
Peking Mathematical Journal
https://doi.org/10.1007/s42543-023-00074-4

ORIG INAL ART ICLE

Global Existence and Scattering of the
Klein–Gordon–Zakharov System in Two Space Dimensions

Shijie Dong1 · Yue Ma2

Received: 19 April 2022 / Revised: 26 February 2023 / Accepted: 2 May 2023
© Peking University 2023

Abstract
We are interested in the Klein–Gordon–Zakharov system in R1+2, which is an impor-
tant model in plasma physics with extensive mathematical studies. The system can be
regarded as semilinear coupled wave and Klein–Gordon equations with nonlinearities
violating the null conditions. Without the compactness assumptions on the initial data,
we aim to establish the existence of small global solutions, and in addition, we want
to illustrate the optimal pointwise decay of the solutions. Furthermore, we show that
the Klein–Gordon part of the system enjoys linear scattering, while the wave part has
uniformly bounded low-order energy. None of these goals is easy because of the slow
pointwise decay nature of the linear wave and Klein–Gordon components in R

1+2.
We tackle the difficulties by carefully exploiting the properties of the wave and the
Klein–Gordon components, and by relying on the ghost weight energy estimates to
close higher order energy estimates. This appears to be the first pointwise decay result
and the first scattering result for the Klein–Gordon–Zakharov system inR1+2 without
compactness assumptions.
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1 Introduction

Model Problem andMain ResultsWe consider the Klein–Gordon–Zakharov model
in R1+2, which is an important model in plasma physics with extensive mathematical
studies. The model equations are as follows:

− �E + E = −nE,

− �n = �|E |2. (1.1)

The unknowns include the electronic field E = (E1, E2) taking values in1 R
2, and

the ion density n taking values in R. The Klein–Gordon–Zakharov equations can be
regarded as a semilinear coupled wave and Klein–Gordon system, with Klein–Gordon
field E andwave field n. In the spacetimeR1+2, we adopt the signature (−,+,+). The
wave operator is denoted by� = ∂α∂α , and� = ∂a∂a represents the Laplace operator.
Throughout Greek letters α, β, · · · ∈ {0, 1, 2} denote spacetime indices, while Latin
letters a, b, · · · ∈ {1, 2} are used to represent space indices. The Einstein summation
convention is adopted unless otherwise specified. We also apply the Japanese bracket
〈ρ〉 := (1 + ρ2)1/2, and we use the abbreviation for the L2 norm ‖ · ‖ := ‖ · ‖L2(R2).

We consider the Cauchy problem associated with (1.1) with the initial data on the
slice t = t0 = 0

(
E, ∂t E

)
(t0, ·) = (

E0, E1
)
,

(
n, ∂t n

)
(t0, ·) = (

n0, n1
) := (

�n�
0 ,�n�

1

)
, (1.2)

and the functions (E0, E1, n�
0 , n�

1 ) are assumed to be sufficiently smooth, but they do
not need to be compactly supported. The main objective of the present article is the
following asymptotic stability result associated with small regular initial data together
with the scattering property on theKlein–Gordon components, i.e., the Langmuirwave
(stated in the next theorem).

Theorem 1.1 Consider the Klein–Gordon–Zakharov system in (1.1), and let N ≥ 14
be a large integer. There exists ε0 > 0, such that for all initial data satisfying the
smallness condition

∑

0≤ j≤N+2

‖〈|x |〉N+3 log〈1 + |x |〉E0‖H j +
∑

0≤ j≤N+1

‖〈|x |〉N+3 log〈1 + |x |〉E1‖H j

+
∑

0≤ j≤N+3

‖〈|x |〉 j+1n�
0 ‖H j +

∑

0≤ j≤N+2

‖〈|x |〉 j+2n�
1 ‖H j ≤ ε < ε0, (1.3)

the initial value problem (1.1)–(1.2) admits a global solution (E, n), which enjoys the
following optimal pointwise decay results:

|E(t, x)| � 〈t〉−1, |n(t, x)| � 〈t〉−1/2〈t − r〉−1/2. (1.4)

1 Originally, E takes values in R
2, but more general cases of taking values in C

N0 with N0 = 1, 2, · · ·
can also be treated.
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Global Existence and Scattering of the 2D KGZ System

Remark 1.2 The global existence for the Klein–Gordon–Zakharov system (with some
first order equations) in two space dimensions was proved in [14], but whether the
system is stable is unknown. Our result in Theorem 1.1 verifies that the system is not
only stable but also asymptotically stable.

Remark 1.3 A similar version of Theorem 1.1 was demonstrated in [5, 32] with com-
pactly supported initial data. Now, we can treat the non-compactly supported initial
data with decay at infinity. At this point, we recall the global existence result [39]
regarding a quasilinear wave-Klein–Gordon model satisfying the null condition in
two space dimensions, where the weights are lower than our result in Theorem 1.1.

Remark 1.4 In Theorem 1.1, we only illustrated the pointwise decay of the global
solution (E, n) in (1.4). Besides, the global solution (E, n) has uniformly bounded
lower order energy, and more functional properties enjoyed by the global solution can
be found in Proposition 4.6 and Definition 4.1.

Remark 1.5 The assumptions on the initial data are needed to guarantee the smallness
of the various norms involving the initial data, which are used when we apply the
energy estimates or Proposition 2.8 of Georgiev; see Lemma 4.7.

Our next result states that the Klein–Gordon field E scatters linearly.

Theorem 1.6 Let the same assumptions in Theorem 1.1 hold. Then there exists a pair
of functions

(E+
0 , E+

1 ) ∈ H N−7 × H N−8,

such that

‖(E − E+)(t, ·)‖H N−7+‖∂t (E − E+)(t, ·)‖H N−8 ≤C〈t〉−1/4→0, as t → +∞,

(1.5)

in which E+ is a linear Klein–Gordon component solving

−�E+ + E+ = 0,
(
E+, ∂t E+)

(t0) = (E+
0 , E+

1 ).

Remark 1.7 We want to emphasize that the scattering result in Theorem 1.6 is valid
under quite high regularity assumptions on the initial data. As a comparison, we recall
that the scattering result of the Zakharov equations in R

1+3 in [19] is also obtained
with high regularity assumptions on the initial data. Our scattering result is different
from the one proved with (radial) initial data in low regularity for model (1.1) in [18]
in R1+3, where very different difficulties arise. See in detail below.

Remark 1.8 We note that our method cannot assert whether the wave part n scatters
linearly or not in the energy space (i.e.,

∑
a=1,2 ‖∂an‖+‖∂t n‖), and we leave it open.

However, we will show that the energy of the wave component n is uniformly bounded
in time [see (4.3)], which is necessary to linear scattering.
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Remark 1.9 There exist already several global existence results for two-dimensional
coupled wave and Klein–Gordon equations with different types of nonlinearities, but
most of the results were shown under the assumption that the initial data are compactly
supported; see [10, 11, 31] and the references therein for such cases. The ideas and
techniques used in proving Theorems 1.1 and 1.6 are expected to have further appli-
cations, such as to remove the compactness assumptions on the existing results, or to
study coupled wave and Klein–Gordon systems with more general nonlinearities of
physical or mathematical interests.

Background and Historical Notes The Klein–Gordon–Zakharov system was origi-
nally introduced in [40], which describes the interaction between Langmuir waves and
ion sound waves in plasma; see [3] for more of its physical background. The global
existence as well as the pointwise decay result on this system inR1+3 was established
dating back to [35], and then in many other context (see, for instance, the recent work
[7]). However, due to the insufficiency of the decay in lower dimension (see in detail
below), the global existence problem in R1+2 is somewhat more challenging. In [5] a
global existence result, with pointwise asymptotics of the solution, is established on
localized restricted initial data, and then, it is generalized in [12]. These results are
established within the vector field method on hyperboloids (which is usually referred
to as hyperboloidal method or hyperboloidal foliation method) and thus demand that
the initial data being compactly supported. In the present work, we rely on a global
iteration framework, which was used for instance in [6], to remove this restriction.
Finally, besides the global existence and pointwise asymptotics results, there is also
plenty of work concerning other directions on this system. For instance, in R

1+3,
Ozawa, Tsutaya, and Tsutsumi [36] showed that the Klein–Gordon–Zakharov equa-
tions admit global solutions for low regularity initial data under the condition that the
propagation speeds are different in two equations. In the work by Shi and Wang [37],
a finite time blow-up result was obtained for low regular initial data satisfying certain
conditions.

A model closely related to the Klein–Gordon–Zakharov system is the Zakharov
system (which includes wave and Schrodinger equations), and in many cases, the
progress on one leads to progress on the other. In a series of papers [33, 34],Masmoudi
and Nakanishi investigated the limiting system as certain parameters go to +∞ in the
Klein–Gordon–Zakharov and the Zakharov equations. In another series of papers,
Guo–Nakanishi–Wang [16–18] established scattering for radial solutions with small
energy in the low regularity setting for these two systems, while the linear scattering
of the Zakharov equations (with high regular initial data without radial assumptions)
was illustrated by Hani–Pusateri–Shatah [19].

We next recall some mathematical studies in plasma physics which are relevant
to our results. Being a highly important model, the Klein–Gordon–Zakharov system
can be derived (with certain assumptions) from Euler–Maxwell system, which can be
found in [2, Section 2.1]. The Euler–Maxwell model is one of the most fundamental
models in plasma physics, which describes laser–plasma interactions. In the seminal
work of Guo–Ionescu–Pausader [15], the two-fluid Euler–Maxwell model was shown
to admit smooth solutions in R

1+3. We recall that the Euler–Poisson system in R
1+2

was proved to have global solutions by Li–Wu [30] and Ionescu–Pausader [21], and
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later on, the one-fluid Euler–Maxwell system in R
1+2 was proved to have global

solutions by Deng–Ionescu [4], and both systems can be reduced to Klein–Gordon
equations with non-local derivatives on the nonlinear terms.

The coupled wave and Klein–Gordon equations in two space dimensions have
received much attention, and continual progress has been made regarding its small
data global existence problem in recent years. We are not going be exhaustive here,
but instead leading one to the works [9, 10, 31, 39] and the references therein for more
discussions.

Major Difficulties and Technical Contributions Concerning the Klein–Gordon–
Zakharov system (1.1), there are many difficulties in obtaining the results in
Theorems 1.1 and 1.6. Besides the lack of the scaling vector field in the analysis,
we demonstrate some key issues encountered in the study of the system (1.1). The
first one is the absence of null structure in the nonlinearities of the system (1.1). We
remark that the right-hand-side of the system violates the classical null condition of
Christodoulou–Klainerman. The second comes from the low decay rate of both wave
and Klein–Gordon equations in lower dimension R

1+2 and the third one is about
dealing with the non-compactly supported initial data. Let us explain in detail these
obstacles and our strategies aimed at each of them.

In the research of nonlinearwave systems (includingwave-Klein–Gordon systems),
the null condition (in the sense of Christodoulou–Klainerman) plays an essential role.
Roughly speaking, it provides additional decay near the light cone (i.e., the region t
close to |x |), where the wave equations fail to have sufficiently fast decay. We note the
only existing global existence results on two-dimensional coupled wave and Klein–
Gordon equations with non-compactly supported initial data are due to [6, 39], where
all of the nonlinearities are assumed to obey the null condition, and thus, the situation
we consider here is more difficult. To conquer this difficulty, we observe and take
full use of a special structure of the system (1.1): in the right-hand-side of the wave
equation, the only quadratic term is a wave-Klein–Gordon mixed one. The Klein–
Gordon components enjoy an additional decay rate expressed as 〈t + r〉−1〈r − t〉
near the light cone (see Proposition 3.5 for more details), which will compensate the
absence of the null structure in our analysis.

