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Abstract
We study connections among the ADMmass, positive harmonic functions, and capac-
ity of the boundary on asymptotically flat 3-manifolds of nonnegative scalar curvature.
We start with new formulae detecting the mass via positive harmonic functions. Then
we derive a family of monotone quantities and geometric inequalities assuming the
manifold has simple topology. As a first application, we observe several additional
proofs of the 3-dimensional Riemannian positive mass theorem. One proof leads to
new, sufficient conditions implying positivity of the mass via C0-geometry of regions
separating the boundary and ∞. A special case of such conditions shows if a region
enclosing the boundary has relative small volume, then the mass is positive. As fur-
ther applications, we obtain integral identities for the mass-to-capacity ratio. We also
promote the inequalities to become equality on Schwarzschild manifolds outside rota-
tionally symmetric spheres. Among other things, we show the mass-to-capacity ratio
is always bounded below by one minus the square root of the normalized Willmore
functional of the boundary. Prompted by these findings, we carry out a study of mani-
folds satisfying a constraint on the mass-to-capacity ratio in the context of the Bartnik
quasi-local mass.
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Mathematics Subject Classification Primary 53C21; Secondary 83C99

1 Introduction and Statement of Results

On an asymptotically flat 3-manifold (M, g), the ADMmass [3] is a flux integral near
∞ given by

The author’s research was partially supported by NSF grant DMS-1906423.

B Pengzi Miao
pengzim@math.miami.edu

1 Department of Mathematics, University of Miami, Coral Gables, FL, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42543-023-00071-7&domain=pdf
http://orcid.org/0000-0001-7235-5917


P. Miao

m = lim
r→∞

1

16π

∫
|x |=r

∑
j,k

(g jk, j − g j j,k)ν
k .

Here {xi }1≤i≤3 is a coordinate chart defining the asymptotic flatness of (M, g) and
ν = |x |−1x denotes the coordinate unit normal to {|x | = r}. By a result of Bartnik
[4], and of Chruściel [11], m is independent on the choice of the coordinates {xi }.

On an asymptotically flat 3-manifold (M, g) with boundary �, the capacity (or the
L2-capacity) of � is given by

c� = inf

{
1

4π

∫
M

|∇ f |2
}

,

where the infimum is taken over all locally Lipschitz functions f that equal 1 at �

and tend to 0 at ∞. Equivalently, c� = 1

4π

∫
M

|∇φ|2 = 1

4π

∫
�

|∇φ|, where

�φ = 0, φ|� = 1, and φ → 0 at ∞.

Regarding the mass, a fundamental result is the Riemannian positive mass theorem,
first proved by Schoen andYau [27] and byWitten [31]. The theorem states if (M, g) is
a complete, asymptotically flat 3-manifold with nonnegative scalar curvature, without
boundary, then

m ≥ 0,

and equality holds if and only if (M, g) is isometric to the Euclidean space R3.
Regarding the mass and the capacity, an important result was due to Bray [6]. Bray

showed if (M, g) is a complete, asymptotically flat 3-manifoldwith nonnegative scalar
curvature, with minimal surface boundary � = ∂M , then

m ≥ c� ,

and equality holds if and only if (M, g) is isometric to a spatial Schwarzschildmanifold
outside the horizon.

If the mean curvature H of the boundary � in (M, g) is not assumed to be zero,
using the weak inverse mean curvature flow developed by Huisken and Ilmanen [17],
Bray and the author [8] showed

mc−1
�

≥ 1 −
(

1

16π

∫
�

H2
) 1

2

under the assumptions
∫
�
H2 ≤ 16π and H2(M, �) = 0, and equality holds if and

only if (M, g) is isometric to a spatial Schwarzschild manifold outside a rotationally
symmetric sphere with nonnegative (constant) mean curvature.
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Recently, level sets of harmonic functions have been found to be an efficient tool
to study scalar curvature in 3-dimension. A pioneering work of Stern [30] revealed
intriguing analogy between the use of such level sets and the use of stable minimal
surfaces instituted by Schoen and Yau [27]. On asymptotically flat 3-manifolds, a new
proof of the positive mass theorem was given by Bray, Kazaras, Khuri and Stern [7],
which made use of harmonic functions asymptotic to a linear coordinate function.

