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Abstract
A continuum model for lung parenchyma is constructed. The model describes the thermomechanical response over a range
of loading rates—from static to dynamic to shock waves—and a range of stress states, including isotropic expansion, triaxial
extension, simple shear, and plane wave compression. Nonlinear elasticity, viscoelasticity, and damage are included, with
the latter associated with changes of biological function as well as mechanical stiffness. A Gram–Schmidt decomposition of
the deformation gradient leads to strain attributes that enter the thermodynamic potentials as state variables. A free energy
function is designed for loading at low to moderate rates and tensile pressures, whereby the tissue response, with surface
tension, is preeminent. An internal energy function is designed for wave propagation analysis, including shock waves,
whereby compressibility of the air inside the alveoli is addressed via a composite stiffness based on a closed-cell assumption.
The model accurately represents the response to triaxial loading, pressure relaxation, and dynamic torsion with relatively few
parameters. Longitudinal wave speeds are reasonable for ranges of internal airway pressure and transpulmonary pressure.
Airway pressure strongly affects the response to plane wave compression. Criteria for local injury and damage progression
depend on a normalized energy density and its gradient, where the latter is paramount for impact problems involving fast
pressure rises. Results suggest that local damage associated with edema is induced at load intensities much lower than those
that would cause significant stiffness changes due to rupture, major tearing, or local collapse.

Keywords Nonlinear elasticity · Viscoelasticity · Damage mechanics · Injury mechanisms ·
Soft solids · Lung · Shock waves

1 Introduction

An increased understanding of behavior of soft biological tissues is afforded by constitutive models for static and dynamic
loading. Deformations are often large, necessitating nonlinear elastic models. Viscoelasticity becomes important to account
for rate dependence, hysteresis, and stress relaxation. For traumatic events, models linking degradation of mechanical
properties to loss of biological function are sought. For overviews of the subject, refer to, e.g., [1–4]. Concurrent work
by the authors [5–7] seeks to develop a general theoretical framework enabling modeling of the abovementioned physical
phenomena. The framework should be applicable to a host of soft biological tissues, e.g., muscle, skin, internal organs, as
well as other viscoelastic solids.

The focus of the present work is application of such a theory to the lung, which is the largest vital organ in the human
thorax by volume. Sought eventually are modeling and numerical simulation capabilities of large deformation, stress wave
propagation, damage, and injury mechanisms when the thorax is subjected to traumatic insult by blunt impact at various rates
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[8–10], or by rapidly rising high-pressure (i.e., blast) waves [11–15]. Pulmonary contusion is the the most common thoracic
soft tissue injury for blunt trauma, with a mortality rate of 10–25% [16]. Damage to the lungs with resultant respiratory
insufficiency and arterial embolization of air from alveolar pulmonary venous fistulae is the main cause of morbidity and
mortality from blast exposure [17]. Lung laceration is also debilitating [18].

Perhaps the most popular nonlinear constitutive model for lung mechanics is based on work of Fung, Vawter, and
colleagues [19–22]. Notably, an exponential term in an isotropic strain energy function accounts for elasticity of the
microstructure of connective tissues in the lung, such as septal walls, assumed to behave similarly to the skin [19] and other
compliant elastic tissues [23]. A second term in the energy function accounts for energy of surface tension of the alveolar
membranes [24]. Both terms are constructed from usual invariants of the Lagrangian Green strain tensor. A simplification
invoked in this theory is the use of a pseudo-hyperelastic strain energy function giving a different response in loading
and unloading paths [20, 21], rather than use of a more general viscoelastic treatment [25]. Calibration of the model is
cumbersome, for example, requiring sophisticated optimization algorithms [21, 26, 27].

Modern finite element simulations [10, 26, 27] adopt pseudo-hyperelastic theory, with minor variations to account for a
different bulk modulus than that derived from hyperelasticity [10], a viscoelastic deviatoric response [28], or an equation-
of-state for the bulk response under blast loading [15, 29] where immobility and compressibility of the gas within become
important [30, 31]. Mild anisotropy is likely and may provide better parameterization to data [21], but it is usually neglected
[20, 22, 28] to keep calculations and calibrations tractable.

The present approach seeks a constitutive framework with more physically descriptive, fewer, and easier calibrated
parameters for a given soft solid than existing models. In this approach, the parenchyma—including alveoli, connective
tissues, and internal fluids (gas and liquid)—is treated as a homogeneous isotropic continuum, following other models [4,
10, 15, 22, 27, 28, 32]. Details of the microstructure [33, 34] and fluid-structure interactions [35–37] are not resolved to
maintain tractable computations. Cyclic response is also outside the present scope.

This paper is organized as follows. Elements of the general theory of [5, 7, 38] are reviewed in Section 2. Nonlinear
elasticity, viscoelasticity, damage, and injury mechanisms are considered in the context of both static and dynamic loading. A
free energy function is detailed in Section 3. Evaluation of this function and its derivatives entering the governing equations
are described in the context of experiments in Section 4. An internal energy function for problems involving wave motion
is given in Section 5. Features are evaluated in the context of elastic wave velocities and planar shock compression in
Section 6. Conclusions follow in Section 7. Vectors and tensors of higher order are written in boldface type, scalars, and
scalar components in italics. When index notation is used, summation is implied over repeated indices.

2 General continuummechanical theory

General governing equations of the present theory in Section 2 closely follow those of a nonlinear viscoelastic-damage
framework based on QR kinematics [5, 7]. Specialization of model features to the lung follows in Sections 3 and 5.

2.1 Kinematics of finite deformation

Denoted by X and x are Lagrangian and Eulerian position vectors of a material particle in respective reference and spatial
configurations, each referred to a global Cartesian system with fixed origin. Let t denote time. Motions are as follows:

x = ϕ(X, t), X = Φ(x, t). (2.1)

Space-time derivatives are presently presumed sufficiently smooth; shocks are addressed later in Section 6. The material
time derivative, material gradient, and spatial gradient of a generic quantity f are the respective operations as follows:

ḟ (X, t) = ∂f (X, t)

∂t
, ∇0f (X, t) = ∂f (X, t)

∂X
, ∇f (X(x, t), t) = ∂f (X(x, t), t)

∂x
. (2.2)

Particle velocity and acceleration are as follows:

υ(X, t) = ẋ(X, t), a(X, t) = υ̇(X, t). (2.3)

Arguments, e.g., (X, t) in the Lagrangian description, are dropped hereafter unless needed for clarity. The deformation
gradient and its inverse are as follows:

F = ∇0ϕ = ∂x/∂X, F−1 = ∇Φ = ∂X/∂x. (2.4)
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Referential and spatial velocity gradients are as follows:

∇0υ = Ḟ , ∇υ = ḞF−1. (2.5)

Then with J = detF > 0, the local ratio of spatial to referential volume and tr(·), the trace, J̇ = J∇ · υ = J tr(ḞF−1).
A fixed global Cartesian frame with basis vectors {ei}, i = 1, 2, 3 is used, to which vector and tensor components are

referred unless noted otherwise. Let capital Roman indices J = 1, 2, 3 denote Lagrangian components. Then, ei = ei =
δi
J eJ = δi

J eJ . The deformation gradient in this coordinate frame is F = F i
J ei ⊗ eJ = Fijei ⊗ ej . This can be decomposed

uniquely into the product of a rotationQ and upper triangular matrix T , where the latter is known as the Laplace stretch [39]:

F = QT = Qi
αTJ ei ⊗ eJ ; Q−1 = QT, detQ = +1. (2.6)

Greek indices α = 1, 2, 3 correspond to an intermediate configuration whose tangent vectors are pulled back from the spatial
configuration by Q−1 or pushed forward from the reference configuration by T . The same global Cartesian basis is used for
this configuration, called the “physical configuration” in [40]:

eα = eα = δi
αei = δJ

α eJ . (2.7)

In matrix form, with all components referred to the global Cartesian bases of Eq. 2.7,

T =
⎡
⎣

T11 T12 T13
0 T22 T23
0 0 T33

⎤
⎦ =

⎡
⎣

a aγ aβ

0 b bα

0 0 c

⎤
⎦ =

⎡
⎣

a 0 0
0 b 0
0 0 c

⎤
⎦
⎡
⎣
1 γ β

0 1 α

0 0 1

⎤
⎦ = ΛΓ . (2.8)

Physically descriptive deformation measures are the three positive elongation ratios a, b, c that enter the extension matrix Λ

and the three shear magnitudes α, β, γ that enter the simple shear matrix Γ . Volume change is measured by J = detT =
detΛ = abc. Parameters a, b, c, α, β, γ are physical attributes because they can be measured directly by an experimentalist
in the physical coordinate system of later (2.12), without post analysis [38, 40, 41].

Let

C = F TF = T TT = CIJe
I ⊗ eJ = F i

I δijF
j
J eI ⊗ eJ = T α

I δαβT
β
J eI ⊗ eJ (2.9)

denote the symmetric right Cauchy–Green deformation tensor. Nonzero components of T = TIJe
I ⊗ eJ are as follows [42]:

T11 = √
C11, T12 = C12/T11, T13 = C13/T11, T22 = √

C22 − (T12)2,

T23 = (C23 − T12T13)/T22, T33 = √
C33 − (T13)2 − (T23)2.

(2.10)

Elongations and shears are as follows:

a = T11, b = T22, c = T33; α = T23/T22, β = T13/T11, γ = T12/T11. (2.11)

Index numbers 1,2,3 to the {ei} should be assigned carefully when the QR decomposition is used. Let the {ei} be rotated
by Q. Then, there is an ideal choice among coordinate bases for which the direction aligned with the rotated 1-axis and
the direction normal to the rotated 1-2-plane remain invariant under a transformation by T [43]. A pivoting algorithm to
achieve the corresponding upper triangular dominance of T is given in [40]. The physical basis of [40], denoted here by
{gα}, corresponds to the following:

gα = g = Qi
αei = Qi

αδJ
i eJ , ei = (Q−1)αi gα = (QT)αi gα . (2.12)

The {gα} comprise a local Cartesian frame at each X. If Q is not spatially homogeneous, then {gα} do not comprise a global
frame. The mixed-variant velocity gradient in the second of Eq. 2.5 obeys the following, where � is skew is as follows:

∇υ = ḞF−1 = Q̇Q−1 + QṪ T −1Q−1 = � + QηQ−1, η = Ṫ T −1. (2.13)
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2.2 Strain attributes

Let a0, b0, c0 and α0, β0, γ0 denote values of a, b, c and α, β, γ in a reference state corresponding to time instant t = t0. A
vector consisting of seven strain attributes εi , i = 0, . . . , 6 is defined as follows:

{εi} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε0
ε1
ε2
ε3
ε4
ε5
ε6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln(abc/a0b0c0)
1
3 ln(ab0/a0b)
1
3 ln(bc0/b0c)
1
3 ln(ca0/c0a)

γ − γ0
α − α0

β − β0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, {ε̇i} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε̇0
ε̇1
ε̇2
ε̇3
ε̇4
ε̇5
ε̇6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ȧ/a + ḃ/b + ċ/c
1
3 (ȧ/a − ḃ/b)
1
3 (ḃ/b − ċ/c)
1
3 (ċ/c − ȧ/a)

γ̇

α̇

β̇

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2.14)

Only six of the seven strain attributes in Eq. 2.14 are independent kinematic variables since

ε1 + ε2 + ε3 = 0 ⇒ ε̇1 + ε̇2 + ε̇3 = 0. (2.15)

A measure of the dilatation is ε0. When a0 = b0 = c0 = 1 is chosen for the datum state, ε0 = ln J . This choice is used
henceforth, as are α0 = β0 = γ0 = 0. Logarithmic squeeze modes are ε1, ε2, ε3. Simple shears are ε4, ε5, ε6.

2.3 Stresses and stress power

Denote by σ , k, s, and P the Cauchy, Kirchhoff, rotated Kirchhoff, and first Piola–Kirchhoff stress tensors, respectively. In
the Cartesian frame {ei} = {eJ δJ

i }, these stress tensors are related by the following:

σ = J−1PF T = J−1k = J−1QsQ−1 ↔ σ i
j = J−1P i

KFK
j = J−1ki

j = J−1Qi
αsα

β (Q−1)
β
j . (2.16)

Tensor s is also referred to as a physical stress. Stress power is as follows:

P : Ḟ = Jσ : ∇υ = k : ∇υ = s : η =
6∑

i=0

τ̂i ε̇i , (2.17)

where {τ̂i}, i = 0, . . . , 6 in terms of sαβ , are defined as follows [40]:

{τ̂i} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ̂0
τ̂1
τ̂2
τ̂3
τ̂4
τ̂5
τ̂6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3 (s11 + s22 + s33)

s11 − s22
s22 − s33
s33 − s11

(a/b)s21 − α(a/c)s31
(b/c)s32
(a/c)s31

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2.18)

Negative pressure per unit reference volume is τ̂0 = −Jp, where Cauchy pressure is p = − 1
3 trσ . Normal stress differences

are τ̂1, τ̂2, τ̂3. Shear stresses are τ̂4, τ̂5, τ̂6. Stress differences conjugate to squeeze modes of strain obey the following:

τ̂1 + τ̂2 + τ̂3 = 0. (2.19)

2.4 Conservation laws and entropy production

Let ρ and ρ0 be spatial and initial mass densities of the material. Body force per unit initial volume is b. Local balance
equations for mass, linear momentum, and angular momentum are the usual forms from continuum mechanics:

ρ̇ + ρ∇ · υ = 0, ∇0 · P + b = ρ0a, PF T = FP T. (2.20)

Thermodynamic potentials, measured per unit initial volume, include internal energy density U , Helmholtz free energy
density Ψ , and entropy density η, related by the following:

U = Ψ + T η. (2.21)

Mech Soft Mater (2020) 2: 33 Page 4 of 35



Absolute temperature is T > 0. The heat flux vector in the reference configuration is q, and a scalar point heat source per
unit volume is r . The local balance of energy is as follows:

U̇ = P : Ḟ − ∇0 · q + r . (2.22)

Local entropy production inequalities, the latter following from Eqs. 2.21 and 2.22, include the following:

η̇ ≥ 1

T

(
r + q · ∇0T

T
− ∇0 · q

)
, P : Ḟ − q · ∇0T

T
≥ Ψ̇ + Ṫ η. (2.23)

2.5 Thermodynamic potentials

Thermodynamic potentials Ψ or U depend on temperature (T ) or entropy (η), internal state variables, and strain attributes.
Let {χi} be a set of dimensionless, strain-like scalar variables associated with viscoelasticity, where i = 0, . . . , 6. A single
relaxation time is considered here; generalization to a larger discrete number of relaxation times is presented in [5, 7].
Denote by D ∈ [0, 1], an internal state variable linked to damage processes to be assigned a physical interpretation later.
Strain attributes and viscoelastic state variables comprise the column vectors as follows:

ε = [ε0, ε1, ε2, ε3, ε4, ε5, ε6]T, χ = [χ0, χ1, χ2, χ3, χ4, χ5, χ6]T. (2.24)

Free and internal energy densities are assigned, respectively, the functional forms below for homogeneous solids are as
follows:

Ψ = Ψ (ε, T , χ , D), U = U(ε, η, χ , D). (2.25)

2.6 Constitutive laws

Using Eq. 2.25 in the second of Eq. 2.23 gives the following dissipation inequality:

6∑
i=0

τ̂i ε̇i − ∂Ψ

∂ε
· ε̇ −

(
η + ∂Ψ

∂η

)
Ṫ − ∂Ψ

∂χ
· χ̇ − ∂Ψ

∂D
Ḋ − q · ∇0T

T
≥ 0. (2.26)

Stress power can be written, using Eqs. 2.15 and 2.19, in terms of components of ε̇ as follows:

6∑
i=0

τ̂i ε̇i =
2∑

i=0

τ̂i ε̇i + (τ̂1 + τ̂2)(ε̇1 + ε̇2) +
6∑

i=4

τ̂i ε̇i . (2.27)

The following thermoelastic constitutive equations are inferred from Eq. 2.26 to maintain admissibility for stresses:

τ̂0 = ∂Ψ
∂ε0

, τ̂1 = ∂Ψ
∂ε1

, τ̂2 = ∂Ψ
∂ε2

, τ̂3 = ∂Ψ
∂ε3

, τ̂4 = ∂Ψ
∂ε4

, τ̂5 = ∂Ψ
∂ε5

, τ̂6 = ∂Ψ
∂ε6

; (2.28)

and entropy:

η = −∂Ψ /∂T . (2.29)

The first of Eq. 2.28 corresponds to p = −J−1τ̂0 = − ∂Ψ
∂J

. Constraints (2.15) and (2.19) have not been imposed in the
derivation of Eq. 2.28. Thus, for Eq. 2.28 to always apply, Ψ must be specified consistently with the following:

∂Ψ /∂ε1 + ∂Ψ /∂ε2 + ∂Ψ /∂ε3 = 0. (2.30)

Partial differentiation with respect to εi is performed with εj fixed for all i 	= j , regardless of Eq. 2.15. The residual
dissipation inequality is as follows:

−∂Ψ

∂χ
· χ̇ − ∂Ψ

∂D
Ḋ − q · ∇0T

T
≥ 0. (2.31)

The seven-element column vector of stress variables conjugate to strain attributes is as follows;

τ̂ = [τ̂0, τ̂1, τ̂2, τ̂3, τ̂4, τ̂5, τ̂6]T. (2.32)

Concisely, this is related to strain derivatives of free energy according to the following:

τ̂ = ∂εΨ = ∂Ψ /∂ε. (2.33)
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If seven components in Eq. 2.28 are known, then the physical stress tensor s is, from Eq. 2.18, as follows:

s11 = τ̂0 + 1
3 (τ̂1 − τ̂3), s22 = τ̂0 + 1

3 (τ̂2 − τ̂1), s33 = τ̂0 + 1
3 (τ̂3 − τ̂2),

s12 = s21 = b
a
(τ̂4 + ατ̂6), s23 = s32 = c

b
τ̂5, s13 = s31 = c

a
τ̂6.