The insufficiency of decay in the lower dimension brings another difficulty. In
R
1+2, the free-linear waves decay at the speed of t−1/2, while free-linear Klein–

Gordon components decay at the speed of t−1. This means that the best we can expect
for the nonlinearities is

∥∥nE
∥∥

L2(R2)
� t−1,

∥∥�|E |2∥∥L2(R2)
� t−1, (1.6)

which are non-integrable with respect to time. Thus, under this situation, it is highly
non-trivial to prove the sharp pointwise decay results, as well as closing the bootstrap,
of E and n. Our strategy of solving this thorny issue of the slow decay in the nE
nonlinearity follows. We first reveal a Hessian structure �n�E with the relation n =
�n� relying on the special structure in the wave equation of n. We only look at the
region r ≤ 3t (as for its complement part one has 〈t−r〉−1 � 〈t+r〉−1),which includes
the most subtle region of the light cone. The Hessian structure of �n� will contribute
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an extra decay factor of 〈t − r〉−1 by Proposition 3.1 (roughly, one images that one
more derivative give onemore decay factor of 〈t−r〉−1 forwave component), while the
Klein–Gordon component E will contribute an extra decay factor of 〈t +r〉−1〈t −r〉 by
Proposition 3.4, and the product of these two factors yields a favorable factor 〈t +r〉−1

which can give decay in time, and which is favorable.
The third difficulty is the most severe one, and it is the main interest of the present

article to tackle. When the initial data are compactly supported, the system (1.1) has
been discussed within the hyperboloidal foliation framework; see for example [5, 12,
32]. However, there, due to the essential shortcoming of the hyperboloidal foliation,
one cannot analyze the solution outside of the light cone, and thus, the demand on
the compactness of the support of initial data became inevitable. Here, we apply
another strategy used in [6, 7] which is different from the hyperboloidal foliation. In
[6, 7], the decay for the Klein–Gordon components is based on a weighted Sobolev
estimate of Georgiev, while the decay for the wave components is based on a special
version of Klainerman–Sobolev inequality (as well as some extra decay when second
or higher order derivatives hitting on thewave components) where one needs the future
information till time 2t when deriving the pointwise estimate of a function at time t . To
make this Klainerman–Sobolev inequality ready to use, we rely on a global contraction
mapping scheme in the proof instead of the usual bootstrap argument. Moreover, one
crucial ingredient used in [5, 7] is that we adapt Alinhac’s ghost weight method to
coupledwave andKlein–Gordon equations, so that one can take advantage of the 〈t−r〉
decay in the wave component and close the top-order energy estimates. Equipped with
these techniques, one manages to treat the whole spacetime in its entirety. This allows
us to remove the compactness restriction on the initial data. As a comparison, in the
proofs of [6, 7], we close the iteration by relying on a global decay of the Klein–
Gordon components. But here, we need to investigate more detailed properties of the
Klein–Gordon field E in different spacetime regions [see for instance (4.3)], so that
we can manage to close the proof.

Once the global solution is established for the system (1.1), a natural question arises:
will the global solution (E, n) scatters to the linear one? This is the second objective
of the present work. To show the linear scattering of the Klein–Gordon–Zakharov
system (1.1) (or the Zakharov equations) is a tough problem even in R

1+3. In [17,
18], the Klein–Gordon–Zakharov system was shown to enjoy the linear scattering for
(radial) initial data with low regularity, and later on in [19], the Zakharov system was
proved to scatter linearly for initial data with high regularity. All of the works [17–19]
are proved in R

1+3, and the proofs cannot be directly applied to the two dimensional
cases. Based on a scattering result on wave and Dirac equations in [8, 24], we succeed
in showing that the Klein–Gordon part E in system (1.1) enjoys linear scattering in its
energy space (as illustrated in Theorem 1.6) by adapting the result in [8, 24] to Klein–
Gordon equations. We cannot prove whether the wave part n scatters linearly or not,
but instead we show that the natural wave energy of n (i.e.,

∑
a=1,2 ‖∂an‖+‖∂t n‖) is

uniformly bounded in time, which is a weaker result (also a necessary result to linear
scattering). As an interesting comparison, we refer to the tremendous work [22] for the

123



Global Existence and Scattering of the 2D KGZ System

case of Einstein–Klein–Gordon system in R1+3, where neither the wave components
nor the Klein–Gordon one scatters linearly.

FurtherDiscussionsMany fundamental physical models are governed by the coupled
wave and Klein–Gordon equations, including the Dirac–Klein-Gordon equations, the
Einstein–Klein–Gordon equations, the Klein–Gordon–Zakharov equations studied in
the present paper, the Maxwell–Klein–Gordon equations, etc., and the asymptotic
behavior of the equations is relativelywell studied in three space dimensions.However,
there are few results for these systems of equations in two space dimensions, and the
pointwise asymptotics of the solutions (even for small smooth initial datawith compact
support) are also unknown except the Klein–Gordon–Zakharov equations [5, 12, 32]
and some cases of the Dirac–Klein–Gordon equations [10]. We believe that it is of
great mathematical and physical significance to show the asymptotic behavior (or
some other related results) of such equations in two space dimensions.

We recall that the Klein–Gordon–Zakharov equations were shown to have uni-
formly bounded (low- and high-order) energy in the recent work [7] in R

1+3, where
the pointwise decay of the solutions is faster compared to the two-dimensional case.
However, in R1+2, due to the critical decay rates of the nonlinearities as illustrated in
(1.6), we do not expect the high-order energy to be uniformly bounded in time unless
some new observations on system (1.1) are found.

In Theorem 1.6, we are only able to show that the Klein–Gordon component
E in the Klein–Gordon–Zakharov (1.1) scatters linearly. For the wave component
n, our method cannot say anything about its scattering aspect. Due to the (Klein–
Gordon)−(Klein–Gordon) interaction appearing in the n equation and the slow decay
nature of the Klein–Gordon component in two space dimensions (recall that even the
free Klein–Gordon components decay at speed of t−1 in two space dimensions which
is a non-integrable quantity), our guess is that the wave component n enjoys nonlinear
scattering (also referred to as modified scattering). We expect that methods in [18, 22]
can be used to verify our guess.

Last but not least, we briefly discuss about the Zakharov system which is closely
related to the present study. The Zakharov system is composed of wave equations
and Schrodinger equations, and it might not be easy to apply Klainerman’s vector
field method due to the lack of Lorentz invariance. Its global existence and scattering
were tackled in the three-dimensional case in [19], but they remain open in the two-
dimensional case. To make progress in this direction, we believe that it is worth trying
the spacetime resonance method used in [19] and the Z-norm method used in [22].

Outline The rest of this article is organized as follows. In Sect. 2, we introduce the
preliminaries and some fundamental energy estimates for wave and Klein–Gordon
equations. We then explore some extra decay properties for the wave and the Klein–
Gordon components in Sect. 3. In Sect. 4, we demonstrate the proof of the global
existence and the pointwise decay results for theKlein–Gordon–Zakharov equations in
Theorem 1.1 relying on the contractionmapping theorem. Last, we show the scattering
result for theKlein–Gordon component inTheorem1.6 in Sect. 5with some supporting
materials in Appendix A.
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2 Preliminaries

2.1 Basic Notation

We work in the (1 + 2) dimensional spacetime with signature (−,+,+), i.e., the
Minkowski metric η = diag{−1, 1, 1}. A point in R

1+2 is denoted by (x0, x1, x2) =
(t, x1, x2), and its spacial radius is written as r =

√
x21 + x22 . We use Latin letters

to represent space indices a, b, · · · ∈ {1, 2}, while Greek letters are used to denote
spacetime indices {0, 1, 2}, and the indices are raised or lowered by the metric η.

We first recall the vector fields which will be frequently used in the analysis.

• Translations: ∂α .
• Rotations: 	ab = xa∂b − xb∂a .
• Lorentz boosts: La = xa∂t + t∂a .
• Scaling vector field: L0 = S = t∂t + r∂r .

Excluding the scaling vector field L0, we utilize 
 to denote a general vector field in
the set

V := {∂α,	ab, La}.
For a multi-index I = (i1, . . . , i6) with integers i1, . . . , i6 ≥ 0, we define 
 I :=
∂

i1
0 ∂

i2
1 ∂

i3
2 	

i4
12Li5

1 Li6
2 , and denote |I | = i1 + · · · + i6; other multi-indices are defined in

a similar way. Besides, the following good derivatives:

Ga := r−1(xa∂t + r∂a
)
,

will appear in Alinhac’s ghost weight method.
We define (and fix) a smooth cut-off function which is increasing and satisfies

χ(s) :=
{
0, s ≤ 1,
1, s ≥ 2.

(2.1)

This will be frequently used to derive energy estimates in different spacetime regions.

2.2 Energy Estimates

We consider the wave-Klein–Gordon equation with m = 0, 1

−�u + m2u = Fu . (2.2)

Wewill demonstrate several types of energy estimates for the equation (2.2).We recall
the energy functional (with δ > 0)

Egst,m(t, u) :=Em(t, u)+
∑

a

∫ t

t0

∫

R2

δ|Gau|2
〈τ − r〉1+δ

dxdτ +
∫ t

t0

∫

R2

δm2|u|2
〈τ − r〉1+δ

dxdτ,

(2.3)
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in which the natural energy is defined by

Em(t, u) :=
∫

R2

(
|∂t u|2 +

∑

a

|∂au|2 + m2|u|2
)

(t, ·) dx .

The abbreviations E(t, u) = E0(t, u) and Egst (t, u) = Egst,0(t, u) will be used. We
also remark that when t = t0, Egst,m(t0, u) = Em(t0, u).

The natural energy estimates for wave-Klein–Gordon equations read.

Proposition 2.1 Consider (2.2) with m = 0, 1, and it holds both

Em(t, u) � Em(t0, u) +
∫ t

t0

∫

R2

∣∣Fu
∣∣ ∣∣∂t u

∣∣ dxdτ (2.4)

and

Em(t, u)1/2 � Em(t0, u)1/2 +
∫ t

t0

∥
∥Fu

∥
∥ dτ. (2.5)

The following energy estimates are due toAlinhac [1], which are referred to as ghost
weight energy estimates. Compared with the natural energy estimates, an additional
positive spacetime integral can also be controlled.

Proposition 2.2 Consider (2.2) with m = 0, 1, and we have (with δ > 0) both

Egst,m(t, u) � Egst,m(t0, u) +
∫ t

t0

∫

R2

∣∣Fu
∣∣ ∣∣∂t u

∣∣ dxdτ (2.6)

and

Egst,m(t, u)1/2 � Egst,m(t0, u)1/2 +
∫ t

t0

∥
∥Fu

∥
∥ dτ. (2.7)

The following version of ghost weight energy estimates will play a vital role in the
proof of the iteration procedure, which was used for instance in [6].

Proposition 2.3 Consider (2.2) with m = 1, and it holds (with δ, κ > 0)
∫ t

t0

∫

R2

κ|u|2
〈τ 〉κ 〈τ − r〉1+δ

dxdτ � Egst,1(t0, u) +
∫ t

t0

∫

R2
〈τ 〉−κ

∣
∣Fu

∣
∣
∣
∣∂t u

∣
∣ dxdτ.

(2.8)

In the applications in Sect. 4, we will take κ = δ/2.