In terms of monotone quantities along the level sets, Munteanu and Wang in [25]
established sharp comparison results on complete, nonparabolic 3-manifolds via the
discovery of a monotone quantity along level sets of the minimal positive Green’s
function. In [2], Agostiniani, Mazzieri and Oronzio obtained another proof of the
Riemannian positive mass theorem through a different monotone quantity along level
sets of the Green’s function on asymptotically flat 3-manifolds.

In this paper, we consider harmonic functions u satisfying

u(x) = 1 − c|x |−1 + o(|x |−1), as x → ∞,

for some constant c > 0, on an asymptotically flat 3-manifold (M, g). In the case
(M, g) has boundary � and u is 0 at �, c = c� and u is referred as the capacitary
function on (M, g). We obtain a sequence of new results relating the mass of (M, g),
the capacitary function u, and the capacity c� .

We first find formulae that detect the mass of (M, g) via the level sets of such a u,
see Theorem 2.1. In particular, Theorem 2.1 (ii) implies

lim
t→1

1

1 − t

[
4π − 1

(1 − t)2

∫
�t

|∇u|2
]

= 4π mc−1. (1.1)

Here �t = u−1(t).
Besides (1.1), in Theorem 2.1 (i), we find

lim
t→1

1

1 − t

[
8π − 1

1 − t

∫
�t

H |∇u|
]

= 12π mc−1. (1.2)

Here H denotes the mean curvature of a regular level set�t with respect to |∇u|−1∇u.
An immediate implication of either (1.1) or (1.2) is that the ADM mass m is a

geometric invariant of (M, g), since the capacitary function and the boundary capacity
are independent on the choice of coordinates at ∞.

(1.1) and (1.2) indicate that, as t → 1,

8π − 1

1 − t

∫
�t

H |∇u| = 3

[
4π − 1

(1 − t)2

∫
�t

|∇u|2
]

+ o ((1 − t)) .

While this asymptotic comparison was made only via information near ∞, we show
in Theorem 3.1 that, if M has simple topology and g has nonnegative scalar curvature,
then, at each regular level set �t ,
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8π − 1

1 − t

∫
�t

H |∇u| ≤ 3

[
4π − 1

(1 − t)2

∫
�t

|∇u|2
]

, (1.3)

and “=” holds if and only if (M, g) outside �t is isometric to R3 minus a round ball.
Inequality (1.3) is derived via a monotone quantity along {�t }, see Lemma 3.1.

Among other things, we apply (1.3) to find that the quantities in the mass formulae
(1.1) and (1.2) are actually monotone non-decreasing, that is

A(t) := 1

1 − t

[
8π − 1

1 − t

∫
�t

H |∇u|
]

↗ as t ↗, (1.4)

and

B(t) := 1

1 − t

[
4π − 1

(1 − t)2

∫
�t

|∇u|2
]

↗ as t ↗, (1.5)

see Theorem 3.2. This, combined with Theorem 2.1, then shows

8π −
∫

�

H |∇u| ≤ 12π mc−1
�

(1.6)

and

4π −
∫

�

|∇u|2 ≤ 4π mc−1
�

(1.7)

for the capacitary function u. Furthermore, “=” holds in any of these inequalities if
and only if (M, g) is isometric to R3 minus a round ball.

As an immediate application of (1.1)–(1.7), we observe several new arguments
implying the 3-dimensional positive mass theorem, see Sect. 4.