(2.34)

Other stress tensors can be obtained from s using Eq. 2.16. Thermoelastic constitutive equations in terms of internal energy
are derived similarly [5, 7]:

τ̂0 = ∂U
∂ε0

, τ̂1 = ∂U
∂ε1

τ̂2 = ∂U
∂ε2

τ̂3 = ∂U
∂ε3

, τ̂4 = ∂U
∂ε4

, τ̂5 = ∂U
∂ε5

, τ̂6 = ∂U
∂ε6

; T = ∂U
∂η

. (2.35)

Constraints analogous to Eq. 2.30 are imposed on the internal energy U :
∑

i=1,2,3 ∂U/∂εi = 0.

2.7 Thermoelasticity and dissipation

Let c(ε, T , χ , D) denote specific heat per unit reference volume at constant deformation, where

c = ∂U/∂T = T ∂η/∂T = −T ∂2Ψ /∂T 2. (2.36)

The following temperature evolution equation can be derived from the local balance of energy:

cṪ = −(∂Ψ/∂χ) · χ̇ − (∂Ψ/∂D)Ḋ − ∇0 · q + r + T
[
(∂2Ψ/∂ε∂T ) : ε̇ + (∂2Ψ/∂T ∂χ) · χ̇ + (∂2Ψ/∂T ∂D)Ḋ

]
. (2.37)

Thermal stress coefficients κ and Grüneisen coefficients g are defined as follows:

κ = −∂2Ψ /∂ε∂T = cg. (2.38)

Isothermal and isentropic second-order thermodynamic elastic coefficients (not necessarily constants) are as follows:

CT = ∂2Ψ /∂ε∂ε, Cη = ∂2U/∂ε∂ε. (2.39)

Denote thermal expansion coefficients by A = ∂ε/∂T , with partial differentiation taken at constant stress and constant
internal state. Denote specific heat at constant stress by cs . The following relationships can be derived as follows [44]:

κ = A : CT , cs − c = T A : κ, Cη = C
T + (T /c)κ ⊗ κ . (2.40)

Define conjugate thermodynamic forces to internal state variables as the negative derivatives as follows:

ζ̄ = −∂Ψ /∂χ , F̄ = −∂Ψ /∂D. (2.41)

Substitution of Eqs. 2.38 and 2.41 into Eq. 2.37 gives the energy balance in a more compact form as follows:

cṪ = −T κ : ε̇ + [ζ̄ − T (∂ ζ̄/∂T )] · χ̇ + [F̄ − T (∂F̄ /∂T )]Ḋ − ∇0 × q + r . (2.42)

Assume that dissipation from conduction is always non-negative in Eqs. 2.23 and 2.31. Then,

D = ζ̄ × χ̇ + F̄ Ḋ ≥ 0, T η̇ = D − ∇0 × q + r . (2.43)

3 Free energy formulation for lung tissuemechanics

A constitutive formulation for static and dynamic loading of the lung based on Helmholtz free energy Ψ is developed. This
model is preferred for tensile stress states, and it is ideal for isothermal problems. It can be used for dynamic problems
wherein viscoelasticity affects isolated tissue stiffness but air compressibility does not, for example, dynamic torsion and
inflation/deflation. Since it does not account for compressibility of air trapped inside the lung, it is not an appropriate model
of the composite lung (tissue + gas) for dynamic compression including high-frequency wave propagation and shock loading.
The internal energy-based model developed in Section 5 addresses the latter scenarios.

3.1 General form

The following form of Ψ in Eq. 2.25 is invoked:

Ψ (ε, T , χ , D) = f (D)[Ψ0(ε, T , χ)] + ψ(T ) = f (D)[Ψ ∞
0 (ε, T ) + ϒ0(ε, χ)] + ψ(T ). (3.1)

Equilibrium thermoelastic free energy is Ψ ∞
0 . Configurational energy associated with viscoelasticity is ϒ0. The damage

degradation function is f . The purely thermal free energy accounting for specific heat and unaffected by damage is ψ .
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3.2 Thermoelastic strain energy

A material element is considered to occupy a stress-free reference state when undeformed and in the absence of surface
tension at the air-liquid interface, wherein its mass density is ρ0 and temperature is T0. This definition of reference state
is consistent with those in [19, 20]. Surface tension can be effectively eliminated by washing the tissue in saline; naturally
moist lung, when expanded to the same volume as a saline-rinsed lung, will require a tensile pressure in the reference state
to offset the effect of surface tension and prevent the tissue from contracting.

Equilibrium thermoelastic free energy depends explicitly on three functions of the strain attributes of Eq. 2.14, denoted
by ξi , i = 1, 2, 3. The first accounts for volume changes and is equal to the first attribute itself, the second accounts for
squeeze deformations, and the third accounts for simple shears:

ξ1 = ε0 = ln J, ξ2 = (ε1)
2 + (ε2)

2 + (ε3)
2, ξ3 = (ε4)

2 + (ε5)
2 + (ε6)

2 = α2 + β2 + γ 2. (3.2)

This is a three-mode isotropic theory in the sense of [5, 7, 40, 41], where the material may respond differently under pure
shear (squeeze) and simple shear. As such, the material is not isotropic in the conventional sense of invariants or group
theory; its linearization is reminiscent of a classical linear elastic solid with cubic symmetry [5, 7]. It will be demonstrated
later how this model effectively represents the more compliant response of the lung in simple shear, i.e., torsion, relative to
pure shear under biaxial or triaxial extension. A useful property of Ψ ∞

0 (ξ1, ξ2, ξ3, T ) is that the thermoelastic free energy
analog of Eq. 2.30 is identically satisfied via Eq. 2.15.

Thermoelastic strain energy density per unit reference volume is prescribed as follows:

Ψ ∞
0 (ξ1, ξ2, ξ3, T ) = 1

2

BT
0

c1
{exp[c1(ξ1)2] − 1} + K0ξ1 − A0B

T
0 ξ1(T − T0) + 3

μ0

c2
{exp[c2ξ2] − 1}

[
1 − BT

0

μ0
μ′
0ξ1

]

+1

2

G0

c3
{exp[c3ξ3] − 1}

[
1 − BT

0

G0
G′

0ξ1

]
. (3.3)

Denoted by BT
0 is the isothermal bulk modulus, μ0 the shear modulus for pure shear, and G0 the shear modulus for simple

shear, all at the undeformed reference state for equilibrium quasi-static deformation (no viscoelasticity), in the absence of
damage. Isothermal pressure derivatives of the shear moduli at the reference state are μ′

0 and G′
0:

μ′
0 =

[
d

dp
μ

]∣∣∣∣
0

=
[

d

dp

(
1

6

∂2Ψ

∂ε2i

)]∣∣∣∣
T =T0,ε=0

, (i = 1, 2, 3); (3.4)

G′
0 =

[
d

dp
G

]∣∣∣∣
0

=
[

d

d p

(
∂2Ψ

∂ε2i

)]∣∣∣∣
T =T0,ε=0

, (i = 4, 5, 6). (3.5)

Dimensionless higher order elastic constants corresponding to dilatation, squeeze, and simple shear are c1, c2, and c3. The
associated exponential stiffening is reminiscent of Fung’s formulation soft biological tissues [23]. The equilibrium tangent
isothermal bulk modulus corresponding to Eq. 3.3 is as follows:

BT = −
(

J
∂p

∂J

)∣∣∣∣
T =T0

= BT
0

J
[1 + ln J (2c1 ln J − 1)] exp{c1(ln J )2}, (3.6)

with pressure derivative at the ambient state computed as follows [5, 7]:

B ′T
0 =

[
d

dp
BT

]∣∣∣∣
0

=
[
d

dp

(
−J

∂p

∂J

)]∣∣∣∣
T =T0,ε=0

=
[
d

dp

(
∂

∂ ln J

∂Ψ

∂J

)]∣∣∣∣
T =T0,ε=0

= 2. (3.7)

The volumetric coefficient of thermal expansion is A0, and the nonzero coefficient in Eq. 2.40 is κ0 = A0B0. Lagrangian
surface tension in the reference state is K0. Thermal free energy is, with c0 specific heat at constant volume, as follows:

ψ(T ) = −c0[T ln(T /T0) − (T − T0)]. (3.8)

The general formula (3.3) is valid for lung in air and saline. When saline-washed, values of the bulk thermoelastic
constants BT

0 and c1 differ [24, 33], with the saline-treated lung more compliant, and K0 = 0 by construction, since surface
tension vanishes. In the limit that ci → 0 (i = 1, 2, 3), the free energy in Eq. 3.3 becomes quadratic in volumetric and shear
strains. When μ0 = G0, a two-mode theory [5, 40, 41] is obtained, and the equilibrium elastic compliances of the material
in pure shear and simple shear are identical for small strains. In the limit that deformations (strains and rotations) are small,
then the response in this two-mode case reduces to isotropic linear elasticity [5, 7].
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3.3 Configurational free energy

Viscoelasticity is addressed via a configurational energy ϒ0 and evolution equations for viscous stress components that
ensure non-negative dissipation. The general formulation derived in [5, 7] extends [45, 46] to QR kinematics and conjugate
stress–strain attributes and allows for multiple relaxation processes α = 1, . . . , m each with time scale tα > 0. For simplicity
and sufficiency in forthcoming applications, the configurational energy accounts for only one relaxation process with α = 1
and complementary relaxation time t1. Define total configurational free energy as follows:

ϒ0(ε, T , χ) = 1

2
μ1(T )|χ |2 − ∂εΨ0(ε, T ) · χ + Ψ0(ε, T ). (3.9)

Denoted by Ψ0 = Ψ0(ε, T ) is a free energy function that corresponds to relaxation process α = 1 with time scale t1 > 0.
Denoted by μ1 ≥ 0 is a temperature-dependent parameter with dimensions of elastic stiffness. Viscosity is ν1 = μ1t1.
Define conjugate internal stresses for the free energy Ψ0 not modified by damage function f as follows [5, 7]:

ζ = −∂Ψ0/∂χ = −∂ϒ0/∂χ . (3.10)

The condition imposed for thermodynamic equilibrium is that these internal stresses vanish at infinite time.
Temperature coupling addressed in more general frameworks of [5, 7, 45] is omitted, so now μ1 = constant, irrespective

of T . The only independent parameters, beyond those introduced already in Section 3.2, entering this model are β1 = μ1/B
T
0

and t1. The following quadratic form of relaxation energy is invoked [5, 7, 45]:

Ψ0(ε) = 1

2
μ1|ε|2 = 1

2
μ1

[
(ln J )2 + ε21 + ε22 + ε23 + α2 + β2 + γ 2

]
,

∂Ψ0

∂ε
= μ1ε. (3.11)

Then, Eq. 3.9 produces the following:

ϒ0[ε, χ] = 1

2
μ1

[
|χ |2 − 2ε · χ + |ε|2

]
= 1

2
μ1|χ − ε|2. (3.12)

Viscoelastic kinetics obey, for the present specific formulation, wherein α = m = 1 is as follows:

ζ̇ + 1

t1
ζ = μ1ε̇, ζ |t=0 = ζ 0 = ∂εΨ0

∣∣
ε,T at t=0 = μ1ε0; (3.13)

ζ (t) = μ1ε0 exp

(−t

t1

)
+ μ1

∫ t

0+
exp

[−(t − s)

t1

](
d

ds
[ε(s)]

)
ds. (3.14)

Internal strains and their rates are as follows:

χ = ε − ζ/μ1, χ̇ = ζ/ν1, (ν1 = μ1t1 = β1B
T
0 t1 > 0). (3.15)

The rate of dissipated energy reduces to |ζ |2/ν1 = ν1|χ̇ |2 ≥ 0. At equilibrium, χ∞ = ε. The constraint below on squeeze
terms of internal strain is imposed, analogously to Eq. 2.15, such that Eq. 2.30 will be obeyed:

χ1 + χ2 + χ3 = 0. (3.16)

3.4 Damage

A continuum damage mechanics model is used, following [5, 7, 47, 48]. Recall that the internal state variable representative
of deleterious processes that affect mechanical and/or biological functions is denoted by the internal state variableD ∈ [0, 1].
The thermodynamic driving force for damage of Eq. 2.41 is, from Eq. 3.1,

F̄ = − df

dD
Ψ0 = −f ′(Ψ ∞

0 + ϒ0). (3.17)

The following restrictions are imposed to ensure damage evolution is physically and thermodynamically irreversible:
(
Ḋ ≥ 0, Ψ0Ḋ ≥ 0, f ′ ≤ 0

) ⇒ F̄ Ḋ ≥ 0. (3.18)

The present model applies the standard linear degradation function of continuum damage mechanics [44, 47, 49, 50]:

f = 1 − D, f ′ = df/dD = −1 ⇒ F̄ = Ψ0. (3.19)
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Free energy of the undamaged material Ψ0 is thermodynamically conjugate to the rate of damage growth. A canonical
constitutive assumption is that D, or its rate, should be influenced by Ψ0. A dimensionless transformation of Ψ0 is as follows:

Z(Ψ0) =
⎧⎨
⎩

[
2

∣∣∣∣
Ψ V ∞
0 +ϒV

0
BT
0

+ Ψ
μ∞
0 +ϒ

μ
0

μ0
+ Ψ G∞

0 +ϒG
0

G0

∣∣∣∣
]1/2

(if Ψ0 ≥ 0),

0 (if Ψ0 < 0).
(3.20)

Strictly, the argument of Z is a function of a partitioning and normalization of Ψ0, rather Ψ0 itself. Thermoelastic free energy
is partitioned in contributions from volume change, squeeze, and simple shear as follows:

Ψ ∞
0 = Ψ V ∞

0 + Ψ
μ∞
0 + Ψ G∞

0 ; (3.21)

Ψ V ∞
0 = 1

2
BT
0

c1
{exp[c1(ξ1)2] − 1} + K0ξ1 − A0B

T
0 ξ1(T − T0),

Ψ
μ∞
0 = 3μ0

c2
{exp[c2ξ2] − 1}

[
1 − BT

0
μ0

μ′
0ξ1

]
, Ψ G∞

0 = 1
2

G0
c3

{exp[c3ξ3] − 1}
[
1 − BT

0
G0

G′
0ξ1

]
.