Proof of Propositions 2.1, 2.2, and 2.3 The above energy estimates in Propositions 2.1,
2.2, and 2.3 are based on the following identity. Let q(t, r) := δ

∫ r−t
−∞〈s〉−1−δds
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which is a uniformly bounded positive function. We apply the multiplier 〈t〉−κeq∂t u
and obtain

〈t〉−κeq∂t u
( − �u + m2u

) = 1

2
∂t

(
〈t〉−κeq

( ∑

α

|∂αu|2 + m2u2
))

− ∂a
(〈t〉κeq ∂t u∂au

)

+ δ

2
〈t〉−κeq 〈r − t〉−1−δ

( ∑

a

|Gau|2 + m2u2
)

+ κ

2
t〈t〉−κ−2eq

( ∑

α

|∂αu|2 + m2u2
)

.

Then, integrating the above identity in {0 ≤ τ ≤ t} with Stokes formula leads to the
desired energy estimates. For (2.4) and (2.5), we take δ = 0, eq ≡ 1 and κ = 0. For
(2.6) and (2.7), we take δ > 0 and κ = 0. Finally, for (2.8), we fix δ, κ > 0. ��

2.3 Estimates on Commutators

We first recall the well-known relations


� = �
, 
(� − 1) = (� − 1)
;

besides, we also need more estimates on commutators. To apply the Klainerman–
Sobolev type inequality, we need to bound quantities such as ‖
 I ∂αu‖ by the energies
introduced in the last subsection. For this purpose, we first establish the following
estimates on commutators.

Lemma 2.4 For u sufficiently regular, the following bounds hold:

∣∣[∂α, 
 I ]u∣∣ ≤ C(I )
∑

|J |<|I |

∑

α′
|∂α′
 J u|, (2.9)

∣∣[∂α∂β, 
 I ]u∣∣ ≤ C(I )
∑

|J |<|I |

∑

α′,β ′
|∂α′∂β ′
 J u|, (2.10)

where C(I ) is a constant determined by I . When |I | = 0, the sums are understood to
be zero.

Proof We need to establish the following decomposition:

[∂α, 
 I ] =
∑

|J |<|I |

∑
π

Iβ
α J ∂β
 J u, (2.11)

where π
Iβ
α J are constants determined by α, I . When |I | = 0, the sum is understood

to be zero. This can be checked by induction. First, when |I | = 1 and 
 I = ∂γ , the
commutators vanish. When 
 I = Lb

[∂t , Lb] = ∂b, [∂a, Lb] = δab∂t ,
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which verify (2.11). Now, suppose that (2.11) holds for |I | ≤ k and we check the case
with |I | = k + 1. In this case, we write

[∂α, 
 I ]u = [∂α, 
 I1
 I2 ] = [∂α, 
 I1 ]
 I2u + 
 I1
([∂α, 
 I2 ]u)

.

Then, suppose that |I2| = 1. By the assumption of induction

[∂α, 
 I ]u =
∑

|J1|<|I1|

∑

β

π
I1β
α J1

∂β
 J1
 I2u +
∑

β


 I1
(
π I2β

α ∂βu
)

=
∑

|J1|<|I1|

∑

β

π
I1β
α J1

∂β
 J1
 I2u +
∑

β

π I2β
α ∂β
 I1u −

∑

β

π I2β
α [∂β, 
 I1 ]u

=
∑

|J1|<|I1|

∑

β

π
I1β
α J1

∂β
 J1
 I2u +
∑

β

π I2β
α ∂β
 I1u

+
∑

|J1|<|I1|

∑

β,γ

π I2β
α π

I1γ
β J1

∂γ 
 J1 .

Here, remark that in the above three sums, |J1| + |I2| < |I |, |I1| < |I |. This closes
the induction.

For (2.10), we need the following decomposition:

[∂α∂β, 
 I ]u =
∑

|J |<|I |
π

Iα′β ′
αβ J ∂α′∂β ′
 J u, (2.12)

where π
Iα′β ′
αβ J are constants determined by α, β, I . This is by applying twice (2.11). ��

2.4 Global Sobolev Inequalities

Recall that we do not commute the equations with the scaling vector field L0
when studying the wave–Klein–Gordon systems, so we cannot directly apply the
Klainerman–Sobolev inequality with the scaling vector field L0. Thus, we turn to
the special version of the Klainerman–Sobolev inequality (2.13) proved in [25]. The
inequality is of vital importance in our study as the scaling vector field L0 is excluded,
even though we have certain price to pay: 1) to get the pointwise decay for a function
at time t > 1 we need the future information of the function till time 2t ; 2) we do not
have any 〈t − r〉-decay of the function compared with the version of the Klainerman–
Sobolev inequality with the scaling vector field L0. Both of the flaws cause extra
difficulties, and we need very delicate analysis to conquer them.

Proposition 2.5 Let u = u(t, x) be a sufficiently smooth function which decays suf-
ficiently fast at space infinity for each fixed t ≥ 0. Then, for any t ≥ 0, x ∈ R

2, we
have

|u(t, x)| � 〈t + |x |〉−1/2 sup
0≤s≤2t,|I |≤3

∥∥
 I u(s)
∥∥,


 ∈ V = {La, ∂α,	ab = xa∂b − xb∂a}. (2.13)
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However, when we concentrate on the region outside of the light cone, the situation
becomes less complicated. In fact, we have the following version of global inequality:

Proposition 2.6 Let u = u(t, x) be a sufficiently smooth function which decays suffi-
ciently fast at space infinity for each fixed t ≥ 0. Then, for all η ∈ R

|〈r − t〉ηu(t, x)| � r−1/2
∑

|I |≤1,|J |≤1

‖〈r − t〉η�I 	J u(t, ·)‖, (2.14)

where � represents any of the vector in {∂r ,	 = x1∂2 − x2∂1} and �I is a product
of these vectors with order |I |.
Sketch of Proof We recall a slightly modified version of the classical Sobolev inequal-
ity (cf. for instance [25])

|u(t, x)| ≤ r−1/2
∑

|I |≤1,|J |≤1

‖�I 	J u(t, ·)‖. (2.15)

To show (2.15), we first apply the fundamental theorem of calculus on u2(t, x) for
fixed t to get

u2(t, x) =
∫ +∞

|x |
2u∂r u dr � 1

|x |
∫ +∞

|x |
∣∣u∂r u

∣∣r dr � 1

|x |
∫ +∞

0

(
u2 + |∂r u|2)r dr .

Then, we apply the Sobolev inequality on the circle S1 to get

u2(t, x) � 1

|x |
∫

S1

∫ +∞

0
	

(
u2 + |∂r u|2)r drdS1

� 1

|x |
∫

S1

∫ +∞

0

(
u2 + |	u|2 + |∂r u|2 + |	∂r u|2)r drdS1,

which gives (2.15).
We note 	 = 	12 commutes with r , t , while we always get good terms when ∂r

acting on 〈r − t〉η, that is

	
(〈r − t〉ηu(t, x)

) = 〈r − t〉η	u(t, x),
∣
∣∂r

(〈r − t〉ηu(t, x)
)∣∣ = ∣

∣〈r − t〉η∂r u(t, x) + η(r − t)〈r − t〉η−2u(t, x)
∣
∣

� 〈r − t〉η∣∣∂r u(t, x)
∣∣ + 〈r − t〉η−1|u(t, x)|.

Thus, the proof is done. ��

2.5 Pointwise Decay for Klein–Gordon Components

We recall that for linear homogeneous Klein–Gordon equations, the solutions decay at
speed 〈t + r〉−1 in R1+2. Since the Klainerman–Sobolev inequality in Proposition 2.5
gives at best 〈t + r〉−1/2 decay rate for a given nice function in R

1+2, we need the
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following way to obtain optimal decay for Klein–Gordon components, which was
introduced by Georgiev in [13].

We denote {p j }∞0 a usual Paley–Littlewood partition of the unity

1 =
∑

j≥0

p j (s), s ≥ 0,

which is assumed to satisfy

0 ≤ p j ≤ 1, p j ∈ C∞
0 (R), for all j ≥ 0,

and the supports of the series satisfy

supp p0 ⊂ (−∞, 2], supp p j ⊂ [2 j−1, 2 j+1], for all j ≥ 1.

Now, we are ready to give the statement of the decay result for the Klein–Gordon
equations in [13].

Proposition 2.7 Let v solve the Klein–Gordon equation

−�v + v = f ,

with f = f (t, x) a sufficiently nice function. Then, for all t ≥ 0, it holds

〈t + |x |〉|v(t, x)| �
∑

j≥0, |I |≤4

sup
0≤s≤t

p j (s)
∥∥〈s + |x |〉
 I f (s, x)

∥∥

+
∑

j≥0, |I |≤5

∥∥〈|x |〉p j (|x |)
 I v(0, x)
∥∥.

(2.16)

As a consequence, we have the following simplified version of Proposition 2.7.

Proposition 2.8 With the same settings as Proposition 2.7, let δ′ > 0 and assume

∑

|I |≤4

∥∥〈s + |x |〉
 I f (s, x)
∥∥ ≤ C f 〈s〉−δ′

.

Then we have

〈t + |x |〉|v(t, x)| � C f

1 − 2−δ′ +
∑

|I |≤5

∥∥〈|x |〉 log〈1 + |x |〉
 I v(0, x)
∥∥. (2.17)
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3 Extra Decay for Wave and Klein–Gordon Components

In the analysis, we will distinguish the regions {(t, x) : |x | ≤ 2t} and {(t, x) :
|x | ≥ 2t}, because we can take advantage of the extra decay properties of wave
and Klein–Gordon components away from the light cone. Therefore, the extra decay
properties of wave and Klein–Gordon components in the propositions below will also
be demonstrated differently in different spacetime regions.

3.1 Extra Decay for Hessian ofWave Components

Proposition 3.1 Consider the wave equation

−�w = Fw.

Then we have

|∂∂w| � 1

〈t − r〉
(|∂
w| + |∂w|) + t

〈t − r〉 |Fw|, for |x | ≤ 3t, (3.1)

as well as

|∂∂w| � r

〈t〉2
(|∂
w| + |∂w|) + |Fw|, for |x | ≥ 3t

2
. (3.2)

Proof For completeness, we revisit the proof in [28]. Since it is easily seen that the
results hold for t ≤ 1, so we will only consider the case t ≥ 1.

We first express the wave operator −� by ∂t , La to get

−� = (t − |x |)(t + |x |)
t2

∂t∂t + xa

t2
∂t La − 1

t
∂a La + 2

t
∂t − xa

t2
∂a . (3.3)

When t ≥ 1, one has

|∂t∂tw| � 1

〈r − t〉
(|∂
w| + |∂w|) + t2

〈r − t〉〈r + t〉 |Fw|.

On the other hand, we note that the following relations hold true:

∂a∂t = − xa

t
∂t∂t + 1

t
∂t La − 1

t
∂a,

∂a∂b = xa xb

t2
∂t∂t − xa

t2
∂t Lb + 1

t
∂b La − δab

t
∂t + xa

t2
∂b.

This leads to

|∂α∂βw| � r2 + 〈t〉2
〈t〉2〈r − t〉

(|∂
w| + |∂w|) + r + t

〈r − t〉 |Fw|.
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Now, when r ≤ 3t , we remark that r ≤ 〈t〉. Then, the above bound reduces to (3.1).
When r ≥ 3t/2, 〈r + t〉 � 〈r − t〉, the above bound reduces to (3.2). ��

3.2 Extra Decay forWave Components

We recall the smooth and increasing function defined in (2.1)

χ(s) :=
{
0, s ≤ 1,
1, s ≥ 2.

Proposition 3.2 Consider the wave equation

−�w = Fw.