Inequalities (1.6) and (1.7) also give rise to sufficient conditions that imply the
positivity of the mass viaC0-geometry of regions separating the boundary and∞. For
instance, as a special case of Theorem 5.1, we show that if M has simply topology
and g has nonnegative scalar curvature, then

H ≤ 8πL2

Vol(�)
�⇒ m > 0. (1.8)

Here� is a region whose boundary has two components S0 and S1, where S1 encloses
S0 and S0 encloses �, L is the distance from S1 to S0, and Vol(�) is the volume of
(�, g). Another such sufficient condition in Theorem 5.2 shows

∫
S0

|∇v|2 ≤ 4π �⇒ m > 0. (1.9)

Here v is the harmonic function on � with v = 0 at S0 and v = 1 at S1.
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In [2], Agostiniani, Mazzieri and Oronzio showed, along {�t },

F(t) := 1

1 − t

[
4π − 1

1 − t

∫
�t

H |∇u| + 1

(1 − t)2

∫
�t

|∇u|2
]

↗ as t ↗ .

(1.10)

We observe that A(t), B(t) in our work are related to F(t) related by

F(t) = A(t) − B(t). (1.11)

In (A.14) and (A.15) of Appendix A, we give integral identities for the differences

B(t2) − B(t1), A(t2) − A(t1), for t1 < t2.

The monotonicity of F(t) can also be seen from (1.11), (A.14) and (A.15). Moreover,
as a corollary of (1.1), (1.2) and (1.11), one has limt→1 F(t) = 8π mc−1

�
. Such a

limit was shown in [2] in the case that (M, g) is isometric to a spatial Schwarzschild
manifold near infinity.

Applying the limits of A(t), B(t) as t → 1 and the formulae of their differences
at t1 < t2, we derive integral identities for the mass-to-capacity ratio mc−1

�
in Theo-

rem 6.1. Such integral identities can be compared with the mass identity obtained by
Bray, Kazaras, Khuri and Stern [7] via harmonic functions having linear asymptotic.

Inspired by Bray’s work [6], in Sect. 7 we promote inequalities (1.3), (1.6) and (1.7)
to become equality in spatial Schwarzschild spaces. Among other things, we show in
Corollary 7.1 that

(
1

π

∫
�

|∇u|2
) 1

2 ≤
(

1

16π

∫
�

H2
) 1

2 + 1. (1.12)

Moreover, equality holds if and only if (M, g) is isometric to a spatial Schwarzschild
manifold outside a rotationally symmetric sphere with nonnegative mean curvature.
In Theorem 7.3, we show, given the same triple (M, g, u),

1

2
mc−1

�
≥ 1 −

(
1

4π

∫
�

|∇u|2 dσ
) 1

2

, (1.13)

and equality holds if and only if (M, g) is isometric to a spatial Schwarzschildmanifold
outside a rotationally symmetric sphere. As a result of (1.12) and (1.13), we obtain in
Theorem 7.4

mc−1
�

≥ 1 −
(

1

16π

∫
�

H2
) 1

2

, (1.14)

regardless of the mean curvature H of �. (1.14) improves the earlier mentioned result
of Bray and the author in [8]. Moreover, if applied to the exterior of small geodesic
balls, (1.14) yields another proof of the positive mass theorem, see Remark 7.1.
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Prompted by (1.14), in Sect. 8 we carry out a study of manifolds with boundary
satisfying a mass-capacity relation

mc−1
�

≤ 1. (1.15)

Under this assumption, in Theorem 8.1 we promote (1.6) to

(2 − mc−1
�

)(1 − mc−1
�

) ≤ 1

4π

∫
�

H |∇u|, (1.16)

which picks up an intriguing quadratic term (mc−1
�

)2. Equality in (1.16) holds if and
only if (M, g) is isometric to a spatial Schwarzschild manifold outside a rotationally
symmetric sphere with nonnegative mean curvature.

In Corollary 8.1, we give a capacity-comparison result for manifolds satisfying
(1.15) under a condition

mHmax ≤ 2

3
√
3
.