(3.22)

Analogously, configurational energy is partitioned as follows:

ϒ0 = ϒV
0 + ϒ

μ
0 + ϒG

0 ; (3.23)

ϒV
0 = 1

2
μ1(ε0 − χ0)

2, ϒ
μ
0 = 1

2
μ1

∑
i=1,2,3

(εi − χi)
2, ϒG

0 = 1

2
μ1

∑
i=4,5,6

(εi − χi)
2. (3.24)

The maximum value of normalized free energy attained at a material point X over a time history s ∈ (−∞, t] is as follows:
Zm(X, t) = max

s∈(−∞,t]
Z(X, s). (3.25)

The following two-parameter damage function is invoked:

D(X, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
[

αD{Zm(X,t)−Z0}
Z0

]
− 1

(
if Zm

Z0
∈
[
1, 1 + ln 2

αD

])
,

0
(
if Zm

Z0
< 1

)
,

1
(
if Zm

Z0
> 1 + ln 2

αD

)
.

(3.26)

Dimensionless scalar parameters are the threshold thermodynamic force for damage initiation Z0 > 0 and αD ≥ 0 that
controls the extent of damage progression with force exceeding this threshold. The larger the value of αD , the greater the
reduction in mechanical stiffness with increasing normalized strain energy exceeding the initiation threshold. Constitutive
Eq. 3.26 obeys D ∈ [0, 1] with D → 1 as Zm → ∞. The material time derivative of Eq. 3.26 is as follows:

Ḋ =
{

αD

Z0
(1 + D) dZm

dt

(
if Zm

Z0
∈
[
1, 1 + ln 2

αD

])
,

0 (otherwise).
(3.27)

Since Zm can only remain constant or increase with time according definition (3.25) and since αD is non-negative, Ḋ ≥ 0.
Furthermore, Żm > 0 only in the domain Ψ0 ≥ 0 according to the definition of Z in Eq. 3.20. Thus, Ψ0Ḋ ≥ 0.

3.5 Stresses, entropy, and temperature

Derivatives of the free energy function comprised of terms for thermoelasticity, viscoelasticity, and damage set forth in
Sections 3.2, 3.3, and 3.4, respectively, produce stress components and entropy according to Eqs. 2.28 and 2.29. Equilibrium
free energy Ψ ∞

0 of Eq. 3.3, thermal energy ψ of Eq. 3.8, configurational energy of ϒ0 of Eq. 3.12, and damage degradation
function f of Eq. 3.19 are substituted into Eq. 3.1 to yield the following total free energy function:

Ψ (ξ1, ξ2, ξ3, T , χ , D) = (1 − D)

[
1

2

BT
0

c1
{exp[c1(ξ1)2] − 1} + K0ξ1 − A0B

T
0 ξ1(T − T0) + 3

μ0

c2
{exp[c2ξ2] − 1}

×
(
1 − BT

0

μ0
μ′
0ξ1

)
+ 1

2

G0

c3
{exp[c3ξ3] − 1}

(
1 − BT

0

G0
G′

0ξ1

)
+ 1

2
μ1|ε − χ |2

]

−c0[T ln (T /T0) − (T − T0)]. (3.28)
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Stress components conjugate to strain attributes obtained from Eqs. 2.28 and 3.28 are as follows:

τ̂0 = (1 − D)BT
0

[
ε0 exp(c1ξ

2
1 ) − 3μ′

0ξ2 − 1
2G

′
0ξ3 − A0(T − T0) + β1(ε0 − χ0) + K0/B

T
0

]
;

τ̂i = 6(1 − D)μ0

[
εi exp(c2ξ2)(1 − {BT

0 /μ0}μ′
0ξ1) + β2(εi − χi)

]
, (i = 1, 2, 3);

τ̂i = (1 − D)G0

[
εi exp(c3ξ3)(1 − {BT

0 /G0}G′
0ξ1) + β3(εi − χi)

]
, (i = 4, 5, 6). (3.29)

Three dimensionless stiffness ratios βi (i = 1, 2, 3) have been introduced in Eq. 3.29:

β1 = μ1/B
T
0 , β2 = μ1/(6μ0) = β1B

T
0 /(6μ0), β3 = μ1/G0 = β1B

T
0 /G0. (3.30)

Prescription of any one of the βi constrains the other two along with μ1. Instantaneous dynamic moduli at the reference
state (ξi = 0, D = 0, χ = 0) are BT

0 × (1 + β1), μ0 × (1 + β2), and G0 × (1 + β3). Cauchy stress σ can be obtained from
τ̂i via Eqs. 2.34 and 2.16. Verification is straightforward that constraints Eqs. 2.19 and 2.30 hold.

Entropy density per unit reference volume is found from Eq. 2.29, noting that ϒ0 does not depend on T :

η = −∂/∂T
[
(1 − D)Ψ ∞

0 + ψ
] = (1 − D)A0B

T
0 ε0 + c0 ln(T /T0). (3.31)

Total dissipation in Eq. 2.43 becomes the following:

D = (1 − D)β1B
T
0 t1|χ̇ |2 + F̄ Ḋ ≥ 0, (3.32)

where the (in)equality is verified by Eq. 3.18 with ν1 = β1B
T
0 t1 > 0. The energy balance (2.42) reduces to the following:

c0Ṫ = D + A0B0T (ε0Ḋ − ε̇0) − ∇0 · q + r . (3.33)

4 Static and dynamic loading

The constitutive model of Section 3 is applied to describe several experimental datasets from different loading protocols.
Most calculations are applied toward describing the response of dog lung, for which data appear most abundant [1, 19–21,
32, 51–53]. Available data or observations on sheep, rabbit, and pig (i.e., porcine data) are substituted when the need arises,
in the absence of data on dog. Differences among certain lung tissue properties, e.g., linearized elastic moduli valid for
small deformations, for many mammals are not excessive [1, 33, 53–58], perhaps because alveolar dimensions, including
thickness of septal walls and membranes, are comparable for animals of similar mass. Humans, however, tend to exhibit a
stiffer mechanical response [59].

Under small deformation, lung tissue responds reasonably isotropically, as indicated by static and wave propagation
experiments [30, 31, 33, 53, 58, 60, 61]. However, anisotropy may arise under large deformations due to rearrangement
(e.g., rotation) of microstructure features [21, 61]. In the present model, which invokes a three-mode response [40, 41] in
the QR kinematic framework consisting of dilatation, squeeze, and simple shear, isotropy under small strains is achieved by
G0 = μ0 [5, 7]. However, different stress–strain responses are possible under finite pure shear and simple shear; accordingly,
c2 	= c3 in the present thermoelastic theory. The pressure derivative of the squeeze modulus is assumed equal to that of
the shear modulus (μ′

0 = G′
0) since only the latter appears to have been measured directly from shear wave propagation

tests. Values are G′
0 ≈ −0.7 [33, 55–57, 60], where the negative sign indicates that shear stiffness increases with increasing

tension. This value is listed in Table 1 along with others.

4.1 Triaxial extension

Cauchy pressure is defined as positive for compressive loading. The definition of the bulk modulus in Eq. 3.6 is consistent
with this sign convention. Following [1, 19, 20, 22], pressure p supported by a material element is presumed equal to the
negative of the transpulmonary pressure ptp, where the latter is positive under tensile loading. By definition [1, 19, 20, 22],
transpulmonary pressure is the difference between the internal airway pressure in the lung (or inside an internally pressurized
element of lung tissue) denoted by pa and the pleural pressure ppl, which is the external pressure acting on the outer surface
of the lung or an element of it:

−p = ptp = pa − ppl. (4.1)
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Table 1 Parameters for free energy-based response: elasticity, viscoelasticity, and damage

Property (units) Value Description

BT
0 , G0 (kPa) 2.5, 1.0 Isothermal bulk and shear modulus∗ of tissue in air

2.0, 1.0 Isothermal bulk and shear modulus of saline-washed tissue

c1, c2, c3 3, 60, 0.5 Nonlinear bulk, squeeze, simple shear constants in air

2, 60, 0.5 Nonlinear bulk, squeeze, simple shear constants, saline

G′
0 −0.7 Initial pressure derivative of shear modulus∗∗

K0 (kPa) 0.2 Reference surface tension in air

Z0, αD 0.64, 0.0167 Normalized injury threshold energy, damage growth parameter

β1, t1 (-,s) 0.6, 0.5 Viscoelastic stress multiplier, relaxation time constant

∗μ0 = G0
∗∗μ′

0 = G′
0

Effects of tension and curvature in the pleural membrane [19, 20] are embedded in ppl and not are resolved explicitly here.
Both pa and ppl are positive in compression. In vivo, pressure in the intrapleural space is less than airway pressure (i.e.,
negative relative to atmosphere), in order to keep the lung from collapsing due to its intrinsic surface tension. Under normal
breathing cycles, tissue remains perpetually in a tensile state [62], whereby the tissue pressure (elastic + surface tension
contributions) p < 0 and ptp > 0. Typically pa ≈ 1 atm = 101.3 kPa = 1.033 × 103 cm H2O.

The low strain rate response is considered here, consistent with experimental data analyzed, and for which a hyperelastic
or pseudoelastic model suffices [19, 20, 52]. In air, hysteresis may be evident leading to differences in loading and unloading
branches of the pressure–volume cycle [51]. Such hysteresis is minimal in saline-filled specimens, demonstrating that much
of the viscoelastic response is linked to changes in surface tension. In the forthcoming analysis, test data and model results
correspond to the more compliant unloading branch.

4.1.1 Spherical extension

When the deformation state is spherical, F = J 1/31, the stress state is hydrostatic according to Eq. 3.29: σ = (τ̂0/J )1 =
−p1. Notably, ε0 = ξ1 = ln J , ξ2 = ξ3 = 0, and εi = 0 for i ≥ 1. Pressure is related to volume change J and damage D

under isothermal (T = T0) static deformations as follows from the first of Eq. 3.29 in the infinite time limit (χ0 → ε0):

p(J, D) = −τ̂0(J, D)/J = −(1 − D)
[
BT
0 (ln J/J ) exp{c1(ln J )2} + K0

]
. (4.2)

The tangent bulk modulus is, extending Eq. 3.6,

BT (J, D) = (1 − D)(BT
0 /J ) [1 + ln J (2c1 ln J − 1)] exp{c1(ln J )2}. (4.3)

Damage obeys (3.26) in terms of Zm(X, t) = maxs∈(−∞,t] Z(X, s); for D ∈ (0, 1),

D(X, t) = exp [αD{Zm(X, t) − Z0}/Z0] − 1. (4.4)

The instantaneous potential driving force for Ψ0 = Ψ V ∞
0 ≥ 0 is, with J = J (X, t) ≥ 1,

Z(J ) =
[
2

∣∣∣∣
Ψ V ∞
0 (J )

BT
0

∣∣∣∣
]1/2

=
[
1

c1
{exp[c1(ln J )2] − 1} + 2

K0

BT
0

ln J

]1/2

. (4.5)

Five parameters affect the spherical isothermal static response: the isothermal bulk modulusBT
0 , the dimensionless nonlinear

elastic constant c1 that controls bulk stiffening for volume changes, the surface tension K0 in the undeformed state from
air-tissue interfaces, the threshold normalized energy for damage initiation Z0, and the damage growth parameter αD . For
lung tissue in saline, K0 = 0 and four parameters suffice. For volumetric cycling in regimes within the damage threshold,
as in normal breathing activities, Z < Z0 and αD is not needed.

Shown in Fig. 1 are model results for pressure and tangent bulk modulus obtained using parameters given in Table 1.
Experimental data for dog lung in saline are extracted from figures in [51, 52], and for dog lung in air from [33, 51, 60].
Data only address the tensile regime, for which J ≥ 1. The compressive response is an extrapolation.
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Fig. 1 Results for static isothermal spherical deformation, experimental data for dog lung in saline from [51, 52], and in air from [33, 51, 60]: a
pressure p computed from Eq. 4.2; b bulk modulus BT computed from Eq. 4.3

Note that the tangent bulk modulus is minimal near zero pressure. Air-filled lung has a stiffer pressure–volume response
due to a higher bulk modulus and surface tension [62]. Surface tension is represented by K0. Lung in saline is stress-free
at the reference state J = 1. Lung in air at J = 1 is under tension (p < 0) due to K0. The stress-free state for lung in air
according to the present model corresponds to J = 0.9245, meaning surface tension causes some contraction in the absence
of tensile pleural pressure relative to airway pressure.

4.1.2 Damage criteria

Little quantitative experimental data relating stress-strain state to visibly observable damage mechanisms exist. Cyclic
expansion of lung by ventilator at airway pressures exceeding those witnessed in normal breathing causes injury (functional
degradation), reduction in shear modulus [63], and changes in bulk modulus [64, 65]. Bulk modulus may increase or
decrease for cycling in air, where decrease is associated with edema as the air-liquid interface responsible for surface tension
is compromised. Longer term changes in stiffness due to biological adaptation (e.g., stiffness increase due to scarring or
inflammation [66]) are not addressed herein.

The static damage model is calibrated following experiments on saline-ventilated rabbit lung [1, 67]. In these experiments,
alveolar edema and commensurate weight increase due to fluid accumulation occurred in lung stretched beyond a critical
magnitude. The rate of edema increased with increasing stretch beyond this threshold. It was concluded in [67] that
permeability of tissue membranes was compromised at such stretch levels, which were below those necessary to impart
observable local tearing or fracture of blood vessels and other structures. Threshold transpulmonary pressures for edema
were recorded as 20 to 25 cm H2O, or ≈ 2 kPa. This value was used to obtain Z0 = 0.64 entering (4.4). In saline, J at this
tensile pressure is 1.73. The same value used for air, whereby J is 1.62 at Z = 0.64.

Available data do not enable a precise determination of damage kinetic parameter αD . Strain softening commensurate
with extreme damage (D → 1) is not evident in experimental data on saline-treated dog lung for J ≤ 3.5 [51, 52]. Nor is any
marked reduction in stiffness evident at lower strain levels upon unloading from triaxial stretch ratios exceeding 1.4 in any or
all directions [52]. However, stiffening associated with elastic nonlinearity (manifested by positive c1, c2, c3 in the present
model) might mask any decremental contributions from local tearing or damage incurred under large stretch. Eventually,
the lung will rupture when stretched beyond an extreme value of J , which should exceed 3.5 according to experimental
observations. In the present model, it is assumed that rupture corresponding to D = 1 will occur in air-filled lung when
J ≥ 5, i.e., expansion to five times or more of the nominal volume. This assumption furnishes the value of αD = 0.0167
listed in Table 1. The same value is used for saline-treated lung.