Then for any η ≥ 0 we have

∫

R2
χ(r − t)〈r − t〉2η(∂w)2 dx

�
∥
∥〈r〉η∂w(0, ·)∥∥2 +

∫ t

0

∫

R2
χ(r − τ)〈r − τ 〉2η∣∣Fw∂tw

∣
∣ dxdτ. (3.4)

Proof We pick χ(r − t)〈r − t〉2η∂tw as the multiplier, and we derive the identity

1

2
∂t

(
χ(r − t)〈r − t〉2η

(
(∂tw)2 +

∑

a

(∂aw)2
))

− ∂a
(
χ(r − t)〈r − t〉2η∂aw∂tw

)

+ 1

2

(
χ ′(r − t)〈r − t〉2η + 2ηχ(r − t)〈r − t〉2η−2(r − t)

)∑

a

|Gau|2

= χ(r − t)〈r − t〉2η Fw∂tw.

We observe that

(
χ ′(r − t)〈r − t〉2η + 2ηχ(r − t)〈r − t〉2η−2(r − t)

)∑

a

|Gau|2 ≥ 0.

Then, we are led to the desired energy estimates (3.4) by integrating the above identity
over the spacetime region [0, t] × R

2.
The proof is complete. ��
The following energy estimates allow us, in many cases, to gain better t-bound

for the energy of the wave component at the expense of losing some 〈t − r〉-bound
inside of the light cone {r ≤ t}. This idea is inspired by the Alinhac’s ghost weight
energy estimates andwas applied for instance in [5] when studying theKlein–Gordon–
Zakharov equation in two space dimensions under compactness assumptions, and is
now adapted to the non-compact setting.
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Proposition 3.3 Consider the wave equation

−�w = Fw.

We have for η ≥ 0 that

∫

R2

(
(t − r)−ηχ(t − r) + 1 − χ(t − r)

)∣∣∂w
∣∣2 dx

� Egst (t0, w) +
∫ t

t0

(
(τ − r)−ηχ(τ − r) + 1 − χ(τ − r)

)∣∣Fw∂tw
∣∣ dxdτ. (3.5)

Remark 3.4 We recall that E(t0, w) = Egst (t0, w) by (2.3).

Proof Consider the w equation, and take the multiplier

(
(t − r)−ηχ(t − r) + 1 − χ(t − r)

)
∂tw

to have the differential identity

1

2
∂t

((
(t − r)−ηχ(t − r) + 1 − χ(t − r)

)(
(∂tw)2 +

∑

a

(∂aw)2
))

− ∂a

((
(t − r)−ηχ(t − r) + 1 − χ(t − r)

)
∂aw∂tw

)

+ η

2
(t − r)−η−1χ(t − r)

∑

a

|Gau|2 + 1

2

(
χ ′(t − r) − (t − r)−ηχ ′(t − r)

) ∑

a

|Gau|2

= (
(t − r)−ηχ(t − r) + 1 − χ(t − r)

)
∂twFw.

We note that

η

2
(t − r)−η−1χ(t − r)

∑

a
|Gau|2 + 1

2

(
χ ′(t − r) − (t − r)−ηχ ′(t − r)

)∑

a
|Gau|2 ≥ 0,

so we have

1

2
∂t

((
(t − r)−ηχ(t − r) + 1 − χ(t − r)

)(
(∂tw)2 +

∑

a

(∂aw)2
))

− ∂a

((
(t − r)−ηχ(t − r) + 1 − χ(t − r)

)
∂aw∂tw

)

≤ (
(t − r)−ηχ(t − r) + 1 − χ(t − r)

)
∂twFw.

Integrating this inequality over the region [t0, t] × R
2 yields the desired result.

The proof is done. ��
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3.3 Extra Decay for Klein–Gordon Components

Proposition 3.5 Consider the Klein–Gordon equation

−�v + v = Fv,

then for t ≥ 1, we have

|v| � |t − r |
〈t〉 |∂∂v| + 1

〈t〉 |∂
v| + 1

〈t〉 |∂v| + |Fv|, for |x | ≤ 3t . (3.6)

Proof This phenomena was detected in [20, 27]. The following proof can be found in
[31] in the light cone. Here, we give a generalization in a larger region of spacetime.
Recalling the expression of the wave operator in (3.3), we find

−�v + v = (t − |x |)(t + |x |)
t2

∂t∂tv + xa

t2
∂t Lav − 1

t
∂a Lav + 2

t
∂tv − xa

t2
∂av + v,

which leads us to

|v| � |(t − |x |)(t + |x |)|
t2

|∂t∂tv| + |xa |
t2

|∂t Lav| + 1

t
|∂a Lav| + 2

t
|∂tv| + |xa |

t2
|∂av| + |Fv |.

If |x | ≤ 3t , we further have

|v| �
∣∣t − |x |∣∣

t
|∂t∂tv| +

∑

a

1

t
|∂Lav| + 1

t
|∂v| + |Fv|,

which finishes the proof. ��
We recall the smooth and increasing function χ defined in (2.1).

Proposition 3.6 Consider the Klein–Gordon equation

−�v + v = Fv.

Then for all η ≥ 0 we have

∫

R2
χ(r − t)〈r − t〉2η((∂v)2 + v2

)
dx

+
∫ t

0

∫

R2

(
χ ′(r − t)〈r − t〉2η + ηχ(r − t)〈r − t〉2η−2(r − t)

)
v2 dx dτ

�
∥∥〈r〉η∂v(0, ·)∥∥2 + ∥∥〈r〉ηv(0, ·)∥∥2 +

∫ t

0

∫

R2
χ(r − τ)〈r − τ 〉2η∣∣Fv∂tv

∣∣ dxdτ. (3.7)

Proof The proof is almost the same as the proof of Proposition 3.2. We choose

χ(r − t)〈r − t〉2η∂tv
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to be the multiplier, and we derive the identity

1

2
∂t

(
χ(r − t)〈r − t〉2η

(
(∂tv)2 +

∑

a

(∂av)2 + v2
))

− ∂a
(
χ(r − t)〈r − t〉2η∂av∂tv

)

+ 1

2

(
χ ′(r − t)〈r − t〉2η + 2ηχ(r − t)〈r − t〉2η−2(r − t)

)
( ∑

a

|Gav| + v2
)

= χ(r − t)〈r − t〉2η Fv∂tv.

We observe that

(
χ ′(r − t)〈r − t〉2η + 2ηχ(r − t)〈r − t〉2η−2(r − t)

)∑

a

|Gav| ≥ 0.

Then, we are led to the desired energy estimates (3.7) by integrating the above identity
over the spacetime region [0, t] × R

2.
The proof is complete. ��

4 Global Existence

4.1 Solution Space and SolutionMapping

In many cases, to prove the global existence of a nonlinear system one relies on a
bootstrap argument. In our case, due to the utilization of the Klainerman–Sobolev
inequality without scaling vector field stated in Proposition 2.5, where one requires
the future information till time 2t when deriving the pointwise estimate for the function
at time t , we turn to the aid of the contraction mapping theorem, and thus an itera-
tion procedure. For easy readability, we will use capital letters (like �, V ) to denote
Klein–Gordon components, while small letters (like φ, u) are used to represent wave
components.

We now define the solution space X with some small 0 < δ � 1 (recall the
regularity index N ≥ 14 below). We recall the cut-off function χ , which is smooth
and increasing, defined in (2.1)

χ(s) :=
{
0, s ≤ 1,
1, s ≥ 2.

We first define various groups of norms for a pair of functions (V , u)
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• Group I:

‖(V , u)‖I : = sup
t≥0, |I |≤N+1

〈t〉−δEgst,1(t, 

I V )1/2

+ sup
t≥0, |I |≤N+1

〈t〉−δ/2
(∫ t

0

∥∥∥

 I V

〈τ 〉δ/2〈τ − r〉1/2+δ/2

∥∥∥
2

dτ

)1/2

+ sup
t≥0, |I |≤N

〈t〉−δ
∥
∥∥
〈t + r〉
〈t − r〉


I V
∥
∥∥.

• Group II:

‖(V , u)‖II := sup
t,r≥0, |I |≤N−5

〈t + r〉∣∣
 I V
∣
∣ + sup

t,r≥0, |I |≤N−7
〈t − r〉−1〈t + r〉2∣∣
 I V

∣
∣.

• Group III:

‖(V , u)‖III : = sup
t≥0, |I |≤N−1

〈t〉−1/2−δ
(∥∥χ1/2(r − t)〈t − r〉∂
 I V

∥∥

+ ∥∥χ1/2(r − t)〈t − r〉
 I V
∥∥)

+ sup
t≥0, |I |≤N−5

〈t〉−δ
(∥∥χ1/2(r − t)〈t − r〉∂
 I V

∥∥

+ ∥∥χ1/2(r − t)〈t − r〉
 I V
∥∥)

+ sup
t,r≥0, |I |≤N−8

χ(r − t)〈t + r〉5/4−δ
∣∣
 I V

∣∣.

• Group IV:

‖(V , u)‖IV : = sup
t≥0, |I |≤N+1

〈t〉−δ
∥∥
 I u

∥∥

+ sup
t≥0, |I |≤N−1

〈t〉−1/2−δ
∥∥χ1/2(r − t)〈t − r〉
 I u

∥∥

+ sup
t≥0, |I |≤N−5

〈t〉−δ
∥∥χ1/2(r − t)〈t − r〉
 I u

∥∥

+ sup
t≥0, |I |≤N

〈t〉−δ
∥
∥(
1 − χ(r − 2t)

)1/2〈t − r〉
 I u
∥
∥

+ sup
t≥0, |I |≤N−2

∥∥(
1 − χ(r − 2t)

)1/2〈t − r〉1−δ
 I u
∥∥.

• Group V:

‖(V , u)‖V := sup
t,r≥0, |I |≤N−8

〈t − r〉1−δ〈t + r〉1/2∣∣
 I u
∣∣.
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• Group VI:

‖(V , u)‖VI := sup
t≥0, |I |≤N−2

Egst (t, 

I u)1/2 + sup

t≥0, |I |≤N−1
Egst,1(t, 


I V )1/2.

Definition 4.1 Let � = �(t, x), φ = φ(t, x) be sufficiently regular functions, in
which � is an R

2-valued function, while φ is a scalar-valued function, and we say
(�, φ) belongs to the metric space X if

• It satisfies

(
�, ∂t�,φ, ∂tφ

)
(0, ·) = (

E0, E1, n0, n1
)
. (4.1)

• It satisfies

∥∥(�, φ)
∥∥

X ≤ C1ε, (4.2)

in which C1 � 1 is some big constant to be determined, the size of the initial
data ε � 1 is small enough, such that C1ε � 1, and the norm ‖ · ‖X for a pair of
R
2 × R-valued functions (V , u) is defined by (with 0 < δ � 1)

∥∥(V , u)
∥∥

X : = ∥∥(V , u)
∥∥
I + ∥∥(V , u)

∥∥
II + ∥∥(V , u)

∥∥
III

+ ∥
∥(V , u)

∥
∥
IV + ∥

∥(V , u)
∥
∥
V + ∥

∥(V , u)
∥
∥
VI.

(4.3)

Remark 4.2 In general, one may follow two different strategies when applying the
contraction mapping (or bootstrap) argument. The first is to include as few norms in
the construction ofworking space as possible, and the second is the inverse. Essentially
speaking neither is simpler than the other and both have their advantages. However, in
the present situation, we prefer the second. Our main considerations are the following
two points.

• Visualizing the functional properties of the global solution. It is clear that once the
global solution is constructed, all the bounds described by the 18 pieces of norms
are valid.

• Making the proof more “delayering”. The estimate on each quantity is directly
based on the assumptions on ‖(�, φ)‖X < C1ε, and one need not estimate “inter-
mediate” quantities.

