for the sake of illustration, as to the best of our knowledge neither of these tests had previously been used 
to assess I2 dependence from uniaxial tension and compression data.

5 � Discussion

Main findings from the comparison of model predictions to experimental data can be summarised as follows:

1.	 ν-Based tube models are able to provide a good fit for a range of experimental data under various loading conditions, 
regardless of the orientation-averaging scheme used (full-network, three-chain, or eight-chain averaging).

2.	 λ-Based tube models can only provide a good fit under various loading modes when used in conjunction with three-chain 
averaging.

3.	 Fitting ability of all the models is directly correlated to their I2 sensitivity, as measured via their departure from universal 
relations valid for I2-independent behaviour.

To further explore the I2 sensitivity of various tube formulations, we calculated the partial derivatives of the tube contri-
bution to the free energy, ∂Ψc/∂I1 and ∂Ψc/∂I2, as described in Sect. 3.1. Partial derivatives (normalised by (nk)) are shown 

(58)G3 ∶=
�2
UT

− �−1
UT

�2
UC

− �−1
UC

−
�UT

�UC

Fig. 7   Comparison between 
model predictions and experi-
mental data of Bechir et al. 
[4] for uniaxial tension (UT) 
and compression (UC), using 
a λ-based tube models and b 
ν-based tube models in com-
bination with the full-network 
(FN), three-chain (3C), and 
eight-chain (8C) averaging 
schemes

Table 4   Best-fit parameters for models fitted simultaneously to the uniaxial and equibiaxial tensile data of Bechir et al. [4] under different aver-
aging schemes

Tube model Integration scheme nk
B
T  (MPa) N nk (MPa) � Fitting 

error 
(MPa)2

� (�)
c

= k�
� Full-network 0.54 5.1 0.20 −8.7 9.9

Three-chain 0.35 5.6 0.32 −4.3 5.7

Eight-chain 0.52 2.3 −0.48 −9.7 31

� (�)
c

= k�
� Full-network 0.54 5.1 0.20 5.7 10

Three-chain 0.35 5.6 0.32 4.3 5.7

Eight-chain 0.18 2.1 0.59 5.4 8.4
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as a function of the exponent β for a state of pure shear with λ1 = 2, λ2 = 0.5, and λ3 = 1 in Fig. 9. Pure shear was considered 
because the three principal stretches are distinct and formulas (39) and (40) can be used. The range of exponent values was 
chosen to be representative of best-fit exponent values obtained in the previous section. For the λ-based full-network model 
(Fig. 9a and b), both ∂Ψc/∂I1 and ∂Ψc/∂I2 are small relative to (nk) and have a similar order of magnitude across the consid-
ered range of β-values. The λ-based eight-chain model shows zero I2 dependence. In contrast, the λ-based three-chain model 
shows significant I2 dependence at large negative values of β. Regarding ν-based models, all three averaging schemes lead 
to significant ∂Ψc/∂I2, which increases as β increases (Fig. 9d). The three-chain and full-network models also show signifi-
cant negative ∂Ψc/∂I1 at large positive values of β, while the tube model is independent of I1 when used in combination with 
eight-chain averaging (Fig. 9c). These observations for a broader range of β-values are consistent with results of Sect. 4.

The I2 (resp. I1 ) independence of the �-based (resp. �-based) eight-chain model is easily understood. Using Expression 
(36) of the invariants in terms of the principal stretches, Eq. (23) directly gives the line-stretch of the representative chains 
in the �-based tube model as �8C =

√
I1∕3 , and Eq. (24) gives the area-stretch of the representative chains in the �-based 

tube model as �8C =
√
I2∕3 . Therefore, Eq. (25) provides, for the �-based tube model:

and for the �-based tube model:

Thus, λ-based tube models only bring I1 dependence in the eight-chain averaging approximation, while ν-based tube 
models only bring I2 dependence in this averaging scheme. Note that identical expressions are obtained by adopting the 
stretch-average full-network approximation proposed by Beatty [3]. In this approach, the macroscopic tube energy is obtained 
by evaluating the λ-based tube energy using the full-network average of the squared line-stretch as argument:

(59)Ψ8C(�)
c

= n� (�)
c

(√
I1

3

)
= nk

(
I1

3

)�∕2

(60)Ψ8C(�)
c

= n� (�)
c

(√
I2

3

)
= nk

(
I2

3

)�∕2

Fig. 8   a, b Comparison of 
Mooney stress-I1 responses 
obtained using various ori-
entation averaging schemes 
to the experimental data of 
Bechir et al. [4]. c, d Cor-
responding I2 indicator func-
tions, Eq. (58)
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and, for the ν-based tube energy, using the full-network average of the squared area-stretch as argument:

Expressions (61) and (62) are respectively identical to Expressions (59) and (60), recalling the identities [27] (see also 
Appendix A.2 and A.3):

The I2 dependence of ν-based eight-chain tube formulations has previously been pointed out by several authors [1, 16, 29, 
30]. Setting β = 2 in Eq. (60), one recovers the C2-term of the Mooney-Rivlin model, with C2 = nk/3. For β = 1, one recovers 
the phenomenological Carroll model [6]. In general, the model (60) is of the Rivlin-Saunders type [37].

Regarding the three-chain models, one should first recognise that λ-based and ν-based tube formulations are in fact math-
ematically equivalent. Their contributions to the macroscopic free energy are respectively given by:

and:

where we have used the condition of incompressibility to express the principal area-stretches in Eq. (19) as: ν1 = λ2λ3 = λ1
−1, 

ν2 = λ1λ3 = λ2
−1, and ν3 = λ1λ2 = λ3

−1. Expressions (64) and (65) are identical provided that β′ =  − β (and that (nk) = (nk)′). 

(61)Ψ(�)
c

= n� (�)
c

��
⟨�

2

⟩
�

= nk⟨�
2

⟩�∕2

(62)Ψ(�)
c

= n� (�)
c

��
⟨�2⟩

�
= nk⟨�2⟩�∕2

(63)⟨�
2

⟩ =
I1

3
, ⟨�2⟩ =

I2

3

(64)Ψ3C(�)
c

=
nk

3

(
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�

1
+ �

�

2
+ �

�

3

)

(65)Ψ3C(�)
c

=
(nk)�

3

(
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−��
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+ �
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2
+ �

−��

3

)

Fig. 9   Direct evaluation of the 
normalised partial deriva-
tives ∂Ψc/∂I1 and ∂Ψc/∂I2 as a 
function of the tube expo-
nent β in a pure shear test 
(λ1 = 2, λ2 = 0.5, and λ3 = 1), 
as predicted by a, b λ-based 
and c, d ν-based tube models 
combined with full-network 
(FN), three-chain (3C), and 
eight-chain (8C) averaging
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This is consistent with expression (33) of the tube shear modulus, which involves β2. In light of this, the same level of per-
formance exhibited by the two three-chain formulations was expected. The best-fit parameters reported in Tables 2, 3, and 
4 indeed show the expected correspondence between λ-based and ν-based tube parameters. The expected relations β′ =  − β 
and (nk) = (nk)′ are however not exactly satisfied in Tables 2 and 3, which is attributed to the fact that best-fit parameters are 
non-unique [36]. This is confirmed by the fact that the fitting error associated with λ-based and ν-based models is the same in 
these two examples. Using the set of parameters identified using the λ-based model to predict results with the ν-based model 
(upon switching the sign of β) does predict an identical response for all datasets, as expected. The mathematical equivalence 
between λ-based and ν-based three-chain tube models does not however explain their stronger I2 sensitivity, as compared to 
their full-network counterpart. We note however that the affine tube model, obtained taking β =  − 2 in the λ-based model (i.e. 
β = 2 in the ν-based model), leads again to the C2 term of the Mooney-Rivlin model with C2 = nk/3. It is also worth pointing 
out the formal similarity between the three-chain tube model and the one-term Ogden model [35], previously noted in [25].

Some insights into the I2 sensitivity of λ-based and ν-based full-network models can be gained by considering Taylor 
series expansions of the macroscopic tube energy. Detailed derivations are provided in Appendix A.1, along with a numeri-
cal verification for small stretches. The λ-based macroscopic tube energy admits the following series expansion about the 
full-network average of the squared line-stretch, ⟨�

2

⟩:

where Λ = �
2

 and w(�)
c
(Λ) ∶= � (�)

c
(�) . Therefore, to the lowest order, ΨFN(�)

c
 only depends on I1 and coincides with the eight-

chain model (59). The second invariant I2 appears in the second- order term, but is coupled with I1. Similarly, the series 
expansion of the ν-based full-network tube energy about the average squared area-stretch ⟨v2⟩ is given by:

where we have used the notations Γ ∶= v
2 and w(v)

c
(Γ) ∶= � (v)

c
(v) . This expression shows that, to the lowest order, the tube 

contribution to the macroscopic energy only depends on I2  and is identical to the eight-chain expression (60).  The com-
parison between Eqs. (66) and (67) suggests that the stronger I2  sensitivity in the ν-based full-network model arises from 
its lowest order term.