Here Hmax is the maximum of the mean curvature of the boundary and the number
2

3
√
3
is the maximum value of mH evaluated along rotationally symmetric spheres in

a spatial Schwarzschild manifold with positive mass.
In Corollary 8.2, we show manifolds satisfying (1.15) have the mass bounded by

m ≤ r�

2

[
1 +

(
1

16π

∫
�

H2
) 1

2
]

, (1.17)

where r� is the area–radius of �. Moreover, the capacitary functions u on these
manifolds satisfy

∫
�

|∇u|2 ≥ π. (1.18)

Heuristically, this suggests such manifolds may not have long cylindrical regions
shielding the boundary, see Remark 8.6.

Toward the end of Sect. 8, we place condition (1.15) in the context of the Bartnik
quasi-local mass [5]. We point out manifolds satisfying (1.15) do not contain closed
minimal surfaces enclosing the boundary and static metric extensions with a positive
static potential necessarily satisfy (1.15), see Proposition 8.1.

We finish this paper with an appendix, including regularization arguments that can
be used to verify various monotonicity in Sect. 3.
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2 Detecting theMass at∞
Let (M, g) denote an asymptotically flat 3-manifold (with one end) with boundary.
By this, we mean there is a compact set K ⊂ M such that M\K is diffeomorphic to
R
3 minus a ball and, with respect to the standard coordinates on R

3, g satisfies

gi j = δi j + O(|x |−τ ), ∂gi j = O(|x |−τ−1), ∂∂gi j = O(|x |−τ−2) (2.1)

for some constant τ > 1
2 . The scalar curvature R of g is also assumed to be integrable

so that the mass m of (M, g) exists (see [4, 11] for instance).
Let � denote the boundary of M . Let u be the function on (M, g) given by

�u = 0 on M, u = 0 at �, and u → 1 at ∞. (2.2)

Given any t ∈ [0, 1], let �t = {x ∈ M | u(x) = t} denote the level set of u. Below,
we collect some basic facts about u and �t .

By the maximum principle, maxK u < 1, hence |x | is defined on �t for t close to
1; moreover, min�t |x | → ∞ as t → 1. Now suppose τ ∈ ( 12 , 1). As x → ∞, it is
known u has an asymptotic expansion (see Lemma A.2 in [22] for instance)

u = 1 − c� |x |−1 + O2(|x |−1−τ ). (2.3)

Here c� > 0 is a positive constant equal to the capacity of � in (M, g). Let ∇u and
∇2u denote the gradient and the Hessian of u on (M, g), respectively. By (2.3),

|∇u|2 = c2
�
|x |−4 + O(|x |−4−τ ), (2.4)

(∇2u)i j = c� |x |−3(−3|x |−2xi x j + δi j
) + O(|x |−3−τ ). (2.5)

Thus, t is a regular value if t is close to 1 and the mean curvature H of �t satisfies

H = div
(|∇u|−1∇u

) = 2|x |−1 + O(|x |−1−τ ). (2.6)

As a result, for t close to 1, �t has positive mean curvature, and consequently �t

is area outer-minimizing as its exterior is foliated by mean-convex surfaces {�s}s>t .
Here we say a surface S is area outer-minimizing if every surface S̃ which encloses S
has greater area, see [6] for instance.

Lemma 2.1 Let |�t | be the area of �t in (M, g) if t is a regular value of u. Then, as
t → 1,

|�t | = 4πc2
�
(1 − t)−2 + O((1 − t)τ−2). (2.7)

Proof By (2.3), as t → 1,

|x | = c� (1 − t)−1 + O((1 − t)τ−1). (2.8)
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Let r−(t) = min�t |x | and r+(t) = max�t |x |. Since �t and the coordinate sphere
Sr := {|x | = r} are both area outer-minimizing in (M, g), for t close to 1 and large r ,
respectively, we have

|Sr−(t)| ≤ |�t | ≤ |Sr+(t)|. (2.9)

For large r , (2.1) implies

|Sr | = 4πr2 + O(r2−τ ). (2.10)

Thus, (2.7) follows from (2.8)–(2.10). �
Lemma 2.2 As t → 1,

1

(1 − t)

∫
�t

H |∇u| = 8π + O((1 − t)τ )

and

1

(1 − t)2

∫
�t

|∇u|2 = 4π + O((1 − t)τ ).