Remark 4.3 The choice for the norms included in ‖ · ‖X is determined by the feature
of the model equation (1.1) and those various estimates introduced in Sects. 2 and 3.
It is not a trivial task to decide which norms are included in ‖ · ‖X , and we give here a
simple heuristic explanation. The slow increasing rate 〈t〉δ in the top-order energy of
E (the first line in ‖·‖I) and n (the first line in ‖·‖III) is due to our previous work [5, 12]
when treating compactly supported initial data and seems inevitable in the analysis.
To close this, we find it suffices to show sharp time decay 〈t + r〉−1 for lower order
derivatives of E and to show 〈t + r〉−1/2〈t − r〉−1/2− for lower order derivatives of n
(here −1/2− means some number strictly smaller than −1/2). Then, several energy
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estimates and “extra decay” properties for the system are implemented to achieve this,
and thus, the various types of norms are included in ‖ · ‖X .

Remark 4.4 The way we divide norms into six groups allows us to prove the estimates
of ‖ · ‖X in a chronological order. Besides, the proofs for the pieces of norms in the
same group are connected, and for instance, the proofs of the second and third lines of
‖ · ‖I are based on the proof of the first line of ‖ · ‖I. Moreover, the numbers of pieces
of norms included in a group are reasonably large, so that the quantities can be easily
referred in the proofs below.

It is easy to see that the solution space X is complete with respect to the metric
induced from the norm ‖ · ‖X . Next, we want to construct a contraction mapping. To
achieve this, we first define a solution mapping, and then prove it is also a contraction
mapping by carefully choosing the size of the parameters C1, ε. We recall that A � B
means A ≤ C B with C independent of C1, ε.

Definition 4.5 Given a pair of functions (�, φ) ∈ X , the solution mapping T maps
it to the unique pair of functions

(
�̃, φ̃

)
, which is the solution to the following linear

equations:

− ��̃ + �̃ = −φ�,

− �φ̃ = �|�|2,
(
�̃, ∂t�̃, φ̃, ∂t φ̃

)
(t0) = (E0, E1, n0, n1),

(4.4)

and we will write
(
�̃, φ̃

) = T (�, φ).

4.2 ContractionMapping and Global Existence

The goal of this part is to show the solution mapping T is a contraction mapping from
the solution space X to X .

Proposition 4.6 With suitably chosen large C1 and small ε, we have the following.

• Given a pair of functions (�, φ) ∈ X, we have

T (�, φ) ∈ X . (4.5)

• For any (�, φ), (� ′, φ′) ∈ X, it holds

∥∥T (�, φ) − T (� ′, φ′)
∥∥

X ≤ 1

2

∥∥(�, φ) − (� ′, φ′)
∥∥

X . (4.6)

Since system (1.1) is a semilinear system, there is no derivative loss in the analysis,
and (4.6) can be shown in the same way as we prove (4.5).
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We rewrite (4.4) to take advantage of the special structure (i.e., a hidden divergence
form structure) of the nonlinearities appearing in the wave equation of φ̃, which read

− ��̃ + �̃ = −φ�,

− �φ̃� = |�|2, φ̃ = �φ̃�,
(
�̃, ∂t�̃, φ̃�, ∂t φ̃

�
)
(t0) = (E0, E1, n�

0 , n�
1 ).

(4.7)

We note that this kind of reformulation has been used before; see for instance [23]. To
estimate higher order energy, we act 
 I to (4.7) to get (recall the commutator relations
in Sect. 2.3)

− �
 I �̃ + 
 I �̃ = −
 I (φ�
)
,

− �
 I φ̃� = 
 I (|�|2). (4.8)

In the sequel, we will write
(
�̃, φ̃

) = T (�, φ).

Preliminary Estimates

Lemma 4.7 If (�, φ) lies in the solution space X and the initial data (E0, E1, n0 =
�n�

0 , n1 = �n�
1 ) satisfy the bound (1.3), that is

∑

0≤ j≤N+2

‖〈|x |〉N+3 log〈1 + |x |〉E0‖H j +
∑

0≤ j≤N+1

‖〈|x |〉N+3 log〈1 + |x |〉E1‖H j

+
∑

0≤ j≤N+3

‖〈|x |〉 j+1n�
0 ‖H j +

∑

0≤ j≤N+2

‖〈|x |〉 j+2n�
1 ‖H j ≤ ε,

then we have

Egst,1(t0, 
 I �̃)1/2 � ε, |I | ≤ N + 1,
E(t0, ∂
 I φ̃�)1/2 � ε, |I | ≤ N + 1,
‖〈|x |〉 log〈1 + |x |〉
 I �̃(t0, x)‖ � ε, |I | ≤ N ,

‖〈|x |〉
 I �̃(t0, ·)‖ � ε, |I | ≤ N ,

‖〈|x |〉∂∂
 I φ̃�(t0, ·)‖ � ε, |I | ≤ N − 1.

(4.9)

With Lemma4.7, the contribution from the initial data is always a favorable quantity
of size ε, and we will not specify it in the following analysis.

Lemma 4.8 If (�, φ) lies in the solution space X, then the following estimates hold:

〈t + r〉
〈t − r〉

∣∣
 I �
∣∣ ≤ C1ε〈t + r〉−1, |I | ≤ N − 7,

〈t − r〉∣∣
 I φ
∣∣ ≤ C1ε〈t + r〉−1/2+δ, |I | ≤ N − 8.

(4.10)

Proof The first estimate is from the definition of the norm ‖ · ‖II. The second estimate
is from the last line of the norm ‖ · ‖V and the fact 〈t − r〉 � 〈t + r〉. ��
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Verification of Norms in Group I

Lemma 4.9 Let (�, φ) lie in the solution space X. Then we have

Egst,1(t, 

I �̃)1/2 � ε + (C1ε)

3/2〈t〉δ, |I | ≤ N + 1, (4.11)
(∫ t

0

∥
∥∥∥


 I �̃

〈τ 〉δ/2〈τ − r〉1/2+δ/2

∥
∥∥∥

2

dτ

)1/2

� ε + (C1ε)
3/2〈t〉δ/2, |I | ≤ N + 1.

(4.12)

Proof Wefirst show (4.11). Consider (4.8) and apply the ghostweight energy estimates
(2.7), and for |I | ≤ N + 1, we find

Egst,1(t, 

I �̃)1/2 � Egst,1(t0, 


I �̃)1/2 +
∫ t

0

∥∥
 I (φ�
)
(τ )

∥∥ dτ.

Recall that Leibniz rule yields


 I (φ�
) =

∑

I1+I2=I


 I1φ 
 I2�,

and we thus have

∥∥
 I (φ�
)∥∥ �

∑

|I1|+|I2|=|I |

∥∥
 I1φ 
 I2�
∥∥

�
∑

|I2|≤N−5
|I1|+|I2|≤|I |

∥∥
 I1φ 
 I2�
∥∥ +

∑

|I1|≤N−8
|I1|+|I2|≤|I |

∥∥
 I1φ 
 I2�
∥∥, (4.13)

in which we used N ≥ 14 in the last inequality.
Next, we estimate those two quantities in the above inequality. We start with

∑

|I2|≤N−5
|I1|+|I2|≤|I |

∥∥
 I1φ 
 I2�
∥∥ �

∑

|I2|≤N−5
|I1|≤|I |

∥∥
 I1φ
∥∥ ∥∥
 I2�

∥∥
L∞ � (C1ε)

2t−1+δ,

(4.14)

and in the last inequality, we used the estimate from ‖ · ‖II and the one in the first line
of ‖ · ‖IV. As for the other one, we have

∑

|I1|≤N−8
|I1|+|I2|≤|I |

∥∥
 I1φ 
 I2�
∥∥ �

∑

|I1|≤N−8
|I1|+|I2|≤|I |

∥∥〈t〉δ/2〈t − r〉1/2+δ/2
 I1φ
∥∥

L∞
∥
∥∥


 I2�

〈t〉δ/2〈t − r〉1/2+δ/2

∥
∥∥

� C1ε〈t〉−1/2+δ/2
∑

|I2|≤N+1

∥
∥∥


 I2�

〈t〉δ/2〈t − r〉1/2+δ/2

∥
∥∥, (4.15)
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in which we used the estimate from ‖ · ‖V and the smallness of δ.
Gathering the estimates leads us to (4.11)

Egst,1(t, 

I �̃)1/2

� ε +
∫ t

0

(
(C1ε)

2τ−1+δ + C1ε〈τ 〉−1/2+δ/2
∑

|I2|≤N+1

∥
∥∥∥


 I2�

〈τ 〉δ/2〈τ − r〉1/2+δ/2

∥
∥∥∥

)
dτ

� ε + (C1ε)
2〈t〉δ + C1ε

(∫ t

0
〈τ 〉−1+δ dτ

)1/2 ∑

|I2|≤N+1

(∫ t

0

∥∥
∥∥


 I2�

〈τ 〉δ/2〈τ − r〉1/2+δ/2

∥∥
∥∥
2

dτ

)1/2

� ε + (C1ε)
2〈t〉δ,

and in the last inequality, we used the estimate from the second line of ‖ · ‖I .
Finally, wewant to deduce (4.12). The ghost weight energy estimates (2.8) indicate

∫ t

0

∥∥∥∥

 I �̃

τ δ/2〈τ − r〉1/2+δ/2

∥∥∥∥

2

dτ

� Egst,1(t0, 

I �̃) +

∫ t

0

∫

R2
〈τ 〉−δ

∣∣
 I (φ�
)
∂t


I �̃
∣∣(τ, x) dxdτ.

With the estimates (4.11) we just proved, we have

∫ t

0

∫

R2
〈τ 〉−δ

∣
∣
 I (φ�

)
∂t


I �̃
∣
∣(τ, x) dxdτ

�
∫ t

0
〈τ 〉−δ

∥∥
 I (φ�
)∥∥∥∥∂t


I �̃
∥∥ dτ

�
(∫ t

0
〈τ 〉−δ+1

∥∥
 I (φ�
)∥∥2 dτ

)1/2 (∫ t

0
〈τ 〉−δ−1

∥∥∂t

I �̃

∥∥2 dτ

)1/2

� C1ε〈t〉δ/2
(∫ t

0
〈τ 〉−δ+1

∥∥
 I (φ�
)∥∥2 dτ

)1/2

.

To proceed, we find

(∫ t

0
〈τ 〉−δ+1

∥∥
 I (φ�
)∥∥2 dτ

)1/2

�
(∫ t

0

(
(C1ε)

2〈τ 〉−1+δ + C1ε
∑

|I2|≤N+1

∥
∥∥∥


 I2�

〈τ 〉δ/2〈τ − r〉1/2+δ/2

∥
∥∥∥

2)
dτ

)1/2

� (C1ε)
2〈t〉δ/2,

which further gives us

∫ t

0

∥∥
∥


 I �̃

τ δ/2〈τ − r〉1/2+δ/2

∥∥
∥
2

dτ � ε2 + (C1ε)
3〈t〉δ,
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Global Existence and Scattering of the 2D KGZ System

and hence (4.12).
We complete the proof. ��

Lemma 4.10 The following estimates are valid:

∥
∥∥∥
〈t + r〉
〈t − r〉


I �̃

∥
∥∥∥ � ε + (C1ε)

3/2〈t〉δ, |I | ≤ N . (4.16)

Proof In the region {r ≥ 2t}, it holds 〈t + r〉 � 〈t − r〉, and thus, we only need to
consider the region {r ≤ 2t}. Recall that Lemma 4.9 provides us with

∥∥∂
 J �̃
∥∥ + ∥∥
 J �̃

∥∥ � ε + (C1ε)
2〈t〉δ, |I | ≤ N + 1.