Similar series expansions can be constructed for the three-chain models, as detailed in Appendix A.1. For the λ-based 
model, the tube energy can be expressed as:

and for the �-based three-chain model:

Expressions (68) and (69) only differ from their full-network counterparts (66) and (67) by a numerical factor in the 
second-order term (and by higher order terms). Invoking the same argument as in the full-network case, one would conclude 
that the three-chain λ-based model is dominated by I1, and the three-chain ν-based model is dominated by I2. However, as 
demonstrated above, the two models are formally equivalent. This highlights the importance of higher order terms on the 
role of invariants in the free energy function.

In addition to fitting performance, the ν-based tube model is also superior in that its best-fit parameters (nk) and β 
obtained from a given experimental dataset are fairly consistent across all three integration schemes (under the caveat of 
non-uniqueness of best-fit parameters). This is not the case for the λ-based models, where best-fit parameters show a much 
larger variation across the different integration schemes for the same experimental dataset; see Tables 2, 3, and 4. Given 
the molecular basis of the tube model, one would hope for a low sensitivity of the parameters on the orientation averaging 
scheme used for the parameters to have a physical meaning, considering the three-chain and eight-chain averaging schemes as 
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cost-effective simplifications of the full-network averaging. ν-Based models fulfill this requirement to some extent, whereas 
λ-based models clearly do not.

Best-fit parameters predicted by the ν-based models can also be compared  to theoretical values derived from statistical 
mechanics considerations. The non-affine tube model of the form � (�)

c
= k�

B
 was derived by Heinrich and coworkers [21, 25], 

where three-chain averaging was used. These authors expressed the kinematic relation for the tube deformation  as d = d0�
���

 , 
where α = 1/2 and β′ is an empirical fit parameter in the range 0 < β′ ≤ 1. The original non-affine model is recovered from 
our formulation by setting β =  −2αβ′ =  − β′. According to these authors, a value β′ = 1 (β =  −1) is relevant for unswollen, 
well-connected networks [25]. The actual exponent value may however differ due to various constraint release mechanisms  
during deformation, or due to the presence of rigid fillers leading to strain amplification [25]. For the experimental data 
considered in this work, the three-chain λ-based model provides β =  − 0.55 (data of Kawabata et al.  [26]), β =  −0.98 (data 
of Dechnarong et al.  [11]), and β =  − 4.3 (data of Bechir et al. [4].). The first two β-values are consistent with theoretical 
predictions. The larger exponent value (in magnitude) in the third example might be attributed to strain amplification required 
to capture the composite effect.

6 � Conclusion

In this work, we have systematically investigated the ability of two classes of tube formulations to capture the response 
of rubber-like incompressible materials under different modes of deformation. The two classes were defined based on the 
assumed relationship between the (microscopic) tube-area contraction and the deformation of the macroscopic continuum. 
In λ-based approaches, the tube contraction is expressed in terms of the line-stretch of the continuum, while in ν-based 
approaches, it is expressed in terms of the area-stretch. To describe the free energy contribution associated with the tube 
topological constraints, a power-law expression was adopted, which encompasses a broad range of tube formulations pro-
posed in the literature. In addition, three popular orientation averaging schemes were considered, namely the full-network, 
three-chain, and eight-chain averaging methods.

Comparisons between model predictions and experimental data suggest that ν-based formulations are in general superior 
to λ-based formulation, in the sense that (1) they can fit experimental data for any orientation-averaging scheme, and (2) 
associated best-fit parameters are similar, and thus potentially more amenable to a physical interpretation. In contrast, we 
found that λ-based formulations can only fit experimental data when used together with the three-chain averaging scheme. 
We also found that the fitting performance of the various models was directly correlated to their sensitivity to the second 
invariant I2. This confirms previous findings that I2 dependence is necessary for good fitting performance against experi-
mental data for different modes of deformation. Our study further identifies the combinations of tube kinematic assumption 
and orientation averaging scheme that lead to I2 dependence, which had not been investigated before.