Proof By (2.6) and (2.8),

H = 2c−1
�

(1 − t) + O((1 − t)1+τ ). (2.11)

Therefore, using the fact
∫
�t

|∇u| = 4πc� , one has

(
1

1 − t

∫
�t

H |∇u|
)

− 8π =
∫

�t

(
H

1 − t
− 2

c�

)
|∇u|

= O((1 − t)τ ).

Similarly, by (2.4) and (2.8),

|∇u| = c−1
�

(1 − t)2 + O((1 − t)2+τ ). (2.12)

Therefore,

(
1

(1 − t)2

∫
�t

|∇u|2
)

− 4π =
(∫

�t

|∇u|
(1 − t)2

− 1

c�

)
|∇u|

= O((1 − t)τ ).

�
Lemma 2.3 As t → 1, the gradient of |∇u| on �t satisfies

∣∣∇�t
|∇u|∣∣ = O(|x |−3−τ ). (2.13)
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Proof Write ∇u = (∇u) j∂ j . By (2.3),

(∇u) j = c� |x |−2|x |−1x j + O(|x |−2−τ ).

Let V = V i∂i denote any unit vector tangent to �t . Then V i = O(1) and the fact
〈V ,∇u〉 = 0 shows

∑
i

V i (∇u)i = O(|x |−2−τ ), and hence
∑
i

V i xi = O(|x |1−τ ). (2.14)

Therefore, by (2.5) and (2.14),

V (|∇u|2) = 2(∇2u)(V ,∇u)

= 2c� |x |−3[−3|x |−2xi V
i x j (∇u) j + δi j V

i (∇u) j
](
1 + O(|x |−τ )

)
= O(|x |−5−τ ). (2.15)

Thus, (2.13) follows from (2.15) and (2.4). �
Lemma 2.4 As t → 1, the traceless part of the second fundamental form II of �t ,
denoted by I̊I, satisfies

|I̊I| = O(|x |−1−τ ), (2.16)

and the Gauss curvature K of �t satisfies K = |x |−2 + O(|x |−2−τ ).

Proof Let V = V i∂i and W = W j∂ j be any two unit vectors tangent to �t at a given
point. Then δi j V iW j = g(V ,W )+ O(|x |−τ ). As V ,W are tangential to �t , one has

∇2u(V ,W ) = 〈∇V∇u,W 〉 = |∇u|II(V ,W ).

Hence,

|∇u| II(V ,W ) = (∇2u)i j V
iW j

= c� |x |−3(−3|x |−2xi V
i x jW

j + δi j V
iW j )(1 + O(|x |−τ )

)
= c� |x |−3g(V ,W ) + O(|x |−3−τ ), (2.17)

where one used (2.5) and (2.14). Therefore, by (2.4),

II(V ,W ) = |x |−1g(V ,W ) + O(|x |−1−τ ). (2.18)

This combined with (2.6) shows

I̊I(V ,W ) = II(V ,W ) − 1

2
Hg(V ,W ) = O(|x |−1−τ ),
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which proves (2.16). The conclusion on the Gauss curvature follows from (2.18), (2.6)
and the Gauss equation. �
Lemma 2.5 If (M, g) satisfies ∂∂∂gi j = O(|x |−3−τ ) in (2.1), then

|D I̊I| = O(|x |−2−τ ). (2.19)

Here D denotes covariant differentiation on �t .

Proof If g satisfies the higher order derivatives decay assumption, then u satisfies

u = 1 − c� |x |−1 + O3(|x |−1−τ )

(see the proof of Lemma A.2 in [22] for instance). The terms O(|x |−3−τ ) in (2.5) and
O(|x |−1−τ ) in (2.6) are then replaced by O1(|x |−3−τ ) and O1(|x |−1−τ ), respectively.