Thus, the proof for the region {r ≤ 2t} follows from Lemma 4.9 and Proposition 3.5.
��

Verification of Norms in Group II

Lemma 4.11 The following estimates hold:

∣∣
 I �̃
∣∣ �

(
ε + (C1ε)

2)〈t + r〉−1, |I | ≤ N − 5. (4.17)

Proof By Proposition 2.8, we need to bound the quantity

∑

|I |≤N−1

∥∥〈t + r〉
 I (φ�
)∥∥.

We have
∑

|I |≤N−1

∥
∥〈t + r〉
 I (φ�

)∥∥

�
∑

|I1| ≤ N − 1
|I2 | ≤ N − 8

∥
∥∥
∥

〈t + r〉
〈t − r〉
 I1�

∥
∥∥
∥
∥∥〈t − r〉
 I2φ

∥∥
L∞ +

∑

|I1| ≤ N − 7
|I2 | ≤ N − 1

∥
∥∥
∥

〈t + r〉
〈t − r〉
 I1�

∥
∥∥
∥

L∞

∥∥〈t − r〉
 I2φ
∥∥

� (C1ε)
2〈t〉−1/2+3δ,

in which we used the estimates from ‖·‖I, ‖·‖IV, and Lemma 4.8 in the last inequality.
Then, Proposition 2.8 yields the desired result (4.17). ��
Lemma 4.12 It holds

∣∣
 I �̃
∣∣ �

(
ε + (C1ε)

2) 〈t − r〉
〈t + r〉2 , |I | ≤ N − 7. (4.18)

Proof The proof follows from Lemma 4.11 and Proposition 3.5. ��
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Verification of Norms in Group III

Lemma 4.13 We have

∥∥χ1/2(r − t)〈r − t〉∂
 I �̃
∥∥ + ∥∥χ1/2(r − t)〈r − t〉
 I �̃

∥∥

�
{

ε + (C1ε)
2〈t〉1/2+δ, |I | ≤ N − 1,

ε + (C1ε)
2〈t〉δ, |I | ≤ N − 5.

(4.19)

Proof We apply the energy estimates in Proposition 3.6 with η = 1 to the 
 I �̃

equation in (4.8) with |I | ≤ N − 1, and obtain

∥∥χ1/2(r − t)〈r − t〉∂
 I �̃
∥∥ + ∥∥χ1/2(r − t)〈r − t〉
 I �̃

∥∥

�
∥∥〈r〉∂
 I �̃(t0, ·)

∥∥ + ∥∥〈r〉
 I �̃(t0, ·)
∥∥ +

∫ t

t0

∥∥χ1/2(r − τ)〈r − τ 〉
 I (φ�)
∥∥ dτ.

We note that

∥∥χ1/2(r − τ)〈r − τ 〉
 I (φ�)
∥∥

�
∑

|I1|≤N−8, |I2|≤N−1

∥∥χ1/2(r − τ)〈r − τ 〉
 I1φ
∥∥

L∞
∥∥
 I2�

∥∥

+
∑

|I1|≤N−1, |I2|≤N−5

∥∥χ1/2(r − τ)〈r − τ 〉
 I1φ
∥∥∥∥
 I2�

∥∥
L∞

� (C1ε)
2〈τ 〉−1/2+δ,

where, in the last step, we used the estimates from ‖·‖II, ‖·‖IV, ‖·‖VI, and Lemma 4.8,
and which gives the first inequality in (4.19).

Analogously, for the case of |I | ≤ N − 5, we only need to bound

∥∥χ1/2(r − τ)〈r − τ 〉
 I (φ�)
∥∥.

Our strategy is to always take L∞-norm on the � part, and by the estimates from
‖ · ‖II, ‖ · ‖IV, we find

∥
∥χ1/2(r − τ)〈r − τ 〉
 I (φ�)

∥
∥ �

∑

|I1|≤N−5, |I2|≤N−5

∥
∥χ1/2(r − τ)〈r − τ 〉
 I1φ

∥
∥
∥
∥
 I2�

∥
∥

L∞

� (C1ε)
2〈τ 〉−1+δ,

which finishes the proof. ��
Lemma 4.14 We get

χ(r − t)
∣∣
 I �̃

∣∣ �
(
ε + (C1ε)

3/2)〈t + r〉−5/4+δ, |I | ≤ N − 8. (4.20)
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Proof Wewill rely on the weighted energy estimates in Lemma 4.13 and the weighted
Sobolev inequality in Proposition 2.6 to derive the pointwise estimates in (4.20).

Applying the weighted Sobolev inequality in Proposition 2.6 implies (note we have
〈r〉 � r within the support of χ(r − t))

χ(r − t)〈t − r〉〈r〉1/2∣∣
 I �̃
∣∣ �

∑

|J2|≤1,|J1|≤1

∥∥�J2	J1
(
χ(r − t)〈t − r〉
 I �̃

)∥∥,

for � ∈ {∂r ,	 = 	12}. We note within the support of χ ′(r − t), it holds that
1 � 〈t − r〉 � 1, and by the commutator estimates 	12r = 	12t = 0, we find

∑

|J2|≤1,|J1|≤1,|I |≤N−8

∥∥�J2	J1
(
χ(r − t)〈t − r〉
 I �̃

)∥∥ �
∑

|I1|≤N−5

∥∥χ(r − t)〈t − r〉
 I1�̃
∥∥.

Then, by Lemma 4.13, we get

∑

|J2|≤1,|J1|≤1,|I |≤N−8

∥∥�J2	J1
(
χ(r − t)〈t − r〉
 I �̃

)∥∥ � ε + (C1ε)
2〈t〉δ,

and hence

χ(r − t)
∣∣
 I �̃

∣∣ �
(
ε + (C1ε)

2)〈t − r〉−1〈r〉−1/2+δ

�
(
ε + (C1ε)

2)〈t − r〉−1〈t + r〉−1/2+δ, |I | ≤ N − 8.

Finally, by the aid of Lemma 4.12, we are led to

χ(r − t)
∣∣
 I �̃

∣∣ � χ1/2(r − t)
∣∣
 I �̃

∣∣1/2∣∣
 I �̃
∣∣1/2

�
(
ε + (C1ε)

2)〈t − r〉−1/2〈t + r〉−1/4+δ/2〈t − r〉1/2〈t + r〉−1

�
(
ε + (C1ε)

2)〈t + r〉−5/4+δ, |I | ≤ N − 8.

The proof is done. ��

Verification of Norms in Group IV

Lemma 4.15 We get

∥∥
 I φ̃
∥∥ � ε + (C1ε)

2〈t〉δ, |I | ≤ N + 1. (4.21)

Proof Our strategy is tofirst prove thebounds for φ̃�, and thenpass them to φ̃ according
to the relation

φ̃ = �φ̃�.

We act ∂
 I with |I | ≤ N + 1 to the φ̃� equation to get

−�∂
 I φ̃� = ∂
 I (|�|2).
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Then, the energy estimates (2.5) imply

E(t, ∂
 I φ̃�)1/2 � E(t0, ∂
 I φ̃�)1/2 +
∫ t

0

∥∥∂
 I (|�|2)∥∥(τ ) dτ.

Simple analysis shows

∥∥∂
 I (|�|2)∥∥ �
∑

|I1|≤|I |
|I2|≤N−5

∥∥∂
 I1�
∥∥∥∥
 I2�

∥∥
L∞ +

∑

|I1|≤|I |
|I2|≤N−6

∥∥
 I1�
∥∥∥∥∂
 I2�

∥∥
L∞

� (C1ε)
2〈t〉−1+δ,

in which we used the estimates from ‖ · ‖I, ‖ · ‖II.
Thus, we have

E(t, ∂
 I φ̃�)1/2 � ε + (C1ε)
2〈t〉δ, |I | ≤ N + 1. (4.22)

Finally, we observe for |I | ≤ N + 1

∥∥
 I φ̃
∥∥ = ∥∥
 I �φ̃�

∥∥ �
∑

|I1|≤N+1

∥∥∂∂
 I1 φ̃�
∥∥ � ε + (C1ε)

2〈t〉δ,

which finishes the proof. ��
Lemma 4.16 The following holds:

∥∥χ1/2(r − t)〈r − t〉
 I φ̃
∥∥ �

{
ε + (C1ε)

2〈t〉1/2+δ, |I | ≤ N − 1,

ε + (C1ε)
2〈t〉δ, |I | ≤ N − 5.

(4.23)

Proof As before, our strategy is to first derive the estimates for φ̃�, and then transform
the estimates to φ̃ via the relation

φ̃ = �φ̃�.

Consider the ∂
 I φ̃� equation in (4.8) with |I | ≤ N − 1, and we apply the energy
estimates in Proposition 3.2 with η = 1 to get

∥∥χ1/2(r − t)〈r − t〉∂∂
 I φ̃�
∥∥ �

∥∥〈r〉∂∂
 I φ̃�(t0, ·)
∥∥

+
∫ t

0

∥∥χ1/2(r − τ)〈r − τ 〉∂
 I
∣∣�

∣∣2∥∥ dτ.

In succession, we have

∥∥χ1/2(r − t)〈r − t〉∂
 I
∣∣�

∣∣2∥∥ �
∑

|I1|≤N−1,|I2|≤N−5

∥∥χ1/2(r − t)〈r − t〉∂
 I1�
∥∥∥∥
 I2�

∥∥
L∞

+
∑

|I1|≤N−1,|I2|≤N−5

∥∥χ1/2(r − t)〈r − t〉
 I1�
∥∥∥∥
 I2�

∥∥
L∞ � (C1ε)

2〈t〉−1/2+δ,
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in which we used the estimates from ‖ · ‖II, ‖ · ‖III, and which further gives us

∥∥χ1/2(r − t)〈r − t〉∂∂
 I φ̃�
∥∥ � ε + (C1ε)

2
∫ t

0
〈τ 〉−1/2+δ dτ

� ε + (C1ε)
2〈t〉1/2+δ, |I | ≤ N − 1.

Thus, the first inequality in (4.23) is verified due to

∥∥χ1/2(r − t)〈r − t〉
 I φ̃
∥∥ = ∥∥χ1/2(r − t)〈r − t〉
 I �φ̃�

∥∥

�
∑

|I1|≤|I |

∥∥χ1/2(r − t)〈r − t〉∂∂
 I1 φ̃�
∥∥

� ε + (C1ε)
2〈t〉1/2+δ, |I | ≤ N − 1.

The case of |I | ≤ N −5 can be derived in the same manner. The proof is complete.
��

Lemma 4.17 We have the following estimates:

∥∥(
1 − χ(r − 2t)

)1/2〈t − r〉
 I φ̃
∥∥ �

(
ε + (C1ε)

2)〈t〉δ, |I | ≤ N . (4.24)

Proof Again, we will first show the bounds for φ̃�, and then pass them to φ̃. We only
consider the region {r ≤ 3t} for large t in the following.

Similar to (4.22), we have

E(t, 
 I φ̃�)1/2 � ε + (C1ε)
2〈t〉δ, |I | ≤ N + 1. (4.25)

Recall that we can obtain some extra decay for the Hessian form of the wave com-
ponents as illustrated in Proposition 3.1, which, for the φ̃� component in Eq. (4.7),
reads

|∂∂φ̃�| � 1

〈t − r〉
(|∂
φ̃�| + |∂φ̃�|) + t

〈t − r〉 |�|2, r ≤ 3t,

in which we used the relation r � t . To proceed, we have

(
1 − χ(r − 2t)

)1/2〈t − r〉|∂∂φ̃�|
�

(
1 − χ(r − 2t)

)1/2(|∂
φ̃�| + |∂φ̃�|) + (
1 − χ(r − 2t)

)1/2
t |�|2.