In this work, we focused on the mathematical structure of micromechanics-based hyperelastic models in relation to fitting 
performance and I2 sensitivity. To this end, the power law description of the tube free energy was effectively treated as a 
phenomenological model, and we did not attempt to link the parameters k and β to specific molecular processes, nor did we 
attempt to propose a new tube formulation based on molecular considerations. The present study could however be helpful 
in guiding the development of improved tube models which combine a good fitting ability with physically based parameters. 
We also limited our analysis to the classical freely jointed chain model under the assumption of affine chain stretch to describe 
the elasticity of the phantom network. Other models could be considered, in particular models that relax the assumption of 
the affinity of the chain stretch. Such considerations are left for future work.

Appendix

Series expansions of the full‑network tube free energy

λ‑Based full‑network model   Express the tube free energy � (�)
c

 as a function of the squared line-stretch: w(�)
c
(Λ) ∶= � (�)

c
(�) , 

with Λ ∶= �
2 . The Taylor series expansion of the tube energy about ⟨Λ⟩ writes, to the second order:

(70)w(�)
c
(Λ) = w(�)

c
(⟨Λ⟩) +

dw(�)
c

dΛ
(⟨Λ⟩)(Λ − ⟨Λ⟩) + 1

2

d2w(�)
c

dΛ2
(⟨Λ⟩)(Λ − ⟨Λ⟩)2 + h.o.t.
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Note the following results for the average squared line-stretch and its variance (see Appendix A.2 for derivation details):

Taking the average of Eq. (70) over all chain orientations and using the above results then give:

Note that the first-order derivative of the free energy plays no role in Eq. (72) since ⟨Λ − ⟨Λ⟩⟩ = 0.

ν‑Based full‑network model  The series expansion is obtained following similar steps as for the �-based model. Define the 
squared area-stretch as Γ ∶= �

2 , and express the tube free energy as w(�)
c
(Γ) ∶= � (�)

c
(�) . The Taylor series expansion of the 

tube energy about ⟨Γ⟩ writes, to the second order:

The average and variance of the squared area-stretch are given by (see Appendix 7.3 for details):

Taking the average of Eq. (73) over all chain orientations and using the above results give:

Three‑chain models  Similar series expansion of the average tube energy can be obtained when three-chain averaging is 
used, instead of full-network averaging. First introduce the following notation: ⟨⋅⟩3C =

1

3

∑3

i=1
(⋅)i . We find, for the three-chain 

average and variance of the squared line-stretch:

and, for the three-chain average and variance of the squared area-stretch:

See Appendices A.2 and A.3 for details. Series expansions of the average energies can then be expressed as:

and:

Numerical verification  Series expansions (72) and (75) of the full-network λ-based and ν-based tube energies are compared 
to numerical estimates of the expressions that the series seek to approximate in Fig. 10a and b. The numerical results are 
exact for the three-chain case and only deviate from the exact solution in the full-network case due to the error in discretisa-
tion over the unit sphere. In the figures, the macroscopic energy Ψ = n⟨wc⟩ has been normalised by (kn). The tube exponent 
is set as β =  − 1 for the λ-based model and β = 1 for the ν-based model. Different loading modes are considered, namely 

(71)⟨Λ⟩ =
I1

3
, ⟨(Λ − ⟨Λ⟩)2⟩ = 4

45
(I2
1
− 3I2)

(72)⟨w(�)
c
(Λ)⟩ = w(�)

c

�
I1

3

�
+

2

45

d2w(�)
c

dΛ2

�
I1

3

�
(I2
1
− 3I2) + h.o.t.

(73)w(�)
c
(Γ) = w(�)

c
(⟨Γ⟩) +

dw(�)
c

dΓ
(⟨Γ⟩)(Γ − ⟨Γ⟩) + 1

2

d2w(�)
c

dΓ2
(⟨Γ⟩)(Γ − ⟨Γ⟩) + h.o.t.

(74)⟨Γ⟩ =
I2

3
, ⟨(Γ − ⟨Γ⟩)2⟩ = 4

45
(I2
2
− 3I1)

(75)⟨w(�)
c
(Γ)⟩ = w(�)

c

�
I2

3

�
+

2

45

d2w(�)
c

dΓ2

�
I2

3

�
(I2
2
− 3I1) + h.o.t.