Predictions of Eq. 4.4 are given in Fig. 2. Damage initiates at a slightly lower volume ratio but slightly higher
transpulmonary pressure in air than saline. Damage accumulates more rapidly with increasing volume in air, and more
rapidly with increasing tensile pressure in saline, where the different trends manifest from different bulk moduli in the two
environments. Pressure-volume curves for lung in air and saline under the extreme loading range 0.5 ≤ J ≤ 5 are reported

Mech Soft Mater (2020) 2: 33 Page 12 of 35



Fig. 2 Results for transpulmonary pressure −p of Eq. 4.2 and damage D from Eq. 4.4 in dog lung under static isothermal spherical deformation:
a damage versus volume J ; b damage versus pressure p; c pressure versus volume

in Fig. 2c. Peak tensile pressure in air-filled lung is attained at J ≈ 4.57. At larger expansions, tensile pressure decreases
with increasing volume as damage accumulates, softening the tangent bulk modulus.

Shown in Fig. 3a are experimental pressure-volume data extracted from Fig. 2 (“fig. data”) and Table II (“tab. data”) of
[52] on saline-treated dog lung. Model results with and without damage enabled are compared. Differences due to damage
are minimal for Lagrangian tensile pressures τ̂0 ≤ 20 kPa. At larger extensions, the model with damage enabled provides
slightly better agreement with test data. Under compressive loading, damage initiates at J � 0.58, which is thought to
be physically realistic. Collapse and air trapping followed by reopening and air release have been observed during cyclic
loading to very large compression (J � 0.5) [68].

4.1.3 Biaxial and triaxial loading

A coordinate system is chosen with basis vectors {eK} aligned parallel to the principal directions of deformation.
In complementary experiments [21, 51], cube-shaped samples of lung tissue are sequentially stretched and unloaded
parallel to each direction, whereby cube faces are orthogonal to directions of stretch. In the experiments of [51],
further analyzed in [52, 61], the X1-direction is that of primary stretch ratio λ1 corresponding to Lagrangian
traction component t1. Stretches in orthogonal directions are nearly equal (λ2 ≈ λ3), as are tractions t2 ≈
t3. The latter orthogonal tractions are held constant in a particular experiment while t1 is varied. In practice,
equality of lateral tractions is enforced mechanically, while all three stretch ratios are measured, confirming that
λ2 ≈ λ3.

Fig. 3 Response for triaxial loading: a pressure-volume results of lung model under spherical extension in air and saline, with (D ≥ 0) and
without (D = 0) damage, versus experimental data [52]. Curves with and without damage are nearly coincident. b Squeeze mode stress–strain
results under triaxial extension in saline versus experimental data [51, 52]. c Damage D for five lateral traction values
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Let the origin of the coordinate frame be located at the center of the undeformed cube of material. Then, the motion is
xk = λkXk (no sum on k = 1, 2, 3). The deformation gradient is diagonal, and hence upper triangular by default is as
follows:

F = T =
⎡
⎣

a 0 0
0 b 0
0 0 c

⎤
⎦ =

⎡
⎣

λ1 0 0
0 λ2 0
0 0 λ3

⎤
⎦ =

⎡
⎣

λ1 0 0
0 λ2 0
0 0 λ2

⎤
⎦ ; J = abc = ab2 = λ1(λ2)

2. (4.6)

Strain attributes are as follows:

ε(λ1, λ2) = [ε0, ε1, ε2, ε3, ε4, ε5, ε6]T = [ln{λ1(λ2)2}, 1
3 ln{λ1

λ2
}, 0, − 1

3 ln{λ1
λ2

}, 0, 0, 0]T. (4.7)

Combinations entering the free energy function are ξ1 = ε0 and ξ2 = (ε1)
2 + (ε3)

2, noting ξ3 = 0 in the absence of simple
shearing modes. The first Piola–Kirchhoff stress tensor (force per unit reference area) is P = diag(t1, t2, t3) where t2 = t3
for symmetric lateral loading. Cauchy stress σ = J−1s, with the physical stress tensor s equal to the Kirchhoff stress since
Q = 1, is as follows:

σ =
⎡
⎢⎣

t1
λ2λ3

0 0
0 t2

λ1λ3
0

0 0 t3
λ1λ2

⎤
⎥⎦ =

⎡
⎢⎣

t1
(λ2)

2 0 0

0 t2
λ1λ2

0
0 0 t2

λ1λ2

⎤
⎥⎦ , p = − 1

3λ2

(
t1

λ2
+ 2

t2

λ1

)
. (4.8)

Denoted by p is the Cauchy pressure. The stress attribute vector is as follows:

τ̂ (σ (t1, t2, λ1, λ2)) = [τ̂0, τ̂1, τ̂2, τ̂3, τ̂4, τ̂5, τ̂6]T = λ1(λ2)
2[ 13 (σ11 + 2σ22), σ11 − σ22, 0, σ22 − σ11, 0, 0, 0]T. (4.9)

Nonzero components are obtained from strain attributes, without temperature changes or viscous effects, as follows:

τ̂0 = (1 − D)BT
0

[
ε0 exp(c1ξ

2
1 ) − 3μ′

0ξ2 + K0/B
T
0

]
, τ̂1 = −τ̂3 = 6(1 − D)μ0

[
ε1 exp(c2ξ2)(1 − {BT

0 /μ0}μ′
0ξ1)

]
.

(4.10)

Free energy of Eq. 3.28 reduces to the following:

Ψ = Ψ ∞ = (1 − D)

[
1

2

BT
0

c1
{exp[c1(ξ1)2] − 1} + K0ξ1 + 3

μ0

c2
{exp[c2ξ2] − 1}

(
1 − BT

0

μ0
μ′
0ξ1

)]
. (4.11)

Contributions, not reduced by damage, from dilatation and squeeze are, respectively,

Ψ V ∞
0 = 1

2

BT
0

c1
{exp[c1(ξ1)2] − 1} + K0ξ1, Ψ

μ∞
0 = 3

μ0

c2
{exp[c2ξ2] − 1}

(
1 − BT

0

μ0
μ′
0ξ1

)
. (4.12)

The driving force for damage, whose evolution again obeys Eq. 4.4, is as follows:

Z = 2
[
|Ψ V ∞

0 /BT
0 + Ψ

μ∞
0 /μ0|

]1/2
(if Ψ0 ≥ 0); Z = 0 (if Ψ0 < 0). (4.13)

Parameters μ0 and c2 are obtained via calibration to experimental data for saline-treated dog lung of [51, 52], wherein
K0 = 0 is irrelevant. In these calculations, λ1 is imposed and t1 is the model output. Transverse stretch components λ2 = λ3
are adjusted until Lagrangian tractions t2 = t3 match discrete experimental values.

Shown in Fig. 3b are results and data for all five values of imposed lateral traction
√

t2t3 ≈ t2. The squeeze strain is ε3
and its conjugate shear stress is τ̂3. The sigmoidal response curve is a result of the exponential stiffening of the tangent shear
modulus via c2 > 0. Damage is enabled in these results, though it has a near negligible effect on the mechanical response.
The model appears insensitive to lateral traction since results are nearly continuous in τ̂3 − ε3 space, but different values of
lateral traction are required to probe the entire domain. Test data show great scatter, but the model produces the correct order
of magnitude and reveals an apparent trend of steeply increasing squeeze modulus with large variations in axial stretch ratio.

Shown in Fig. 4 are Lagrangian traction t1 versus stretch λ1 for each discrete value of transverse traction. Effects of D

on mechanical response are very small, but thresholds for affecting biological function (Zm > Z0) are attained at sufficient
stretch levels. Evolution of damage versus extension λ1 for all five cases is shown in Fig. 3c. Damage is most severe for
larger lateral tensile loads, as physically expected. For large lateral stress levels, increasing λ1 above unity does not notably
increase D, since the deviatoric strain energy is reduced as dilatational energy increases. The model provides excellent fits
to the data at small transverse tractions in Fig. 4a, b. Quality of data matching degrades in Fig. 4c at larger values of

√
t2t3

for λ1 � 1.4. Omission of descriptions of microstructure affecting the nonlinear response may account for discrepancies in
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Fig. 4 Principal traction versus stretch for saline-treated dog lung under static isothermal triaxial deformation at different lateral traction values
in (a–c), with data from [52]. Model curves for t1 with and without (D = 0) damage enabled are nearly indistinguishable since D � 0.03 over the
prescribed ranges of λ1 and λ2 = λ3

Fig. 4c. Predictability for high triaxiality could likely be improved by adding term(s) to the strain energy potential to account
for higher than first-order coupling between dilatation and squeeze, i.e., between pressure and pure shear stress. This would
require calibration of more parameter(s) beyond μ′

0 so is not undertaken here, such that simplicity of the model and its
calibration are not compromised. The current exponential model requires calibration of only 4 elastic parameters for lung in
saline, compared to a polynomial strain energy function with 9 distinct parameters [52].

4.2 Dynamic pressure relaxation

Viscoelastic response parameters are obtained by calibration of the model to pressure relaxation experiments on rabbit
lung in air [69]. The two parameters of interest in Table 1 are β1 and t1. A simple model with only a single relaxation
time is implemented to demonstrate basic features and calibrate the instantaneous dynamic response; more viscous modes
must be included to address more sophisticated loading protocols (e.g., cycling at disparate frequencies) and the nonlinear
viscoelastic response [25, 66, 70–72]. The ratio of instantaneous dynamic modulus to equilibrium modulus observed in
rabbit lung for spherical deflation [69] is comparable in magnitude to values observed in pig lung under indentation [73] and
human lung under tensile relaxation [59].

Viscous stress component ζ0 associated with non-equilibrium pressure is generally nonzero. All six other components of
ζ vanish by construction, so ζi = 0 ⇒ χi = εi for i ≥ 1. The homogeneous deformation state is spherical: F = J 1/31. The
stress state is hydrostatic: σ = (τ̂0/J )1 = −p1. Elastic strain variables are ε0 = ξ1 = ln J , ξ2 = ξ3 = 0, and εi = 0 for
i ≥ 1, leading to χi = 0 for i ≥ 1. The tensile deformation state under which relaxation is measured is not severe enough to
induce damage: D(t) = 0∀t ≥ 0. Viscous heating is omitted under the time scales involved.

Pressure is related to J and D under isothermal (T = T0) deformations from the first of Eq. 3.29 (D = 0):

p(J, χ0) = − τ̂0(J, χ0)

J
= −BT

0

J

[
(ln J ) exp{c1(ln J )2} + K0

BT
0

+ β1(ε0 − χ0)

]
. (4.14)

Free energy is as follows:

Ψ (J, χ0) = Ψ V ∞
0 (J ) + ϒV

0 (J, χ0) = 1

2
BT
0

[
1

c1
{exp[c1(ln J )2] − 1} + 2K0

BT
0

ln J

]
+ 1

2
μ1(ln J − χ0)

2. (4.15)

Under pressure relaxation at fixed volume, J = J0 = constant. At equilibrium, as t → ∞, χ0 → ε0 = ln J = ln J0. The
value of J0 was prescribed such that p(t → ∞) matches the experimental value [69]: J0 = 1.313. For J = 1.313, the
maximum driving force at t = 0 is Zm = 0.414 < Z0 = 1 at ptp = −p = 1.11 kPa, so damage never ensues. The internal
strain χ0 evolves according to the viscoelastic kinetic law for ζ0. From Eqs. 3.14 and 3.15 with J = J0 = constant,

χ0(t) = ln J0 − 1

β1B
T
0

ζ0(t) = ln J0

[
1 − exp

(−t

t1

)]
. (4.16)
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Substituting Eq. 4.16 into Eq. 4.14 at J = J0 produces the relaxation function as follows:

p(t) = −BT
0

J0

[
(ln J0) exp{c1(ln J0)

2} + K0

BT
0

+ β1(ln J0) exp

(−t

t1

)]
. (4.17)

Viscoelastic parameters β1 and t1 are obtained by matching the relaxation response of p from Eq. 4.17 versus decay time t

to experimental data from [69]. Results are reported in Fig. 5, demonstrating suitability of this two-parameter fit.

4.3 Simple shear

Dynamic shear is studied, where results are compared to torsion data on porcine lung [74] and simple shear data on human
lung [75]. The lone material parameter to be identified in Table 1 is c3. A coordinate system is chosen with basis vector e2
aligned normal to the plane of shear and e1 parallel to the direction of shear. In a torsion test, e2 would be parallel to the axis
of twist along a cylindrical specimen, and e1 would be aligned in an orthogonal circumferential direction. In the latter case,
a material element of study would be located near the outer radius of the specimen, where shear stress is maximal. The local
deformation gradient at a material element, in these coordinates, is presumed as follows:

F = T =
⎡
⎣
1 γ 0
0 1 0
0 0 1

⎤
⎦ ; J = 1. (4.18)

The only non-vanishing strain attribute, strain combination, and viscous state variable entering the free energy are as follows:

ε4 = γ, ξ3 = γ 2, χ = [0, 0, 0, χ, 0, 0]T, (χ = χ4). (4.19)

Nonzero stress attributes in terms of Cauchy pressure p and shear stress τ conjugate to γ are as follows:

p(γ, T ) = −τ̂0 = (1 − D)BT
0

[
1
2G

′
0γ

2 + A0(T − T0) − K0/B
T
0

]
,

τ (γ, χ) = τ̂4 = (1 − D)G0

[
γ exp(c3γ

2) + β3(γ − χ)
]
, (β3 = β1B

T
0 /G0). (4.20)

Nonzero pressure may result from nonlinear coupling with shear, temperature change, and surface tension. Free energy, not
including the damage prefactor, is as follows:

Ψ0(γ, T , χ) = Ψ G∞
0 (γ )+ϒG

0 (γ, χ)+ψ(T ) = 1

2

G0

c3
{exp[c3γ 2]−1}+ 1

2
β3G0(γ −χ)2−c0[T ln (T /T0)−(T −T0)]. (4.21)

The lone scalar viscous stress component is ζ = ζ4 = −∂χΨ0 = −∂χϒG
0 . Viscoelastic kinetics of Eq. 3.14 produce the

following:

ζ(t) = β3G0

{
γ exp

(−t

t1

)
+
∫ t

0+
exp

[−(t − s)

t1

](
d

ds
[γ (s)]

)
ds

}
. (4.22)

Fig. 5 Pressure versus relaxation time for constant volume stress relaxation in air: model calibration versus experimental data on rabbit lung [69]

Mech Soft Mater (2020) 2: 33 Page 16 of 35



For constant strain rate loading, γ = γ̇ t where d
dt γ = γ̇ = constant, this reduces to the following:

ζ(t) = β3G0γ̇ {t exp(−t/t1) + t1[1 − exp(−t/t1)]}. (4.23)

The internal strain is, from Eq. 3.15,

χ(t) = γ (t) − ζ(t)/(β3G0) = γ̇ t − γ̇ {t exp(−t/t1) + t1[1 − exp(−t/t1)]}. (4.24)

The minimum strain rate considered in what follows is γ̇ = 550 s−1, for which min[exp(−t/t1)] = 0.9964 at γ = 1 and
t = 1

550 s. Therefore, for such rapid loading, viscous relaxation is insignificant, and χ(t) = 0∀t ≥ 0 is a very accurate
approximation. Damage accrues according to Eq. 3.26, where Zm = maxs∈[0,t] Z(s) with

Z =
[
2|Ψ G∞

0 + ϒG
0 |/G0

]1/2
(if Ψ0 ≥ 0); Z = 0 (if Ψ0 < 0). (4.25)

Results of the model for an imposed strain rate of γ̇ = 550 s−1 are shown in Fig. 6, with and without damage enabled.
Viscous effects are omitted in the static results, which correspond to γ = χ or β3 = 0. Rate dependence is evident by the
stiffer response of the viscoelastic relative to the static results. Damage only ensues for γ � 0.4, and even then, its effect
on τ is minimal for γ ≤ 1. Damage increases with shear strain as indicated in Fig. 6b. Damage evolves more severely with
γ in the dynamic case due to contributions from viscous configurational energy to the driving force Z. Although loss of
biological function may arise at the onset of nonzero D at relatively low stress (Z > Z0 for τ � 1.05 kPa), the lung can
sustain very large simple shear deformations before total rupture: D → 1 only when γ � 3.4. This prediction is consistent
with experimental data for spherical expansion [67] discussed in Section 4.1.2.