Taking L2-norm and using the simple triangle inequality yield

∥∥(
1 − χ(r − 2t)

)1/2〈t − r〉|∂∂φ̃�|∥∥ �
∥∥∂
φ̃�

∥∥ + ∥∥∂φ̃�
∥∥ + ∥∥t |�|2∥∥

� ε + (C1ε)
2〈t〉δ,
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in which we used (4.25) in the last step. Thus, we obtain

∥∥(
1 − χ(r − 2t)

)1/2〈t − r〉φ̃∥∥ �
∥∥(
1 − χ(r − 2t)

)1/2〈t − r〉|∂∂φ̃�|∥∥
� ε + (C1ε)

2〈t〉δ.
In the same way [with (4.25)], we get (4.24). The proof is done. ��

Lemma 4.18 The following bounds hold true:

∥∥(
1 − χ(r/2t)

)〈t − r〉1−δ
 J φ̃
∥∥ � ε + (C1ε)

2, |J | ≤ N − 2. (4.26)

Proof Wework with the 
 I φ̃� equation with |I | ≤ N −1. The energy estimates (3.5)
give us

∥∥(
(t − r)−2δχ(t − r) + 1 − χ(t − r)

)1/2
∂
 I φ̃�

∥∥2

� Egst (t0, 

I φ̃�) +

∫ t

t0

∫

R2

∣
∣∣
(
(τ − r)−2δχ(τ − r) + 1 − χ(τ − r)

)

 I |�|2∂t


I φ̃�
∣
∣∣ dxdτ.

We need to bound the above spacetime integral, and we find

∫ t

t0

∫

R2

∣∣∣
(
(τ − r)−2δχ(τ − r) + 1 − χ(τ − r)

)

 I |�|2∂t


I φ̃�
∣∣∣ dxdτ

�
∫ t

t0

∥∥∥
(
(τ − r)−2δχ(τ − r) + 1 − χ(τ − r)

)

 I |�|2

∥∥∥
∥∥∂t


I φ̃�
∥∥ dτ

� C1ε

∫ t

t0

∥∥
∥
(
(τ − r)−2δχ(τ − r) + 1 − χ(τ − r)

)

 I |�|2

∥∥
∥〈τ 〉δ dτ.

We then do the estimates in different regions (note that the relation 1 � 〈t − r〉 � 1
holds when |t − r | � 1), and we proceed to have

∫ t

t0

∥∥∥
(
(τ − r)−2δχ(τ − r) + 1 − χ(τ − r)

)

 I |�|2

∥∥∥〈τ 〉δ dτ

�
∫ t

t0

∥∥〈τ − r〉−2δ
 I |�|2∥∥〈τ 〉δ dτ +
∫ t

t0

∥∥χ(r − τ)
 I |�|2∥∥〈τ 〉δ dτ

=: A1 + A2.

To estimate A1, we utilize the spacetime integral bounds in the ghost weight energy
estimates to get

A1 �
∑

|I1|≤N−1,|I2|≤N−7

∫ t

t0

∥
∥
 I1�

∥
∥
∥
∥〈τ − r〉−2δ
 I2�

∥
∥

L∞〈τ 〉δ dτ

� (C1ε)
2
∫ t

t0
〈τ 〉−1−δ dτ

� (C1ε)
2,
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and we used the estimates from ‖ · ‖VI and Lemma 4.8 in the second step. For the term
A2, we apply the estimates from ‖ · ‖III, ‖ · ‖VI to have

A2 �
∑

|I1|≤N−1,|I2|≤N−8

∫ t

t0

∥∥
 I1�
∥∥∥∥χ(r − τ)
 I2�|∥∥L∞〈τ 〉δ dτ

� (C1ε)
2
∫ t

t0
〈τ 〉−5/4+3δ dτ � (C1ε)

2.

Gathering the above estimates, we arrive at
∥∥(

(t − r)−2δχ(t − r) + 1 − χ(t − r)
)1/2

∂
 I φ̃�
∥∥ � ε + (C1ε)

3/2, |I | ≤ N − 1.

Finally, recall again the estimates for the Hessian of wave component in Proposi-
tion 3.1

∣∣∂∂
 J φ̃�
∣∣ � 1

〈t − r〉
∑

|I |≤|J |+1

∣∣∂
 J φ̃�
∣∣ + 〈t〉

〈t − r〉
∣∣
 J |�|2∣∣, r ≤ 3t,

and we further obtain (for |J | ≤ N − 2)

∥∥(
1 − χ(r/2t)

)〈t − r〉1−δ
 J φ̃
∥∥

�
∥∥(

(t − r)−2δχ(t − r) + 1 − χ(t − r)
)1/2〈t − r〉
 J φ̃

∥∥

�
∑

|J1|≤N−2

∥∥(
(t − r)−2δχ(t − r) + 1 − χ(t − r)

)1/2〈t − r〉∂∂
 J1 φ̃�
∥∥

� ε + (C1ε)
2.

The proof is done. ��

Verification of Norms in Group V

Lemma 4.19 We have for |I | ≤ N − 5

∣∣
 I φ̃
∣∣ �

(
ε + (C1ε)

2)〈t − r〉−1+δ〈t + r〉−1/2,
3t

4
≤ r ≤ 2t . (4.27)

Proof The proof follows from Lemma 4.18 and the weighted Sobolev inequality in
Proposition 2.6. We note that (4.27) is true for r ≤ 1, so in the following, we only
consider r ≥ 1.

For |I | ≤ N − 5, we have (for � ∈ {∂r ,	 = 	12})

〈r〉1/2∣∣(1 − χ(r/2t)
)
χ(1/2 + 2r/t)〈t − r〉1−δ
 I φ̃

∣∣

�
∑

|J |≤2

sup
t≥t0

∥
∥∥�J

((
1 − χ(r/2t)

)
χ(1/2 + 2r/t)〈t − r〉1−δ
 I φ̃

)∥
∥∥.
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Note that the rotation vector field 	 commutes with r , t (see also Proposition 2.6),
which gives us

∑

|J |≤2

∥
∥∥�J

((
1 − χ(r/2t)

)
χ(1/2 + 2r/t)〈t − r〉1−δ
 I φ̃

)∥
∥∥

�
∑

|I1|≤N−2

∥∥
∥
(
1 − χ(r/2t)

)
χ(1/2 + 2r/t)〈t − r〉1−δ
 I1 φ̃

∥∥
∥

+
∑

|I1|≤N−3

∥∥
∥〈t〉−1〈t − r〉1−δ
 I1 φ̃

∥∥
∥

� ε + (C1ε)
2,

which leads us to
∣∣(1 − χ(r/2t)

)
χ(1/2 + 2r/t)〈t − r〉1−δ
 I φ̃

∣∣

�
(
ε + (C1ε)

2)〈r〉−1/2, |I | ≤ N − 5.

The proof is complete by noting 〈t + r〉 � 〈r〉 � 〈t + r〉 when r ≥ 3t/4. ��
Lemma 4.20 The following pointwise bounds are valid:

∣
∣
 I φ̃

∣
∣ �

(
ε + (C1ε)

2)〈t − r〉−1+δ〈t + r〉−1/2, |I | ≤ N − 8. (4.28)

Proof Thanks to the estimates in Lemma 4.19, we only need to show (4.28) holds in
the regions {r ≤ 3t/4} and {r ≥ 2t} for large t .

Case I: {r ≤ 3t/4}. Consider first the 
 J1 φ̃� equations with |J1| ≤ N − 1, and the
energy estimates (2.7) yields

Egst (t, 

J1 φ̃�)1/2 � Egst (t0, 


J1 φ̃�)1/2 +
∫ t

t0

∥∥
 J1 |�|2∥∥ dτ.

We proceed to bound

∥∥
 J1 |�|2∥∥ �
∑

|I1|≤N−1, |I2|≤N−5

∥∥
 I1�
∥∥ ∥∥
 I2�

∥∥
L∞ � (C1ε)

2〈τ 〉−1,

in which we used the estimates from ‖ · ‖II, ‖ · ‖VI. Thus, we have

Egst (t, 

J1 φ̃�)1/2 � ε + (C1ε)

2
∫ t

t0
〈τ 〉−1 dτ � ε + (C1ε)

2〈t〉δ/2, |J1| ≤ N − 1.

Next, we apply the Klainerman–Sobolev inequality in Proposition 2.5 and the com-
mutator estimates in Lemma 2.4 to get

∣∣∂
 J φ̃�
∣∣ �

(
ε + (C1ε)

2)〈t + r〉−1/2+δ/2, |J | ≤ N − 4.
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Then, Proposition 3.1 allows us to obtain extra 〈t −r〉-decay with one more derivative,
that is

∣∣∂∂
 J φ̃�
∣∣ �

(
ε + (C1ε)

2)〈t − r〉−1〈t + r〉−1/2+δ/2, |J | ≤ N − 5.

Finally, recalling the relation φ̃ = �φ̃� gives us

∣∣
 J φ̃
∣∣ = ∣∣
 J �φ̃�

∣∣ �
∑

|I1|≤|J |

∣∣∂∂
 I φ̃�
∣∣

�
(
ε + (C1ε)

2)〈t − r〉−1〈t + r〉−1/2+δ, |J | ≤ N − 5,

and hence, for |J | ≤ N − 5, we have

∣∣
 J φ̃
∣∣ �

(
ε + (C1ε)

2)〈t − r〉−1+δ〈t + r〉−1/2, for r ≤ 3t

4
.

Case II: {r ≥ 2t}. We only pay attention to the region r ≥ 1 as the result is true for
r ≤ 1. Recall the estimates in Lemma 4.16

∥
∥χ1/2(r − t)〈r − t〉
 J φ̃

∥
∥ � ε + (C1ε)

2〈t〉δ, |J | ≤ N − 5,

and this deduces that for large t , it holds

∥
∥χ(−6t/r + 5)〈r − t〉
 J φ̃

∥
∥ � ε + (C1ε)

2〈t〉δ, |J | ≤ N − 5,

in which χ(−6t/r + 5) is 1 for r ≥ 2t , and 0 for r ≤ 3t/2. Then, we apply again the
weighted Sobolev inequality in Proposition 2.6 to derive

χ(−6t/r + 5)〈r − t〉∣∣
 I φ̃
∣∣ �

(
ε + (C1ε)

2)〈r〉−1/2+δ, |I | ≤ N − 8.

Finally, combining the afore-obtained results in Lemma 4.19, we finish the proof.
��

Verification of Norms in Group VI

Lemma 4.21 We have the following uniform bounds:

Egst,1(t, 
 I �̃)1/2 � ε + (C1ε)
3/2, |I | ≤ N − 1,

Egst (t, 
 I φ̃)1/2 � ε + (C1ε)
3/2, |I | ≤ N − 2.

(4.29)

Proof Our strategy is to divide the spacetime region roughly into two parts {r ≥
2t}, {r ≤ 2t}, and then conduct the estimates in different parts.

For the Klein–Gordon part �̃, the energy estimates (2.7) give us for |I | ≤ N − 1

Egst,1(t, 

I �̃)1/2 � Egst,1(t0, 


I �̃)1/2 +
∫ t

t0

∥
∥
 I (φ �)

∥
∥ dτ.
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We have

∫ t

t0

∥∥
 I (φ �)
∥∥ dτ �

∫ t

t0

∥∥χ(r − 2τ)
 I (φ �)
∥∥ dτ +

∫ t

t0

∥∥(
1 − χ(r − 2τ)

)

 I (φ �)

∥∥ dτ

=: A1 + A2.