(76)⟨Λ⟩3C =
I1

3
, ⟨(Λ − ⟨Λ⟩3C)2⟩3C =

2

9
(I2
1
− 3I2)

(77)⟨Γ⟩3C =
I2

3
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2

9
(I2
2
− 3I1)
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uniaxial tension (UT), pure shear (PS), and equibiaxial tension (EBT). The series expansions are accurate at small stretches, 
but significantly deviate from the reference numerical solution at moderate to large stretches (not shown). We note that 
the series expansion of the ν-based model is more accurate than that of the λ-based model. The switch in concavity of the 
free energy between λ-based and ν-based model is consistent with the sign of the tube modulus (32) when the sign of the 
exponent β changes.

The series expansions of the macroscopic free energy obtained using three-chain averaging, Eqs. (78) and (79), are 
compared to reference numerical results in Fig. 10c and d for the same values of the tube exponent β. Compared to the 
full-network case, the series expansions are less accurate than their full-network counterparts in this range of deformation. 
For the considered values of β, the three-chain models are identical in their λ-based and ν-based forms, as confirmed by the 
numerical results. The series expansions are however not identical, and appear slightly more accurate when the expansion 
is taken about the squared area-stretch than about the squared line-stretch.

Average and variance of the squared line‑stretch in terms of the invariants

We use the notation Λ ∶= �
2

 , where �  is the line-stretch of the continuum given by Eq. (6). For a chain aligned in direction 
n in the reference configuration, we have: � = � ⋅ � ⋅ � , where C = F

T
F is the right Cauchy-Green deformation tensor. The 

average squared line-stretch is given by:

where:

(80)⟨Λ⟩ = ⟨� ⋅ � ⋅ �⟩ = � ∶ ⟨�⊗ �⟩

Fig. 10   Comparison between 
the series expansion approxi-
mations of the tube contribu-
tion to the macroscopic free 
energy and the reference 
solution obtained by numeri-
cal integration. a λ-Based 
full-network model, Eq. (72); 
b ν-based full-network model, 
Eq. (75); c λ-based three-
chain model, Eq. (78); and d 
ν-based three-chain model, 
Eq. (79). The tube exponent 
is set as β =  − 1 in the λ-based 
models, and as β = 1 in the 
ν-based models. Three loading 
conditions are considered: 
uniaxial tension (UT), pure 
shear (PS), and equibiaxial 
tension (EBT)
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Using (81) into (80), and recalling that I1 = tr(�) , we immediately find:

The variance of the squared line-stretch in the full-network averaging is defined as:

We have:

where (see e.g. [28, 31]):

Inserting (85) into (84) gives:

where we have used the expression I2 =
1

2
(I2
1
− tr(�2)) . Using (82) and (86) in (83), we find:

If three-chain averaging is used instead, direct calculations give:

The variance is thus given by:

Average and variance of the squared area‑stretch in terms of the invariants

We use the notation Γ ∶= �
2 , where � is the area-stretch of the continuum given by Eq. (13). For a chain aligned in direc-

tion � in the reference configuration, and accounting for incompressibility of the continuum ( J = det(�) = 1 ), we have: 
Γ = � ⋅ �−1

⋅ � . The average squared line-stretch in the full-network averaging is given by:

Using the result (81), and recalling that I2 = tr(C −1), we find:

This result was previously reported by Kearsley [27]; see also [3]. Similarly, we have:

(81)⟨ninj⟩ =
1

3
�ij

(82)⟨Λ⟩ =
I1

3

(83)⟨(Λ − ⟨Λ⟩)2⟩ = ⟨Λ2⟩ − ⟨Λ⟩2

(84)⟨Λ2⟩ = ⟨(� ⋅ � ⋅ �)(� ⋅ � ⋅ �)⟩ = � ∶ ⟨�⊗ �⊗ �⊗ �⟩ ∶ �

(85)⟨ninjnknl⟩ =
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15
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15
(I2
1
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1
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45
(I2
1
− 3I2)

(88)⟨Λ⟩3C =
1

3
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=

I1

3
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1

3
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i=1
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i
=

1

3
(I2
1
− 2I2)

(90)⟨
�
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�2⟩3C = ⟨Λ2⟩3C − ⟨Λ⟩2
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=
2

9
(I2
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− 3I2)

(91)⟨Γ⟩ = ⟨� ⋅ �
−1
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−1 ∶ ⟨�⊗ �⟩

(92)⟨Γ⟩ =
I2
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Using the result (85), the latter expression becomes:

From the Cayley-Hamilton theorem, we have:

Where I3 = 1 , so that:

and:

The variance on the squared area-stretch is given by:

If three-chain averaging is used, direct calculations give:

where �1 = �2�3 , �2 = �1�3, and �3 = �1�2 . The variance is given by:
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