Shear stress τ is compared with data obtained at the same strain rate from dynamic torsion experiments [74]. Data
presented in that work demonstrate significant test-to-test variability; only their maximum stress–strain curve is reproduced
here in Fig. 6a. Not shown are experimental data obtained from direct, dynamic simple shear experiments on human lung
at two higher strain rates [75], which demonstrate a notably stiffer response. The present viscoelastic model, with c3 = 0.5,
produces τ -γ response curves close to the maximal porcine data for γ � 0.4. Dog data are expected to more closely match
porcine than human data, as also suggested by [59] where human lung tissue was reported to be stiffer than dog lung tissue
in biaxial tension.

5 Internal energy formulation for air-tissue response

A constitutive formulation for static and dynamic loading of the lung based on the internal energy potential U is now
developed. This model is preferred for compressive stress states and very high strain rates. It can be used to model adiabatic
shock loading processes in which air does not have time to redistribute among or escape from the alveoli.

Fig. 6 Model response in
dynamic simple shear: a shear
stress τ versus simple shear
strain γ , compared to
experimental max/min data on
porcine lung [74] tested at
γ̇ = 550 s−1; b damage variable
D versus shear γ for dynamic
(with viscosity); and static
(without viscosity) loading
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5.1 General form

The following form of U in the second of Eq. 2.25 is invoked:

U(ε, η, χ , D) = f̄ (D)[UV
0 (ε, η, χ)] + f (D)[Uμ

0 (ε, χ) + UG
0 (ε, χ)] + u(η)

= f̄ (D)[UV ∞
0 (ε0, η) + ϒV

0 (ε0, χ0)] + f (D)[Uμ∞
0 (ε) + UG∞

0 (ε) + ϒ
μ
0 (ε, χ) + ϒG

0 (ε, χ)] + u(η). (5.1)

This function mirrors that of free energy (3.1), where temperature T is replaced with entropy density η. Equilibrium internal
energy, including strain energy and coupling from thermal expansion, is U∞

0 = UV ∞
0 + U

μ∞
0 + UG∞

0 , partitioned into
contributions from dilatation, squeeze, and simple shear. Configurational internal energy associated with viscoelasticity,
partitioned similarly, is ϒ0 = ϒV

0 + ϒ
μ
0 + ϒG

0 . Thermoelastic and viscous contributions sum:

U0 = UV
0 + U

μ
0 + UG

0 ; UV
0 = UV ∞

0 + ϒV
0 , U

μ
0 = U

μ∞
0 + ϒ

μ
0 , UG

0 = UG∞
0 + ϒG

0 . (5.2)

Functions enteringϒ0 will be assigned identical forms to those in Section 3. Two damage degradation functions are f̄ and f ,
where the latter will be prescribed identically to that in Eq. 3.1. Function f degrades the stiffness in pure and simple shear.
Function f̄ degrades the bulk stiffness, and f̄ (D) ≥ f (D) is imposed conditionally later such that under rapid compression,
the tangent bulk modulus cannot fall below that of air alone in the initial state.

5.2 Thermoelastic strain energy

A material element consists of dense lung tissue, surface liquid, and air inside alveoli. Under slow deformation processes,
air has time to move throughout the microstructure—or when the entire lung is considered, enter and exit through open
trachea—and only the tissue network and surface liquid affect the stiffness. Under very rapid loading (or if the trachea is
artificially sealed), air does not have time to redistribute or escape, and compressibility of the air affects the response in
conjunction with the dense tissue and liquid phase [30]. Effects of trapped air on stiffness measured during wave propagation
have been widely documented [1, 30, 31, 58, 67]. The loading rate or frequency at which a transition from open tissue-
dominated to air-dominated stiffness affects wave speeds is not known precisely; an intermediate region between the two
regimes likely exists [31].

For the open-cell model, the reference state is identical to that of the free energy-based theory of Section 3.2. The stress
supported by the continuum material element is that sustained by the tissue and its surface air-liquid interface, if not saline-
washed. A material element is considered to occupy a stress-free reference state when undeformed (F = 1 and J = 1)
and in the absence of surface tension at the air-liquid interface, wherein its mass density is ρ0 and entropy is η0. Surface
tension will produce tensile pressure at J = 1. Transpulmonary pressure ptp is equal to the negative of pressure supported
by continuum element, related to internal airway pressure pa and pleural/external pressure ppl via Eq. 4.1. Neither pa nor
ppl need be known explicitly to use the open-cell model or the framework of Sections 3 and 4. When one is given (e.g.,
pa = 1 atm), then the other (e.g., ppl) can be computed a posteriori once p is obtained from the constitutive model. All
pressures entering Eq. 4.1 are referred in this work to a datum of absolute zero (vacuum). Accordingly, pa ≥ 0 since air
cannot sustain tensile pressure under conventional models such as ideal gases [76].

The closed-cell model is more complicated. A continuum material element consists of the dense tissue phase (solid +
liquid) as well as the internal air phase (gas). Volume fractions occupied by each phase in the reference state are denoted
by vt and va for dense tissue and air, respectively, related by vt + va = 1. The reference state of the effective continuum
element for which F = 1, J = 1, ρ = ρ0, and η = η0 is defined as follows. The continuum stress vanishes, and thus
p = 0, for this element at the reference state in the absence of surface tension. The internal airway pressure at the reference
state is imposed a priori as pa = pa0 > 0, where a vacuum airway state is not considered to avoid singularities. Thus, from
Eq. 4.1, the pleural pressure, positive in compression, at the reference state at J = 1 is ppl = p + pa = −K0 + pa0, where
K0 is the surface tension. In the absence of surface tension, pleural pressure and internal airway pressure balance to ensure
the reference state is stress-free. Material coefficients entering the internal energy function depend on vt and pa0, which
are regarded as fixed initial values during solution of any boundary value problem. This does not imply that internal airway
pressure pa remains constant during the time history of deformation.
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Equilibrium thermoelastic internal energy depends explicitly on three functions of the strain attributes of Eq. 2.14, denoted
by ξi , i = 1, 2, 3, defined identically to Eq. 3.2. The thermoelastic internal energy analog of Eq. 2.30 is identically satisfied
through Eq. 2.15. Thermoelastic strain energy density per unit reference volume is prescribed as follows:

U∞
0 (ξ1, ξ2, ξ3, η) = 1

2

B̄
η
0

c1
{exp[c1(ξ1)2] − 1} − g0T0ηξ1 + K0ξ1

+3
μ0

c2
{exp[c2ξ2] − 1}

[
1 − BT

0

μ0
μ′
0ξ1

]
+ 1

2

G0

c3
{exp[c3ξ3] − 1}

[
1 − BT

0

G0
G′

0ξ1

]
. (5.3)

Energy is partitioned into contributions from dilatation, squeeze, and simple shear analogously to Eqs. 3.21 and 3.22:

U∞
0 = UV ∞

0 + U
μ∞
0 + UG∞

0 ; (5.4)

UV ∞
0 = 1

2

B̄
η
0

c1
{exp[c1(ξ1)2] − 1} + K0ξ1 − g0T0ξ1η,

U
μ∞
0 = Ψ

μ∞
0 = 3

μ0

c2
{exp[c2ξ2] − 1}

[
1 − BT

0

μ0
μ′
0ξ1

]
, UG∞

0 = Ψ G∞
0 = 1

2

G0

c3
{exp[c3ξ3] − 1}

[
1 − BT

0

G0
G′

0ξ1

]
.(5.5)

Denoted by B̄
η
0 is the effective isentropic bulk modulus, μ0 the shear modulus for pure shear, and G0 the shear modulus

for simple shear, all at the undeformed reference state for equilibrium quasi-static deformation (no viscoelasticity), in the
absence of damage. The latter two are identical in value and definition to μ0 and G0 introduced in Eq. 3.3. The datum value
of entropy at the reference state is chosen as η0 = 0 for simplicity. Temperature at the reference state is the constant T0. The
isentropic pressure derivatives of the shear moduli at the reference state are μ′

0 and G′
0. The isothermal bulk modulus is BT

0 ,
identical to that in Section 3.2; c1, c2, c3, and K0 also match those in Eq. 3.3 and Table 1.

The first term in Eq. 5.3 accounts for the isentropic pressure-volume response and contains the isentropic bulk modulus at
the reference state, B̄η

0 . The second term in Eq. 5.3 accounts for thermoelastic coupling and contains the Grüneisen parameter
at the reference state, g0. The purely entropic contribution to internal energy is as follows:

u(η) = T0η
[
1 + 1

2η/c0

]
. (5.6)

denoted by ρt , the constant mass density of the condensed tissue phase at the reference state; denoted by ρa0, the mass
density of the internal air at the reference state. Treating air as an ideal gas, ρa0 = (pa0/p1)ρa1, where ρa1 = 1.2 × 10−3

g/cm3 is its mass density at room temperature T0 and p1 = 1 atm. The reference mass density of the composite lung is

ρ0(vt , pa0) = vt × ρt + (1 − vt ) × ρa0(pa0). (5.7)

In practice, the mass density of the composite lung ρ00 is measured in air at a given internal pressure pa0 = ppl , i.e., at zero
transpulmonary pressure. The reference state mass density ρ0 is then found frommass conservation as ρ0J0 = ρ00J00, where
J00 is the calculated contraction due to surface tension K0 computed using the static spherical response of Section 4.1.1. For
properties given in Table 1, J00 = 0.9245 is obtained from implicit solution of Eq. 4.2 with D = 0. Note that J0 = 1 in the
undeformed reference state. Finally, vt is obtained by an implicit solution of Eq. 5.7. In subsequent analysis, ρ0 and vt are
then treated as constants for a given lung sample and set of initial conditions.

Mixture theory estimates the coefficient of thermal expansion for the composite, A0, and the specific heat per unit
reference volume at constant volume, c0: denoted by subscripts (·)t and (·)a quantities for dense tissue and air phases at the
reference state at temperature T0, and denoted by C the specific heat per unit mass at constant volume. Then

A0 = vt × At + (1 − vt ) × Aa, c0 = vtρtCt + (1 − vt )ρa0 × Ca . (5.8)

For an ideal gas, Aa = 1/T0, and specific heat per unit mass is reasonably approximated as constant at moderate excursions
from room temperature [76], here Ca = 718 J/kg×K. Equation 5.8 can be formally derived under the condition that
temperature T is equal in each phase; otherwise, these relations are viewed as basic modeling assumptions.

The definition of the effective isentropic bulk modulus at the undeformed reference state depends on the loading regime,
where an open-cell model is used for static to moderate volumetric strain rates, and a closed-cell model for high rates,
wherein air does not have time to flow through or exit the alveolar microstructure. Specifically [30, 31],

B̄
η
0 =

{
B

η
0 = BT

0 (1 + g0A0T0) (open-cell model),[
vt

B
η
t

+ 1−vt

Γpa0

]−1
(closed-cell model).

(5.9)
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The closed-cell equation for B̄
η
0 can be formally derived under the condition that pressure changes in each phase are identical

for small average volume changes from the reference state, or it can be treated as a basic modeling assumption. The latter is
more amenable to the present application since pressures and volume changes presumably both vary heterogeneously among
phases during passage of a stress wave through the material. The isentropic bulk modulus of the dense phase at the reference
state is B

η
t . The isentropic bulk modulus of air under the ideal gas model is B

η
a = Γ BT

a = Γpa0, with Γ = 1.4 the ratio of
specific heat at constant pressure to that at constant volume of air.

The Grüneisen parameter is obtained from the thermodynamic identity as follows [76, 77]:

g0 = A0B̄
T
0 /c0, (5.10)

where A0 and c0 are found from Eq. 5.8. The effective isothermal bulk modulus B̄T
0 at the reference state is as follows:

B̄T
0 =

{
BT
0 (open-cell model),[
vt

BT
t

+ 1−vt

pa0

]−1
(closed-cell model).

(5.11)

5.3 Viscoelasticity and damage

Viscoelasticity is addressed as in Section 3.3. The viscoelastic response is the same for closed- and open-cell models because
air in the closed-cell model is treated as an inviscid compressible fluid (e.g., ideal gas) that does not contribute to dynamic
viscosity. The specific relaxation internal energy U0 is equal to the free energy function of Eq. 3.11:

U0(ε) = Ψ0(ε) = 1

2
μ1|ε|2 = 1

2
μ1

[
(ln J )2 + ε21 + ε22 + ε23 + α2 + β2 + γ 2

]
. (5.12)

The thermodynamic driving force for damage in Eq. 2.41 is found in terms of thermoelastic strain, viscous internal strain,
and entropy by equating partial derivatives of free and internal energies with respect to D:

F̄ = −(∂Ψ /∂D)|ε,χα,T = −(∂U/∂D)|ε,χα,η. (5.13)

This derivation is analogous to that followed for obtaining stress components as partial strain derivatives of internal energy
in Eq. 2.35 [5, 7]. The thermodynamic driving force for damage of Eq. 5.13 is then, from differentiation of Eq. 5.1,

F̄ = −
[
df̄

dD
UV
0 + df

dD
(U

μ
0 + UG

0 )

]
= −f̄ ′ [UV ∞

0 + ϒV
0

]
− f ′ [Uμ∞

0 + ϒ
μ
0 + UG∞

0 + ϒG
0

]
. (5.14)

The linear degradation function of classical damage mechanics introduced in Section 3.4 is retained for f :

f (D) = 1 − D, f ′ = df/dD = −1. (5.15)

This function is contrasted with quadratic functions used in phase field and other generalized continuum theories [78–81],
which are all admissible in the generic thermodynamic framework of [5, 7]. The degradation function f̄ is as follows:

f̄ (D) = 1 − D̄(D), D̄ =
⎧⎨
⎩

D ×
(
1 − B

η
a

B̄
η
0

)
= D ×

(
1 − Γpa0

B̄
η
0

)
= D × (1 − γ̄ ) (closed-cell model),

D (open-cell model).
(5.16)

denoted by γ̄ ≤ 1 is the ratio of the bulk modulus of the gas phase to that of the composite material. As D → 1, f̄ → γ̄ ,
and the bulk stiffness of the composite at null applied strain reduces to that of the air contained within: B̄η

0 → B
η
a0 = Γpa0.

From Eq. 5.16,

f̄ ′(D) =
{

γ̄ − 1 (closed-cell model),
−1 (open-cell model).

(5.17)

It follows from insertion of Eqs. 5.15, 5.16, and 5.17 into Eq. 5.13 that, in order to ensure damage evolution is physically
and thermodynamically irreversible,

Ḋ ≥ 0, F̄ Ḋ = Ū0Ḋ ≥ 0. (5.18)

Conditional internal energy density per unit reference volume Ū0 = F̄ is defined as follows:

Ū0 =
{

(1 − γ̄ )UV
0 + U

μ
0 + UG

0 (closed-cell model),
U0 (open-cell model).

(5.19)
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The following dimensionless transformation of U0 is defined as a driving force or indicator of damage:

Z(U0, ∇0U0) =
⎧⎨
⎩

[
2

∣∣∣∣
UV ∞
0
B̄

η
0

+ ϒV
0

B
η
0

+ U
μ∞
0 +ϒ

μ
0

μ0
+ UG∞

0 +ϒG
0

G0

∣∣∣∣
]1/2

× [1 + ω(|∇U0|)] (if Ū0 ≥ 0),

0 (if Ū0 < 0).
(5.20)

This function matches that of the free energy-based damage model of Eq. 3.20, intended for low to moderate strain rates
in Section 3.4, with two exceptions. First, internal energy density normalized by the isentropic bulk modulus in Eq. 5.20
replaces free energy density normalized by the isothermal bulk modulus in Eq. 3.20. Second, the factor 1 + ω appears only
in the present internal energy-based model intended for moderate to high strain rates, most notably those involving wave
propagation. Arguments of Z are indicated only implicitly by those in parenthesis on the left of Eq. 5.20.