To prove (2.19), let {Vα}α=1,2 be a local orthonormal frame around a given point
p on �t . By definition,

(DVμ I̊I)(Vα, Vβ) = (
DVμII

)
(Vα, Vβ) − 1

2
Vμ(H)δαβ.

By (2.6) and (2.14),

Vμ(H) = 2(−1)|x |−2Vμ(|x |) + O(|x |−2−τ ) = O(|x |−2−τ ).

To estimate DII, one may assume {Vα} is normal at p, i.e., DVαVβ = 0 at p, then

(DVμII)(Vα, Vβ) = Vμ(II(Vα, Vβ))

= Vμ(|∇u|−1) (∇2u)αβ + |∇u|−1 Vμ

(
(∇2u)αβ

)
.

By (2.13) and (2.17),

Vμ(|∇u|−1) (∇2u)αβ = O(|x |−2−τ ).

By (2.17) and (2.14),

|∇u|−1 Vμ

(
(∇2u)αβ

) = |∇u|−1 O(|x |−4−τ ) = O(|x |−2−τ ).

Thus, (DVμII)(Vα, Vβ) = O(|x |−2−τ ). This proves (2.19). �
Let mH (�t ) denote the Hawking mass [14] of �t if t is a regular value of u. That

is

mH (�t ) = rt
2

(
1 − 1

16π

∫
�t

H2
)

. (2.20)

123



Mass, Capacitary Functions, and the Mass-to-Capacity Ratio

Here rt =
√

|�t |
4π is the area–radius of �t . By Lemma 2.1,

rt = c� (1 − t)−1 + O((1 − t)τ−1). (2.21)

Proposition 2.1 If limt→1mH (�t ) = m, where m is the mass of (M, g), then

lim
t→1

1

1 − t

[
8π − 1

1 − t

∫
�t

H |∇u|
]

= 12π mc−1
�

(2.22)

and

lim
t→1

1

1 − t

[
4π − 1

(1 − t)2

∫
�t

|∇u|2
]

= 4π mc−1
�

. (2.23)

Proof For regular values t , define

A(t) = 8π − 1

1 − t

∫
�t

H |∇u|. (2.24)

Then

−A′(t) = 1

1 − t

[
−A(t) + 8π +

(∫
�t

H |∇u|
)′ ]

.

Applying formulae for the first and second variation of area, we have

(∫
�t

H |∇u|
)′

=
∫

�t

H ′|∇u| + H |∇u|′ + H |∇u|H |∇u|−1

=
∫

�t

−|∇u|−2
∣∣∇�t

|∇u|∣∣2 + K − 3

4
H2 − 1

2
|I̊I|2 − 1

2
R,

(2.25)

where |∇u|′ = −H and H ′ = −��t |∇u|−1 − (Ric(ν, ν) + |II|2)|∇u|−1.
By (2.20) and the Gauss–Bonnet theorem,

8π +
(∫

�t

H |∇u|
)′

= 24πmH (�t )

rt
− E(t), (2.26)

where

E(t) =
∫

�t

|∇u|−2|∇� |∇u||2 + 1

2
|I̊I|2 + 1

2
R.
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Therefore,

− A′(t) = − A(t)

1 − t
+ 24πmH (�t )

(1 − t)rt
− 1

1 − t
E(t). (2.27)

By Lemma 2.2, limt→1 A(t) = 0. Hence,

A(t) = 1

1 − t

∫ 1

t

[
24πmH (�s)

rs
− E(s)

]
. (2.28)

As t → 1, mH (�t ) = m + o(1) by the assumption. Thus, by (2.21),

mH (�t )

rt
= mc−1

�
(1 − t) + (1 − t)o(1). (2.29)

Consequently,

∫ 1

t

mH (�s)

rs
= 1

2
mc−1

�
(1 − t)2 + o((1 − t)2). (2.30)

To estimate
∫ 1
t E(s), we note Lemmas 2.3 and 2.4, combined with (2.8), show

|∇u|−2
∣∣∇� |∇u|∣∣2 + 1

2
|I̊I|2 = O(|x |−2−2τ ) = O((1 − t)2+2τ ).