We next bound these two terms separately. On the one hand, we find

A1 �
∑

|I1|+|I2|≤|I |

∫ t

t0

∥∥χ(r − 2τ)
 I1φ 
 I2�)
∥∥ dτ

�
∑

|I1|≤|I |,|I2|≤N−5

∫ t

t0

∥
∥χ(r − 2τ)〈r − τ 〉
 I1φ

∥
∥

∥
∥〈τ 〉−1
 I2�

∥
∥

L∞ dτ

+
∑

|I1|≤N−8,|I2|≤|I |

∫ t

t0

∥∥χ(r − 2τ)
 I1φ
∥∥

L∞
∥∥
 I2�

∥∥ dτ

� (C1ε)
2
∫ t

t0
〈τ 〉−3/2+2δ dτ � (C1ε)

2,

in which we used the estimates from ‖ · ‖II, ‖ · ‖IV, ‖ · ‖V, and ‖ · ‖VI in the last but
one step. On the other hand, we have

A2 �
∑

|I1|+|I2|≤|I |

∫ t

t0

∥
∥(
1 − χ(r − 2τ)

)

 I1φ 
 I2�

∥
∥ dτ

�
∑

|I1| ≤ |I |
|I2 | ≤ N − 7

∫ t

t0

∥∥(
1−χ(r − 2τ)

)1/2〈r − τ 〉
 I1φ
∥∥ ∥∥(

1−χ(r − 2τ)
)1/2〈r − τ 〉−1
 I2�

∥∥
L∞ dτ

+
∑

|I1| ≤ N − 8
|I2 | ≤ |I |

∫ t

t0

∥∥
∥∥
(
1−χ(r − 2τ)

)1/2 〈r − τ 〉
〈r + τ 〉
 I1φ

∥∥
∥∥

L∞

∥∥
∥∥
(
1−χ(r − 2τ)

)1/2 〈r + τ 〉
〈r − τ 〉
 I2�

∥∥
∥∥ dτ

� (C1ε)
2
∫ t

t0
〈τ 〉−3/2+2δ dτ � (C1ε)

2,

in which we used the estimates from ‖ · ‖I, ‖ · ‖IV, ‖ · ‖V, and Lemma 4.8 in the last
but one step.

Thus, we are led to

Egst,1(t, 

I �̃)1/2 � ε + (C1ε)

2, |I | ≤ N − 1.

For the wave part φ̃, we have, according to the energy estimates (2.6), that

Egst (t, 

I φ̃) � Egst (t0, 


I φ̃) +
∫ t

t0

∫

R2

∣
∣
 I �|�|2 ∂t


I φ̃
∣
∣ dxdτ.
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Recalling the estimates in Lemmas 4.16 and 4.17, for |I | ≤ N − 2, we have

∥
∥〈τ − r〉∂t


I φ̃
∥
∥

�
∥∥χ(r − 2τ)〈τ − r〉∂t


I φ̃
∥∥ + ∥∥(

1 − χ(r − 2τ)
)〈τ − r〉∂t


I φ̃
∥∥ � C1ε〈τ 〉1/2+δ.

Successively, we obtain

∫ t

t0

∫

R2

∣∣
 I �|�|2 ∂t

I φ̃

∣∣ dxdτ

�
∫ t

t0

∥∥〈τ − r〉−1
 I �|�|2∥∥∥∥〈τ − r〉∂t

I φ̃

∥∥ dτ

� C1ε

∫ t

t0
〈τ 〉1/2+δ

∥∥〈τ − r〉−1
 I �|�|2∥∥ dτ.

By the pointwise decay for the Klein–Gordon field � in Lemma 4.8, we get

∑

|I1|≤N−7

∥∥〈τ − r〉−1
 I1�
∥∥

L∞ � C1ε〈τ 〉−2,

which further gives us

∥∥〈τ − r〉−1
 I �|�|2∥∥ �
∑

|I1|≤N−7
|I2|≤N

∥∥〈τ − r〉−1
 I1�
∥∥

L∞
∥∥
 I2�

∥∥ � (C1ε)
2〈τ 〉−2+δ.

Thus, we arrive at

Egst (t, 

I φ̃) � ε2 + (C1ε)

3
∫ t

t0
〈τ 〉−3/2+2δ dτ � ε2 + (C1ε)

3, |I | ≤ N − 2.

The proof is done. ��

Proof of Theorem 1.1

Proof of Proposition 4.6 Gathering the results obtained in Lemmas 4.9–4.21, we get

∥
∥(

�̃, φ̃
)∥∥

X ≤ Cε + C(C1ε)
2.

By choosing large C1 � 1, and sufficiently small ε � 1, such that C1ε � 1, we
arrive at

∥
∥(

�̃, φ̃
)∥∥

X ≤ 1

2
C1ε,

which means that

(
�̃, φ̃

) ∈ X .
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Thanks to the semilinear nature of the system (1.1), we can show (4.6) (we might
further shrink the size of ε) in almost the same manner. To be more concrete, for two
elements (�, φ), (� ′, φ′) ∈ X with (�̃, φ̃) = T (�, φ), (�̃ ′, φ̃′) = T (� ′, φ′), we
need to consider

− �P̃ + P̃ = −φP − q� ′,
− �q̃� = � · P + P · � ′, q̃ = �q̃�,
(
P̃, ∂t P̃, q̃�, ∂t q̃

�
)
(t0) = (0, 0, 0, 0),

(4.30)

in which

P = � − � ′, P̃ = �̃ − �̃ ′,
q = φ − φ′, q̃ = φ̃ − φ̃′.

In view of the analysis in proving Lemmas 4.9–4.21 (and the fact that the initial data
in (4.30) are all zero), we can show (for some constant C)

‖(P̃, q̃)‖X �
(‖(�, φ)‖X + ‖(� ′, φ′)‖X

)‖(P, q)‖X ≤ Cε‖(P, q)‖X , (4.31)

then the smallness of ε ensures (4.6) [recall this ε is from the smallness of initial data,
i.e., (1.3)].

The proof is complete. ��
Proof of Theorem 1.1 The Banach fixed point theorem together with Proposition 4.6
leads us to Theorem 1.1. ��

5 Scattering

In this section, we briefly discuss about the scattering of the Klein–Gordon–Zakharov
system (1.1) in R

1+2. We show that the Klein–Gordon field E scatters to a linear
Klein–Gordon equation in its high-order energy space (i.e., ‖E‖H N−7 + ‖∂t E‖H N−8 ),
but whether the wave field n scatters (linearly or nonlinearly) is unknown. We also
note that this is different from the scattering result obtained in [18] for Klein–Gordon–
Zakharov equations in R

1+3, where the initial data are assumed to lie in the low
regularity space and different difficulties arise.

We need one key fundamental result from [24] (Lemma 6.12 there), which origi-
nally provides a sufficient condition for the linear scattering of wave equations, but it
extends to Klein–Gordon cases with similar proof. We now give the statement of the
fundamental result and its proof can be found in either [24] or Appendix A.

Lemma 5.1 Consider the Klein–Gordon equation

− �u + u = Q(t, x),
(
u, ∂t u

)
(t0 = 0) = (u0, u1).
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If it holds (with N1 ≥ 1 an integer)

∫ +∞

0
‖Q(τ, ·)‖H N1 dτ < +∞, (5.1)

then there exist (u+
0 , u+

1 ) ∈ H N1+1 × H N1 and a free Klein–Gordon component u+
satisfying

− �u+ + u+ = 0,
(
u+, ∂t u

+)
(t0 = 0) = (u+

0 , u+
1 ),

such that u scatters to u+, that is

‖(u − u+)(t)‖H N1+1 + ‖∂t (u − u+)(t)‖H N1

≤ C
∫ +∞

t
‖Q(τ, ·)‖ dτ → 0, as t → +∞. (5.2)

Remark 5.2 By Lemma 5.1 and the results obtained in [7], we know that the Klein–
Gordon–Zakharov equations enjoy linear scattering in R

1+3, which was also shown
in [35] with high regular initial data. But again, we want to emphasize that there
are different difficulties arising in obtaining scattering results for data lying in low
regularity space as studied in [18] on Klein–Gordon–Zakharov equations.

Proof of Theorem 1.6 According to Lemma 5.1, we only need to verify

∥∥nE
∥∥

H N−8 � (C1ε)
2〈t〉−5/4. (5.3)

By the definition of the ‖ · ‖X norm in (4.3) (more precisely ‖ · ‖I, ‖ · ‖V), we find
∥∥nE

∥∥
H N−8 �

∑

|J |≤N−8

∥∥
 J (nE)
∥∥

�
∑

|J1|,|J2|≤N−8

∥
∥∥
〈t − r〉
〈t + r〉


J1n
∥
∥∥

L∞

∥
∥∥
〈t + r〉
〈t − r〉


J2 E
∥
∥∥

� (C1ε)
2〈t〉−3/2+2δ.

By the smallness of δ, we thus arrive at (5.3), and hence Theorem 1.6. ��
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Appendix A: Proof of Lemma 5.1

By the linear theory on wave equations, the free-linear Klein–Gordon equation gen-
erates a strongly continuous semi-group acting on H N1+1 × H N1 as follows (with
N1 ≥ 1 an integer). Let (u0, u1) ∈ H N1+1 × H N1 . Then, the Cauchy problem

−�u + u = 0, u(0, x) = u0(x), ∂t u(0, x) = u1(x)

generates a unique global solution (u(x), ∂t u(x)) ∈ C([0,∞), H N1+1 × H N1) ∩
C1([0,∞), H N1 × H N1−1) (a detailed proof can be found in [38]). This leads to

S1(t) : (u0, u1) �→ (
u(t, ·), ∂t u(t, ·)) ∈ H N1+1 × H N1,

with (T below means the transpose of a matrix)

S1(t)(u0, u1) =
(

etA1

(
u0
u1

))T

, A1 =
(

0 1
� − 1 0

)
.

By energy identity, S1(t) is unitary for all t ≥ 0. By the invariance under time trans-
lation and global uniqueness

S1(t + s) = S1(t) ◦ S1(s).

By the fact that (u(x), ∂t u(x)) ∈ C([0,∞), H N1+1 × H N1)

S1(t) : (u0, u1) �→ (u, ∂t u) in H N1+1 × H N1 .

That is, S1(t) is a strongly continuous semi-group. Next, we consider a non-
homogeneous case

− �u + u = Q(t, x),
(
u, ∂t u

)
(t0 = 0) = (u0, u1),

(A.1)

where Q(t, ·) is supposed to be in L1([0,∞), H N1). This equation has a unique global
solution inC([0,∞), H N1+1×H N1)∩C1([0,∞), H N1 ×H N1−1) (see also a detailed
proof in [38]). By Duhamel’s principle (which is guaranteed by the strong continuity
of S1(t)), the associated global solution can be written as

(u, ∂t u)(t) = S1(t)(u0, u1) +
∫ t

0
S1(t − τ)(0, Q(τ ))dτ.
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Inspired by this formula, we set the initial data (u+
0 , u+

1 ) to be

(u+
0 , u+

1 ) = (u0, u1) +
∫ +∞

0
S1(−τ)(0, Q(τ, x)) dτ, (A.2)

which is well defined in H N1+1 × H N1 as long as

∫ +∞

0
‖Q(τ, x)‖H N1 dτ < +∞.

Then, we observe that

∥∥(u, ∂t u) − S1(t)(u
+
0 , u+

1 )
∥∥

H N1+1×H N1 =
∥
∥∥
∥

∫ +∞

t
S1(t − τ)(0, Q(τ, x)) dτ

∥
∥∥
∥

H N1+1×H N1

�
∫ +∞

t

∥
∥Q(τ, x)

∥
∥

H N1 dτ, (A.3)

which finishes the proof of Lemma 5.1.
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