The function ω is defined as follows, with ωD a dimensionless non-negative scalar constant and l a length parameter later
associated with alveolar diameter and used for normalization along with the open-cell bulk modulus B

η
0 :

ω = ωD

√
l

B
η
0

|2∇0U0|1/2 = ωD

√
2l

B
η
0

[
∂U0

∂XK

∂U0

∂XK

]1/4
≥ 0. (5.21)

The function ω is included in the driving force Z to account for deleterious effects of pressure gradients on the lung when
subjected to blast loading [9, 12, 13]: steep pressure rises have been experimentally and numerically associated with more
severe injuries than those incurred by gradual loading to similar overall stress and strain magnitudes.

The damage evolution law makes use of the maximum value of instantaneous driving force Z defined in Eq. 5.20 over
the time history of deformation at material point X, analogously to Eq. 3.25: Zm(X, t) = maxs∈(−∞,t] Z(X, s). Damage
then obeys Eq. 3.26, where now Zm accounts for normalized energy and its material gradient. Since Zm can only remain
constant or increase with time via Eq. 3.25, and because αD ≥ 0 and Z0 > 0, Ḋ ≥ 0. Furthermore, Żm > 0 only in the
domain Ū0 ≥ 0 according to Eq. 5.20. Therefore, Ū0Ḋ = F̄ Ḋ ≥ 0, ensuring positive dissipation according to Eq. 5.18.

5.4 Stresses, entropy, and temperature

Equilibrium internal energy U∞
0 of Eq. 5.3, thermal energy u of Eq. 5.6, configurational energy of ϒ0 of Eq. 3.12, and

damage degradation functions f of Eq. 5.15 and f̄ of Eq. 5.16 are substituted into Eq. 5.1 to yield the total internal energy
function:

U(ξ1, ξ2, ξ3, η, χ , D) = (1 − D̄)

[
1

2

B̄
η
0

c1
{exp[c1(ξ1)2] − 1} + K0ξ1 − g0T0ηξ1 + 1

2
μ1(ε0 − χ0)

2

]

+(1 − D)

[
3
μ0

c2
{exp[c2ξ2] − 1}

(
1 − BT

0

μ0
μ′
0ξ1

)]

+(1 − D)

[
1

2

G0

c3
{exp[c3ξ3] − 1}

(
1 − BT

0

G0
G′

0ξ1

)]

+(1 − D)

[
1

2

6∑
i=1

μ1(εi − χi)
2

]
+ T0η

(
1 + 1

2

η

c0

)
. (5.22)

Stress components conjugate to strain attributes obtained from Eqs. 2.35 and 5.22 are as follows:

τ̂0 = (1 − D̄){B̄η
0

[
ε0 exp(c1ξ

2
1 )
]

− g0T0η + BT
0 β1(ε0 − χ0) + K0} − (1 − D)BT

0 {3μ′
0ξ2 + 1

2G
′
0ξ3};

τ̂i = 6(1 − D)μ0

[
εi exp(c2ξ2)(1 − {BT

0 /μ0}μ′
0ξ1) + β2(εi − χi)

]
, (i = 1, 2, 3);

τ̂i = (1 − D)G0

[
εi exp(c3ξ3)(1 − {BT

0 /G0}G′
0ξ1) + β3(εi − χi)

]
, (i = 4, 5, 6). (5.23)

Ratios βi (i = 1, 2, 3) are identical to Eq. 3.30. From Eq. 2.35, since ϒ0, U
μ
0 , and UG

0 do not depend on η,

T = ∂

∂η

[
f̄ UV ∞

0 + u
]

= T0

[
1 − (1 − D̄)g0 ln J + η

c0

]
. (5.24)
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Temperature tends to increase with decreasing volume and increasing entropy. Total dissipation in Eq. 2.43 is as follows:

D = β1B
T
0 t1

[
(1 − D̄)(χ̇0)

2 + (1 − D)

6∑
i=1

(χ̇i)
2

]
+ Ū0Ḋ ≥ 0; η̇ = 1

T
[D − ∇0 · q + r] . (5.25)

6 Low-amplitude waves and shock waves

The constitutive model of Section 5 is applied to problems of wave propagation in the lung.

6.1 Composite properties and wave speeds

Addressed first is the response of lung tissue under low-amplitude isentropic wave propagation. The initial state be statically
pressurized and finitely spherically deformed from an unstressed state, but wave motion is restricted to small deformations
and small deformation gradients superposed on the initial state as in linear elastodynamics [82, 83].

An upper triangular deformation matrix is sufficient for this application. A global coordinate system is chosen such that
Q = 1, following [84]. In this context, F = T cannot be arbitrary, but rather Laplace stretch must be integrable to a vector
potential [5, 7]. Let u(X, t) denote the displacement field. Then, measured relative to the initial state is as follows:

F = 1 + ∇0u = T =
⎡
⎣
1 + ∂u1/∂X1 ∂u1/∂X2 ∂u1/∂X3

0 1 + ∂u2/∂X2 ∂u2/∂X3

0 0 1 + ∂u3/∂X3

⎤
⎦

=
⎡
⎣
1 + e11 2e12 2e13

0 1 + e22 2e23
0 0 1 + e33

⎤
⎦ =

⎡
⎣
1 + e1 e4 e6

0 1 + e2 e5
0 0 1 + e3

⎤
⎦ .

(6.1)

Components of the linear strain tensor are eij = 1
2 (∂ui/∂Xj + ∂uj /∂Xi), and eα (α = 1, 2, . . . , 6) are components of strain

in Voigt notation. Under the condition that |eα| � 1, the following relationships to strain attributes of Eq. 2.14 are derived:

ε0 = ln(abc) = ln J = ln(1 + ∂ui/∂Xi + . . .) ≈ ∂ui/∂Xi = e1 + e2 + e3,

ε1 = 1
3 ln(a/b) ≈ 1

3 (e1 − e2), ε2 = 1
3 ln(b/c) ≈ 1

3 (e2 − e3), ε3 = 1
3 ln(c/a) ≈ 1

3 (e3 − e1),

ε4 = γ ≈ (1 + e1)γ = aγ = e4, ε5 = α ≈ (1 + e2)α = bα = e5, ε6 = β ≈ (1 + e1)β = aβ = e6. (6.2)

Next, the stress–strain equations of Eq. 5.23 are linearized about a reference state at pressure p0 under isentropic conditions
pertinent to elastic wave propagation, in the absence of damage (D = 0). For instantaneous response applicable to
high-frequency waves, no viscoelastic relaxation occurs, and thus χi = 0. Truncation at O(|e|2) gives the following:
τ̂0 ≈ B̄

η
0 × (1 + β̄1)(e1 + e2 + e3) − p0,

τ̂1 ≈ 2μ0 × (1 + β2)(e1 − e2), τ̂2 ≈ 2μ0 × (1 + β2)(e2 − e3), τ̂3 ≈ 2μ0 × (1 + β2)(e3 − e1);
τ̂4 ≈ G0 × (1 + β3)e4, τ̂5 ≈ G0 × (1 + β3)e5, τ̂6 ≈ G0 × (1 + β3)e6. (6.3)

Letting β̄1 = β1 × BT
0 /B̄

η
0 , dynamic thermoelastic moduli are B̄

η
D = B̄

η
0 × (1 + β̄1) = B̄

η
0 + β1B

T
0 , μD = (1 + β2) × μ0,

and GD = (1 + β3) × G0. Then, from Eq. 2.18, linearized constitutive equations for Kirchhoff stress components sij = kij
are as follows:

s11 + s22 + s33 ≈ 3B̄η
D × (e1 + e2 + e3) − 3p0,

s11 − s22 ≈ 2μD × (e1 − e2), s22 − s33 ≈ 2μD × (e2 − e3), s33 − s11 ≈ 2μD × (e3 − e1),

s12 ≈ GD × e4, s23 ≈ GD × e5, s31 ≈ GD × e6. (6.4)

These equations are identical to those of linear anisotropic elasticity for cubic symmetry and an initial homogeneous pressure
p0. When μD = GD , they reduce to linear isotropic elasticity. For low-frequency waves (χi = εi), or in the absence of
viscoelasticity (e.g., saline-washed lung, βi = 0), the linearized stress–strain equations are of identical form, but with static
moduli replacing dynamic moduli. Strain components eα are those measured relative to the initial state wherein F = J

1/3
0 1.

Surface tension, −K0, is assumed included in p0, and thus is not explicitly written in Eq. 6.3 or Eq. 6.4.
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Under the foregoing small deformation assumptions, equations of motion in the absence of body forces are as follows
[82, 83]:

∂sij /∂Xj = ρ0∂
2ui/∂t2, (6.5)

where ρ0 is the mass density in the initial state upon which wave motion is superposed. Addition of a homogeneous initial
stress field, e.g., p0, does not affect the left side of Eq. 6.5.

For the rectilinear Cartesian coordinate system associated with Eq. 6.1, each of the three coordinate axes is a pure mode
direction for plane wave motion. Each axis permits a longitudinal plane wave (displacement parallel to propagation direction)
propagating at velocity cL and two shear plane waves (polarization orthogonal to propagation direction) propagating at
velocity cS . Considering Eqs. 6.4 and 6.5, wave speeds are deduced to be of the standard form [85, 86]

cL =
√

(B̄
η
D + 4

3μD)/ρ0, cS = √
GD/ρ0, (6.6)

where in general, now admitting a homogeneous initial damage field D0, the tangent moduli in the initial state are as follows:

B̄
η
D = B̄

η
0 · (1 + β̄1)[1 − (1 − γ̄ )D0], μD = μ0 · (1 + β2)(1 − D0), GD = G0 · (1 + β3)(1 − D0). (6.7)

Properties of each of the two phases are listed below the horizontal demarcation line in Table 2. Mass density of the dense
tissue phase ρt and its isentropic bulk modulus B

η
t are obtained from [30]. These two values are unaffected by any initial

static (transpulmonary) pressure p0 and any corresponding static volume change J0 of a composite material element. Specific
heats and thermal expansion coefficients for the dense phase are estimated from [87–90].

Composite properties above the demarcation line correspond to dog lung. Composite mass density ρ0 is obtained from the
stress-free mass density ρ00 = 3.65 g/cm3 reported in [22] using the analysis procedure described in Section 5.2. Densities
of each phase then enter Eq. 5.7, which is solved iteratively for the value of vt listed in Table 2. The composite bulk modulus
B̄

η
0 , composite specific heat c0, composite thermal expansion coefficient A0, and composite Grüneisen parameter g0 are

obtained using relations in Eqs. 5.8, 5.9, and 5.10, where the closed-cell model equations are invoked. The value listed for
�D will be justified in Section 6.2, wherein the alveolar diameter l (dog lung [1]) is introduced.

The closed-cell bulk modulus B̄
η
0 is on the order of 200 kPa for an internal airway pressure of 1 atm, compared to the

value of static isothermal bulk modulus BT
0 in Table 1 of 2.5 kPa in air and 2.0 kPa in saline. The open-cell isentropic bulk

modulus computed from Eq. 5.9 is nearly indistinguishable, essentially also 2.5 kPa in air and 2.0 kPa in saline. Effects
of viscoelasticity on B̄

η
D are effectively negligible since β1 = 0.6 from Table 1 and β̄1 = β1B

T
0 /B̄

η
0 ≈ 0.007. Also,

μD ≈ GD � B̄
η
D . Therefore, for pa0 ≈ 1 atm, longitudinal wave propagation is effectively isotropic with a velocity

essentially equal to the bulk sound speed: cL ≈
√

B̄
η
D/ρ0 ≈

√
B̄

η
0 /ρ0.

Results of Eqs. 5.9 and 6.6 for the closed-cell model are reported in Fig. 7. Shown in Fig. 7a versus pa0 are this closed-
cell dynamic bulk modulus normalized by the open-cell modulus B

η
0 � BT

0 for lung in air and saline, with respective values
of 2.5 and 2.0 kPa. The condition J0 = 1 is imposed for Fig. 7a: initial transpulmonary pressures are p0 = −K0 = 0.2 kPa
in air and p0 = 0 in saline. As internal air pressure increases from 0.1 to 10 atm, the ratio of dynamic to static, i.e., closed

Table 2 Parameters for closed-cell internal energy-based response, supplementing Table 1

Property (units) Value Description

ρ0 (g/cm3) 0.337 Composite lung mass density at J = 1

vt 0.336 Solid-liquid tissue volume fraction

B̄
η
0 (kPa) 213 Composite isentropic bulk modulus (pa0 = 1 atm)

c0 (kPa/K) 741 Composite specific heat per unit volume (pa0 = 1 atm)

A0 (1/K) 2.39 × 10−3 Composite thermal expansion (T0 = 310 K, pa0 = 1 atm)

g0 4.91 × 10−4 Composite Grüneisen parameter (pa0 = 1 atm)

�D 8 Energy/pressure gradient contribution to damage from blast

l (μm) 60.1 Mean alveolar diameter

ρa0 (g/cm3) 1.2 × 10−3 Air density at 1 atm

ρt (g/cm3) 1.003 Reference solid-liquid tissue density at J0 = 1

B
η
t (kPa) 2.3 × 106 Solid-liquid isentropic bulk modulus

Ct , Cg (J/kg×K) 2200, 718 Specific heats per unit mass of solid-liquid and air phases
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Fig. 7 Predictions for isentropic
bulk modulus and longitudinal
wave speed versus initial airway
pressure normalized by
pa1 = 1 atm, with data for horse
lung in air from [30]: a bulk
modulus B̄

η
D computed from

Eq. 5.9 and Eq. 6.7 at reference
state with J0 = 1 and D0 = 0; b
wave speed cL computed from
Eq. 6.6 at reference state of
ptp0 = 5 cm H2O

to open cell, bulk modulus increases from around 10 to around 1000. Shown in Fig. 7b versus initial airway pressure are
longitudinal wave speeds computed from the first of Eq. 6.6, normalized by wave speed cL1 = 27.1 m/s, where the latter is
computed at pa1 = 1 atm. Here, transpulmonary pressure is fixed at ptp0 = −p0 = 5 cm H2O = 0.49 kPa. Complementary
experimental ratios of wave velocity versus internal airway pressure, measured at the same fixed transpulmonary pressure
of 5 cm H2O in horse lung [30], are shown for comparison.

Shown in Fig. 8 are predictions of cL for dog lung from Eq. 6.6 for a fixed external (pleural) pressure of ppl = 1 atm
and a variable initial transpulmonary pressure ptp0 = −p0 up to approximately 2 kPa. According to Eq. 4.1, initial airway
pressure pa0 is close to atmospheric since |p0| � 2 kPa � 101 kPa= 1 atm. Since B

η
t and B

η
a = Γpa0 do not depend

on transpulmonary pressure, effects of ptp0 on cL in the present model emerge primarily from effects of transpulmonary
pressure on J0, and thus on initial mass densities ρt , ρa0, and finally ρ0 according to Eq. 5.7. Specifically, ρt → ρt/J0,
where the reference value at J0 = 1 is given in Table 2. Shear moduli are affected by initial transpulmonary pressure
associated with expansion J0, e.g., μ0 → μ0 − μ′

0B
T
0 ln J0, where values of μ0 = G0 = 1 kPa and μ′

0 = G′
0 = − 0.7 are

listed in Table 1. However, the shear modulus trivially affects cL since B̄
η
D exceeds μD by two orders of magnitude. As ptp0

increases, the lung expands and mass density ρ0 decreases, leading to an increase in wave speed. A change in B̄
η
D might be

expected with initial expansion J0 > 1, but this effect is deemed secondary relative to density changes [58].
Predictions are compared in Fig. 8 with high-frequency response data on horse lung [30] as well as data on rabbit lung

measured under sealed trachea conditions [58]. Maximum initial transpulmonary pressures probed in the model and these
experiments are on the order of 2 kPa or 20 cm H2O, just beneath those required to cause edema in saline-treated rabbit lung
[67]. At the upper end of this pressure range, according to the present theory, minimal damage D0 and stiffness reduction
incurred in the initial state due to tensile transpulmonary pressure ptp0 do not significantly affect tangent moduli or wave
speeds. Model predictions of wave speed cL in dog lung reasonably match those for rabbit lung [58]. Agreement with data
on horse lung is reasonable at null transpulmonary pressure.

Fig. 8 Predictions for longitudinal wave speed cL computed from Eq. 6.6 at ambient external pressure (ppl = 1 atm) versus initial transpulmonary
pressure ptp0: data for horse lung in air from [30] and rabbit lung in air from [58]

Mech Soft Mater (2020) 2: 33 Page 24 of 35



6.2 Shock compression

Propagation of a planar compressive shock wave through the lung is analyzed. The present treatment is of much greater
scope than [6] that did not address damage, injury, or distinctions between normal and saline-infused lung.

The shock is analyzed in the framework of the Rankine–Hugoniot jump conditions [76, 77, 85, 91]. Material in the
vicinity of the shock, both upstream and downstream, is treated as a homogeneous continuum with effective properties such
as mass density, internal energy, and bulk stiffness. The shock front, i.e., the region across which density, pressure, and
particle velocity rapidly increase, is not resolved explicitly. Validity of application of the Rankine–Hugoniot jump conditions
for mass, momentum, and energy requires that either the thickness of this front, called the “shock width,” be infinitesimal
(i.e., a limiting singular surface), or that the entire waveform analyzed, even if the front is of finite width, moves at constant
Lagrangian velocity [76, 77]. The latter interpretation is more physically valid in the present context, as the minimum width
w of the shock front should be constrained by the microstructure, here the diameter l of an alveolus. In other words, w � l

is presumed, since the entire pressure rise cannot be contained within a single alveolus as it would only sample material
of the gas phase, rather than the effective continuum. The shock is initiated by a step loading (impact) in particle velocity
or pressure on the lung surface. Presumably, after a transit period, a steady shock structure will be attained beyond some
distance from the impact surface, where w is ultimately dictated by the microstructure as well as dissipation that tends
to spread the front. Even though the lung is a two-phase material with gas and relatively stiff dense tissue, a continuum
treatment is deemed valid. Similar equations are widely used to analyze highly porous solids [76] including metallic foams,
particulates, and powders, wherein, like the lung, a large volume fraction of the medium consists of trapped air.

6.2.1 Governing equations

The planar shock problem is idealized via standard protocols of shock physics [50, 76, 77, 85, 91, 92]. An infinitely column
of lung material consisting of dense tissue and air phases is subjected to a planar longitudinal compressive shock wave
traveling at constant Lagrangian velocity υs in the X = X1-direction in material coordinates. States of the material on
either side of the wavefront, which may be of small but finite width w, are uniform. Let superscripts (·)+ and (·)− denote
quantities or conditions measured ahead of and behind the shock front, respectively, corresponding to respective un-shocked
(upstream) and shocked (downstream) states.

Material ahead of the shock is undeformed (J+ = 1) and at rest. The upstream airway pressure is p+
a = pa0, which

varies among calculations later. The upstream stress in the lung tissue is hydrostatic. The transpulmonary pressure in the
tissue upstream is the initial surface tension p+ = −p+

tp = −K0 for standard lung, and p+ = −p+
tp = 0 for saline-treated

lung. The external (e.g., pleural) pressure necessary to impose both conditions is then found via Eq. 4.1 as p+
pl = p+ + p+

a .

The upstream entropy density is taken as the zero datum, η+ = 0, and the upstream temperature is chosen as T0 = 310 K.
The following abbreviated notations are then used:

η+ = 0, η− = η; T + = T0, T − = T . (6.8)

The downstream pressure p− is defined relative to the datum initial state in the absence of surface tension. In other words,
p− = p+ in the limit of zero imposed compression in the shock wave. A total downstream pressure can be defined as
ptot = p− + pa0, which thus is defined relative to a datum state close to vacuum because initial surface tension is much
smaller in magnitude than atmospheric pressure. Thus, ptot includes the initial airway pressure, initial surface tension, and
the pressure rise due to the shock, while p− ≤ ptot does not include initial airway pressure. The same solutions apply
regardless of which datum is used for pressure since only the jumps in stress and energy are used.

The downstream Cauchy stress state σ− in the composite lung material is determined from simultaneous solution of the
Rankine–Hugoniot jump conditions and closed-cell constitutive model of Section 5 for the homogenized effective medium.
This stress tensor is diagonal due to symmetries of the material and loading mode, but it is not necessarily spherical. The
downstream pressure is p− = − 1

3 trσ
−. The shock stress is defined as the longitudinal component of Cauchy stress, positive

in compression: P = −σ−
11. Lateral stress components are σ−

22 = σ−
33, and a measure of Cauchy shear (squeeze) stress is the

difference τ = − 1
2 (σ

−
11 − σ−

22). When the shocked state is perfectly spherical, then τ = 0 and P = p−. A total downstream
stress tensor that also includes initial airway pressure is defined consistently as σ tot = σ− − pa01. Neither the downstream
airway pressure nor the isolated pressure in the dense tissue phase are individually calculable in the shocked state using this
composite material model.

Mech Soft Mater (2020) 2: 3 Page 25 of 35 3



Summarizing the above textual definitions, downstream and upstream deformation gradients are, respectively,

F− = T − =
⎡
⎣

a 0 0
0 1 0
0 0 1

⎤
⎦ , J− = a = ρ+

ρ− ; F+ = 1, J+ = 1. (6.9)

Cauchy stresses in the shocked and initial states are the following:

σ− =
⎡
⎣

−P 0 0
0 2τ − P 0
0 0 2τ − P

⎤
⎦ , p− = P − 4

3τ ;

σ+ = −p01, p0 = p+ =
{−K0 in air,
0 in saline.

(6.10)

Upstream pressure p+ has been relabeled as p0. Composite mass densities are, from Eqs. 5.7 and 6.9,

ρ− = ρ+/J− = ρ+/a, ρ+ = vt × ρt + (1 − vt ) × ρa0, (6.11)

where the value of vt in Table 2 is maintained. Since J+ = 1 and ρt = constant, ρ+ is nearly constant in forthcoming
calculations, with only a slight variation incurred from ρa0 as initial airway pressure changes.

As was the case in Section 6.1, the deformation process is deemed too rapid for viscoelastic stress relaxation to commence.
As justification, consider a shock front of maximum width w = 10l ≈ 600μm and minimum propagation velocity
υs = cL ≈ 20 m/s, giving a maximum rise time of tR = w/υs ≈ 30μs. Considering the relaxation time scale t1 = 5×105μs
from Table 1, tR/t1 � 1, viscous relaxation is negligible, and thus internal strain vanishes, i.e., χ = 0.

According to Eq. 6.9, all strain attributes of Eq. 2.14 vanish identically in the upstream state, i.e., ε+
i = 0 and ε+ = 0.

Furthermore, the initial condition D+ = D0 = 0 is imposed, consistent with the low initial transpulmonary pressure due
only to surface tension at J+ = 1, which does not impart sufficient driving force Z+ ≥ Z0 according to Eqs. 3.20 and 3.26
to instigate any damage in the reference state. Since η+ = 0 by construction, the internal energy density of Eq. 5.22 in the
upstream state also vanishes: U+ = 0. Notation ε− = ε, U− = U , and D− = D is thus adopted.

Define the jump and average of a quantity across the shock front as follows:

[[(·)]] = (·)− − (·)+, 〈〈(·)〉〉 = 1
2 [(·)− + (·)+]. (6.12)

denoted by υp = υ1(X, t), the uniaxial particle velocity field. Since the upstream material is quiescent, υ+
p = 0, and the

abbreviated notation υ−
p = υp is invoked. Recall that υs is defined as the steady Lagrangian shock velocity; this is equal to

the Eulerian shock velocity since υ+
p = 0 and J+ = 1. Rankine–Hugoniot jump conditions for mass, linear momentum, and

energy conservation across the shock front are expressed in Lagrangian form as follows [76, 77]:

[[υp]] = −υs × [[J ]] ⇒ υp = υs × (1 − a), (6.13)

[[σ11]] = −ρ+υs
2[[J ]] ⇒ υs =

[
P − p0

ρ+ × (1 − a)

]1/2
, (6.14)

[[U ]] = 〈〈σ11〉〉[[J ]] ⇒ U = 1

2
(P + p0)(1 − a). (6.15)

For compressive shocks, 0 < a < 1 and υs > υp > 0. Under the trivial case of null deformation, a = 1, P = p0, and
υs = υp = 0. Assume that the deformation induced by the shock, a, is imposed as the loading parameter. Assume that the
upstream pressure and density are known according to Eqs. 6.10 and 6.11. Then, Eqs. 6.13– 6.15 are three scalar equations
with five unknowns in the set (υp, υs, P, U, η). The system becomes closed when augmented by constitutive equations for
stress and internal energy that both depend on a and η. The jump form of the entropy production inequality in the present
adiabatic case requires that η ≥ 0, i.e., entropy must not decrease across the shock front.

From Eq. 6.9, strain attributes of Eq. 2.14 in the downstream state are as follows:

ε0 = ln a, ε1 = −ε3 = (ln a)/3, ε2 = ε4 = ε5 = ε6 = 0. (6.16)

State variables of strain in Eq. 3.2 are as follows:

ξ1 = ε0 = ln a, ξ2 = 2
9 (ε0)

2 = 2
9 (ln a)2, ξ3 = 0. (6.17)
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Damage D− = D may be nonzero due to driving force Z induced by shock compression that may exceed Z0 for shock
stresses of sufficient magnitude [1, 93]. Stress components conjugate to rates of Eq. 6.16 are, from Eq. 5.23, dropping the
(·)− superscript for brevity on the left and with ε0 = ε0(a) on the right,

τ̂0(a, η, D) = [1 − (1 − γ̄ )D]{B̄η
0

[
ε0 exp(c1ε

2
0)
]

− g0T0η + BT
0 β1ε0 + K0} − 2

3 (1 − D)BT
0 μ′

0(ε0)
2,

τ̂1(a, η, D) = 2(1 − D)μ0

[
ε0 exp

(
2
9c2ε

2
0

)
(1 − {BT

0 /μ0}μ′
0ε0) + β2ε0

]
,

τ̂3(a, η, D) = −τ̂1(a, η, D); τ̂2 = τ̂4 = τ̂5 = τ̂6 = 0. (6.18)

Nonzero Cauchy stress components σij = 1
J
sij are, from Eq. 2.34,

σ11 = (1/a)
(
τ̂0 + 2

3 τ̂1

)
, σ22 = σ33 = (1/a)

(
τ̂0 − 1

3 τ̂1

)
. (6.19)

Shock stress, pressure, and shear stress of Eq. 6.10 are then

P = −(1/a)
(
τ̂0 + 2

3 τ̂1

)
, p− = −τ̂0/a, τ = −τ̂1/(2a). (6.20)

Normally, P ≥ p− ≥ 0 and τ ≥ 0, so τ̂0 ≤ 0 and τ̂1 = −τ̂3 ≤ 0. Internal energy in the shocked state is, from Eq. 5.22,

U(a(ε0), η, D) = [1 − (1 − γ̄ )D]
[
1

2

B̄
η
0

c1
{exp[c1(ε0)2] − 1} + K0ε0 − g0T0ηε0

]
+ T0η

(
1 + 1

2

η

c0

)

+(1 − D)

[
3
μ0

c2
{exp

(
2
9c2ε

2
0

)
− 1}

(
1 − BT

0

μ0
μ′
0ε0

)
+ 11

18
β1B

T
0 (ε0)

2
]
. (6.21)

Downstream temperature is, from Eq. 5.24,

T (a, η, D) = T0 [1 − {1 − (1 − γ̄ )D}g0 ln a + η/c0] . (6.22)

Damage obeys Eq. 3.26, where for non-trivial evolution in regime Zm

Z0
∈
[
1, 1 + ln 2

αD

]
,

D(X, t) = exp

[
αD{Zm(X, t) − Z0}

Z0

]
− 1, Zm(X, t) = max

s∈(−∞,t]
Z(X, s). (6.23)

Internal energy density of Eq. 6.21 is partitioned according to Eqs. 5.4 and 3.23 as follows:

U0 = UV ∞
0 + ϒV

0 + U
μ∞
0 + ϒ

μ
0 ; (6.24)

UV ∞
0 = 1

2

B̄
η
0

c1

{
exp[c1(ε0)2] − 1

}
+ K0ε0−g0T0ηε0, U

μ∞
0 = 3

μ0

c2

{
exp

(
2
9c2ε

2
0

)
− 1

}(
1 − BT

0

μ0
μ′
0ε0

)
, UG∞

0 = 0;

(6.25)

ϒV
0 = 1

2
BT
0 β1(ε0)

2, ϒ
μ
0 = 2

3
μ0β2(ε0)

2, ϒG
0 = 0. (6.26)

Substitution into Eqs. 5.20 and 5.21 gives the driving force for damage kinetics for non-negative energy density Ū0 =
(1 − γ̄ )(UV ∞

0 + ϒV
0 ) + U

μ∞
0 + ϒ

μ
0 ≥ 0 with B

η
0 � BT

0 :

Z =
[∣∣∣∣

1

c1

{
exp[c1(ε0)2] − 1

}
+ 2

K0

B̄
η
0

ε0 − 2
g0T0

B̄
η
0

ηε0 + β1(ε0)
2

+ 6

c2

{
exp

(
2
9c2ε

2
0

)
− 1

}(
1 − BT

0

μ0
μ′
0ε0

)
+ 4

3
β2(ε0)

2
∣∣∣∣
]1/2

·
[
1 + ωD

∣∣∣∣2
l

B
η
0

∇0U0

∣∣∣∣
1/2

]
. (6.27)

The internal energy gradient across the shock front is estimated by assuming a linear profile over the shock width w [94],
recalling that U+

0 = 0 in the initial upstream state and U0 = U−
0 :

−∇0U0 ≈ [[U0]]
w

= U0

w
⇒ ω = ωD

∣∣∣∣∣
l

(B
η
0 )

∣∣∣∣∣
1/2

|2∇0U0|1/2 ≈ √
2�D

∣∣∣∣
U0

BT
0

∣∣∣∣
1/2

; �D = ωD

√
l

w
. (6.28)

Mech Soft Mater (2020) 2: 3 Page 27 of 35 3



6.2.2 Results: shock wavemechanics

Hugoniot response curves are generated for lung in air and treated with saline, at initial airway pressures ranging from
pa0 = 0.5 atm to pa0 = 3 atm. The dense tissue phase has initial volume fraction vt given in Table 2, regarded as a fixed
material property for dog lung. Governing equations in Section 6.2.1 are solved using an iterative numerical procedure.
Results for an initial internal airway pressure of pa0 = 1 atm are discussed first. These are given in Fig. 9 for both normal
lung tissue in air and saline-treated lung tissue. Mass density in the shocked state is ρ− = ρ and in the initial state is
ρ+ = ρ0. Calculations span 0.6 ≤ ρ0/ρ ≤ 1, where the maximum compressive strain is 40%.

Shown in Fig. 9a is longitudinal shock stress P = −σ−
11 of Eq. 6.20. Axial stress is very similar in both air and saline

up to moderate compression ratios, with the former becoming larger than the latter for ρ0/ρ � 0.75. At low shock stress
magnitudes, the stiffening effect of surface tension on the bulk modulus is offset by the initial tensile transpulmonary
pressure K0. An inflection occurs for ρ0/ρ ≈ 0.75 as damage affects the tangent bulk modulus. Strong stiffening resumes
for ρ0/ρ � 0.68 as the highly compressed material behaves like a densified compressible fluid. Even at 40% compression,
the mass density of lung in air is ρ = 0.561 g/cm3, compared to ρt = 1.003 g/cm3 for the tissue phase. Thus, a significant
amount of compressed air remains in the composite material even for the strongest shocks considered here. At much larger
compressive pressures, effects of air would lessen relative to stiffness of the dense phase, and the curves should approach
each other as surface tension effects become negligible.

Reported in Fig. 9b is Cauchy shear stress τ of Eq. 6.20, proportional to squeeze stress component τ̂1. Initially, for
low compressive strain, the shear stress in air exceeds that of saline because of viscoelastic stiffening of the tangent shear
modulus. At larger compressions ρ0/ρ � 0.8, the shear stress for saline-treated lung becomes larger than standard lung

Fig. 9 Predicted Hugoniot response for air or saline-treated lung under planar shock compression at initial air pressure pa0 = 1 atm with mass
density in the shocked state denoted by ρ = ρ− and that of the undeformed lung in the upstream state by ρ+ = ρ0: a axial stress, i.e., shock
pressure, P b shear stress τ c shock velocity υs versus particle velocity υp ,, d entropy η normalized by composite specific heat at constant volume
c0
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tissue in air. The distinction will later be attributed to damage-induced softening of the tangent squeeze modulus. Presented
in Fig. 9c is the steady Lagrangian shock velocity υs versus downstream particle velocity υp, related via Eq. 6.13. The
inflection in the saline curve corresponds to a change in curvature of the P −ρ Hugoniot in Fig. 9a. This implies a small range
of instability (0.663 � ρ0/ρ � 0.688) wherein spreading of the shock structure, unaccounted for in the present calculations,
would be expected for the saline-treated lung, though the predicted stress-volume and damage responses should remain
accurate regardless due to the low entropy produced. Computed results yield υs → cL in the limit of small deformations, as
υp → 0, providing cross-validation of model predictions for longitudinal sound speed and shock velocity. Shown in Fig. 9d
is downstream entropy density per unit reference volume η normalized by specific heat c0 of Eq. 5.8. Entropy is always
positive, as required by thermodynamics.

Discussed next are model predictions for standard (i.e., not saline-washed) lung at initial air pressures from 0.5 to 3 atm.
In each case, the initial transpulmonary pressure due to surface tension is fixed at ptp0 = −p0 = K0 = 0.2 kPa. Mass
density in the shocked state is ρ− = ρ. In the initial state at 1 atm airway pressure, density is ρ0. Reported in Fig. 10a are
shock stress, normalized by BT

0 = 2.5 kPa, versus density ratio at different initial airway pressures. Shock stress P increases
substantially with increasing airway pressure since pa0 dominates the closed-cell bulk modulus of Eq. 5.9. Given in Fig. 10b
are shear stress, normalized by G0 = μ0 = 1 kPa, versus density ratio for the same internal pressure range. Origins of each
curve at the bottom right are offset slightly since ρ increases with increasing initial air pressure. Increased damage leads to
a reduction in tangent shear modulus that causes lower shear strength. Shown in Fig. 10c are shock velocity versus particle
velocity profiles. Shock velocity increases substantially with increasing pa0, consistent with increasing longitudinal elastic
wave speeds reported in Fig. 7b. Finally, Fig. 10d presents entropy normalized by specific heat, for pa0 ∈ [0.5, 3] kPa.
Dissipation increases with P and pa0.

Fig. 10 Predicted Hugoniot response of lung in air at four different values of initial air pressure pa0, with mass density in the shocked state
denoted by ρ = ρ− and that of the undeformed lung at pa0 = 1 atm by ρ0: a axial stress P normalized by isothermal bulk modulus BT

0 , b shear
stress τ normalized by static shear modulus G0 = μ0, c shock velocity υs versus particle velocity υp , d entropy η normalized by composite
specific heat at constant volume c0
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6.2.3 Results: injury and damage criteria

Numerical results predicted by Eq. 3.26 are reported first, followed by a more thorough discussion relating D to physics of
trauma and local material failure. Results for compressive shocks on lung at pa0 = 1 atm are shown in Fig. 11. Differences
between the tissue types arise from surface tension and viscous stiffening omitted for saline-washed lung.

Shown in Fig. 11a are damage variable D versus density ratio for the usual, realistic case where �D = 8 from Table 2
is invoked as well as for the case when the gradient amplification is omitted via �D = 0. The value of D is magnified
by a factor of 10 in the latter case to enable visualization. Mass density in the shocked state is ρ− = ρ and in the initial
state is ρ+ = ρ0. The value of �D = 8 is chosen such that, in saline-treated lung, the threshold shock stress P for the
onset of injury is P = 15 kPa. This corresponds to the threshold pressure for injury imparted by a shock tube to exposed,
saline-treated rabbit lung in experiments described in [1, 93]. In these experiments, P � 14 kPa produced no evidence of
injury, while P � 16.5 kPa produced edema as evidenced by increased lung weight with time after the impact event. Initial
transpulmonary pressure (tension) was 10 cm H2O (ptp0 = −p0 ≈ 1 kPa) in these experiments. Damage increases slightly
more rapidly in air than in saline-treated lung. Also, when the deleterious effect of energy gradients, i.e., steepness of the
pressure rise, is omitted via �D = 0, damage criterion Eq. 3.26 requires compressive strains exceeding 30% and shock
stresses exceeding 110 kPa to impart the onset of injury via Z > Z0 ⇒ D > 0.

Presented in Fig. 11b is D versus shock stress P of Eq. 6.20, where only results with �D = 8 are reported here and
subsequently in Fig. 12. Initially with increasing P , damage accumulates more quickly in air than saline. The threshold
pressure P for D > 0 is 15.3 kPa in saline and 14.4 kPa in air. After a cross-over at P ≈ 100 kPa, damage accumulates
more rapidly in saline-treated lung. Threshold impact pressures for mild injury are low, on the order of 15 kPa or 2 psi,
in accordance with experimental observations on edema in bare exposed lung tissue [1, 93], which is very delicate. Local
lung over-pressures required for hemorrhage and contusion are thought to be in the 70 to 100 kPa range [10, 95]. According
to Fig. 11b, this level of injury correlates to damage variable values in the range of 0.25 � D � 0.5, which is physically
realistic. For lung tissue in air, according to the present results, local damage reaches its maximum possible value of D = 1
for shock pressures P exceeding 135 kPa. Lethal global over-pressures can be on the order several hundred kPa [11, 14, 29]
depending on pulse shape and duration; however, in vivo, the lung is encased by the ribcage, skin, muscle, and other soft
tissue. Transmission and reflection affect injury in such cases.

Damage and local injury predictions for lung in air (no saline treatment) at pa0 = 0.5, 1, 2, and 3 atm are given in Fig. 12.
The density range probed is 0.8 ≤ ρ0/ρ ≤ 1, i.e., a maximum compressive strain of 20%. Shown in Fig. 12a and b are
damage state variable D versus density ratio ρ0/ρ and versus shock stress P , respectively, with ρ0 a constant from Eq. 5.7 at
1 atm. Damage increases more rapidly with increasing compressive strain, i.e., with decreasing ρ0/ρ, as pa0 increases since
more energy is imparted by a shock wave of corresponding strain as airway pressure increases. The threshold for onset of
injury in terms of compressive strain attained in the shock front decreases with increasing initial air pressure. However, as
seen in Fig. 12b, the shock stress P required to impart a given level of damage D increases with increasing pa0 since bulk
stiffness increases significantly with increasing airway pressure. The threshold shock stress P = P0 for initiation of injury
(edema) increases accordingly with pa0.

A physical description of the micro-mechanical and biological changes associated with ranges of D ∈ [0, 1] is afforded
by Fig. 13. The horizontal axis corresponds to driving force Z0, which essentially depends on normalized internal energy

Fig. 11 Predicted damage at
initial air pressure pa0 = 1 atm
with mass density in the
shocked state ρ = ρ− and in the
upstream state ρ+ = ρ0: a
versus volume ratio ρ0/ρ = J−
and b versus shock stress P
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Fig. 12 Predicted damage at
different initial air pressures
pa0, with mass density in the
shocked state denoted by
ρ = ρ− and density of
undeformed lung at pa0 = 1 atm
by ρ0: a versus density ratio
ρ0/ρ; b versus shock stress P

U0 and its gradient ∇0U0 through Eqs. 5.20, 5.21, and 3.26. The energy gradient, in turn, is related to the jump in internal
energy across the shock front as indicated in Eq. 6.28. The power of 1

2 in the driving force effectively leads to a dependence
of damage on axial strain or shock pressure. The amplification of injury due to the rate of pressure rise, or the magnitude
of pressure jump, is discussed in [12], wherein the correlation of thoracic wall acceleration to injury severity is quantified
experimentally. As explained in [9, 12, 96], as a longitudinal wave pulse propagates through the lung, pressure differentials
emerge in the microstructure across capillary–alveolar interfaces, where larger local differentials are linked to shorter rise
times of the pulse. Failure of the interfaces and hemorrhages will occur above a threshold that depends, in macroscopic
experiments and models, on both the total normalized work or energy [95] and its rate of deposition. A similar local injury
criterion reported in [15] is found to correlate with contusion in sheep subjected to blast loading. Overextension, bulging,
and ultimately tearing and rupture of alveolar membranes have been observed in histology studies on blast lung in human
cadavers [97].

Summarizing static and dynamic experiments in [1, 67, 93], permeability changes to tissue membranes are induced at
relatively low thresholds of imparted pressure, strain, or energy. These result in edema, i.e., pooling of liquid, after sufficient
time for fluid transport to occur. Threshold stresses and strains for the onset of injury are exceeded, by substantial margins
in some cases, in static and dynamic experiments [1, 19, 21, 51, 52, 59], but these experiments show no significant reduction
of elastic stiffness upon unloading. compressive loading.

Fig. 13 Physical processes
related to injury and
microstructure degradation in
lung tissue in conjunction with
evolution of damage variable D.
Exponential growth versus
driving force is consistent with
Eq. 3.26

Driving force for damage growth
(energy or pressure x energy or pressure gradient/jump)

D = 0

D = 1

Damage
state 
variable

Injury 
threshold
(0 < D << 1)

Permeability 
changes

Edema

Stiffness 
change not 
noticeable

Hemorrhage

Contusion

Minor tearing 
of membranes 
and vessel 
walls

Small but 
detectable 
stiffness 
change

Rupture

Atelectasis

Major tearing 
of membranes 
and vessel 
walls

Failure of 
septal chords

Large stiffness 
reduction
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Fig. 14 Predicted damage
response and injury threshold
for exposed lung at different
pulse rise times tR , where tR1 is
the minimum rise time for shock
compression corresponding to
experimental data [93]: a
damage variable D versus shock
stress P for lung in air; b
threshold stress for injury P0
versus normalized pulse rise
time tR/tR1

Assume now as in Eq. 6.28 that, to first order, internal energy and other state variables change relative to their initial or
upstream values linearly within a steady shock wave of width w, Lagrangian velocity υs , and rise time tR . The latter three
are simply related, leading to several expressions for the material energy gradient ∇0U0:

w = υs × tR ⇒ |∇0U0| =
∣∣∣∣
∂U0

∂X

∣∣∣∣ =
∣∣∣∣
∂U0

∂t

(
DX

Dt

)−1∣∣∣∣ = |U̇0|
υs

= |U̇0| tR
w

≈ [[U0]]
w

= [[U0]]
υstR

. (6.29)

The next-to-rightmost approximation in terms of internal energy jump is used in Eq. 6.28 and the present calculations.
However, in numerical simulations involving finite elements [10, 15, 28], calculation of energy gradients may be
cumbersome, so the ratio of material time derivative to wave speed may be a pragmatic choice as a driving force for injury,
as also suggested in [96]. In that case, to avoid damage magnification during rapid unloading, |U̇0| → 〈U̇0〉 could be used
such that only positive energy rates are applied to ω. The approximation υs ≈ cL can further be invoked in the weak shock
regime. According to the model of Eq. 3.26 and experimental evidence quoted in [9, 12, 96], likelihood and severity of
injury increases with increasing |∇0U0|. According to Eq. 6.29, for a fixed amount of energy density U0 supplied by the
wave pulse at a fixed wave speed υs ≥ cL, injury severity increases with decreasing rise time tR .

Calculations conducted here invoke a value of �D = ωD

√
l/w of 8 as calibrated to match experimental data of [93]. The

alveolar size is known a priori (l = 60.1μm in dog lung from Table 2 and [1]), but neither the material constant ωD nor the
variable shock width w is known or obtainable from presently available data. Assume for illustration that w = w1 in the
experiments of [93], leading to �D1 = ωD

√
l/w1. Then, when the lung is subjected to shock pulses of different width or

rise time propagating at the same speed υS � cL, the value of �D would vary as follows:

�D = �D1
√

w1/w = 8
√

tR1/tR . (6.30)

Thus, as intended, �D decreases as rise time of the shock front tR increases relative to tR1. This in turn results in less damage
accrued through Eq. 3.26 for the same imparted internal energy U0. Shown in Fig. 14 are predicted effects of rise time of
the shock pulse on damage progression and the onset of injury corresponding to edema. Damage accrues more slowly in
Fig. 14a with increasing shock stress as the rise time increases, wherein trauma to standard lung in air is depicted. The
threshold shock stress for initiation of damage also increases with rise time as shown in Fig. 14b.

7 Conclusions

A geometrically and materially nonlinear model of lung mechanics has been presented. The model accounts for
thermoelasticity, viscoelasticity, and damage phenomena, where the latter encompasses both injury and mechanical stiffness
degradation. Kinematics and thermodynamics are based on a QR decomposition of the deformation gradient, strain
attributes, and conjugate scalar stress measures. Viscoelasticity and damage are treated by internal state variables in
a thermodynamically consistent manner, leading to non-negative dissipation. Two variations of the model have been
developed: a free energy-based theory pragmatic for static and isothermal loading, and an internal energy-based theory more
amenable to dynamic problems involving wave propagation, including shock compression analyzed here. The latter theory
accounts for effects of enclosed air on the overall thermodynamic properties, most importantly the dynamic bulk modulus
that becomes two orders of magnitude larger than the static tensile modulus when air compressibility is included. The
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present work is thought to represent the most complete continuum theory for lung mechanics in terms of loading regimes
and physical mechanisms encompassed.

Damage and injury have been addressed to the extent afforded by existing data relating mechanics to biology. The
model incorporates realistic thresholds for the onset of injury, corresponding to local membrane permeability changes and
edema. Threshold stresses, strains, or deposited energies for such injury are far below those that impart noticeable stiffness
deterioration, e.g., substantial tears or rupturing of alveolar membranes and/or septal chords comprising the microstructure.
Importance of inclusion of the gradient or rate of applied energy/pressure on injury criteria has been verified. Moderate
values of the damage variable correlate well with local pressures for hemorrhage and lung contusion reported elsewhere for
blunt impact and blast loading. However, a more quantitative linkage of damage progression to observed injury mechanisms
above known threshold levels should be sought in the future. Accuracy of the model would also benefit from consistent data
from single source, including a fixed species and means of specimen preparation.
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