Thus, by Lemma 2.1,

∫
�t

|∇u|−2
∣∣∇� |∇u|∣∣2 + 1

2
|I̊I|2 = O((1 − t)2τ ). (2.31)

Therefore,

∫ 1

t

∫
�s

|∇u|−2
∣∣∇� |∇u|∣∣2 + 1

2
|I̊I|2 = O((1 − t)1+2τ ). (2.32)

To handle the scalar curvature term, we use the assumption R is integrable. As t → 1,

o(1) =
∫
u≥t

|R| =
∫ 1

t

∫
�s

|R||∇u|−1,

where we also used the coarea formula. By (2.12), |∇u|−1 ≥ 1
2 c� (1− t)−2 for t close

to 1. Hence,

∫ 1

t

∫
�s

|R||∇u|−1 ≥ 1

2
c� (1 − t)−2

∫ 1

t

∫
�s

|R|.
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These imply

∫ 1

t

∫
�s

|R| = o((1 − t)2). (2.33)

It follows from (2.28), (2.30), (2.32) and (2.33) that

1

1 − t
A(t) = 12π mc−1

�
+ o(1) + O((1 − t)2τ−1). (2.34)

Since τ > 1
2 , this proves (2.22).

Similarly, define

B(t) = 4π − 1

(1 − t)2

∫
�t

|∇u|2. (2.35)

At any regular value t ,

−B ′(t) = 1

1 − t

[
2(−B(t) + 4π) + 1

1 − t

(
−
∫

�t

H |∇u|
)]

= 1

1 − t
[−2B(t) + A(t) ] .

(2.36)

By Lemma 2.2, limt→1 B(t) = 0. Thus,

B(t) = 1

(1 − t)2

∫ 1

t
(1 − s)A(s).

Therefore, as t → 1, by (2.34),

1

1 − t
B(t) = 4π mc−1

�
+ o(1) + O((1 − t)2τ−1).

This proves (2.23). �
Theorem 2.1 Let (M, g) be an asymptotically flat 3-manifold with boundary �, with
∂∂∂gi j = O(|x |−3−τ ) at ∞. Let u be the harmonic function that tends to 1 at ∞ and
vanishes at �. Then

(i) lim
t→1

1

1 − t

[
8π − 1

1 − t

∫
�t

H |∇u|
]

= 12π mc−1
�

;

(ii) lim
t→1

1

1 − t

[
4π − 1

(1 − t)2

∫
�t

|∇u|2
]

= 4π mc−1
�

.

Here m is the mass of (M, g) and c� is the capacity of � in (M, g).
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Proof It suffices to show limt→1mH (�t ) = m. For t close to 1, let r−(t) = min�t |x |
and r+(t) = max�t |x |. By (2.8), r+(t) ≤ Cr−(t). Here and below, C > 0 denotes
some constant independent on t . By Lemma 2.1, |�t | ≤ Cr2−. By Lemma 2.4, K ≥
Cr−2− , hence diam(�t ) ≤ Cr−. By Lemmas 2.4 and Lemma 2.5, |I̊I| ≤ Cr−1−τ− and
|DI̊I| ≤ Cr−2−τ− . Hence, {�t } is a family of nearly round surfaces near ∞ in (M, g)
according to Definition 1.3 in [29]. By Theorem 2 in [29], limt→1mH (�t ) = m.

Theorem 2.1 now follows from Proposition 2.1. �
We can indeed interpret the mass-to-capacity ratio as the derivatives at ∞ of the

two functions

A(t) = 8π − 1

1 − t

∫
�t

H |∇u| and B(t) = 4π − 1

(1 − t)2

∫
�t

|∇u|2. (2.37)

Corollary 2.1 Let (M, g) be an asymptotically flat 3-manifold with boundary �, with
∂∂∂gi j = O(|x |−3−τ ) at ∞. Let u be the harmonic function that tends to 1 at ∞ and
vanishes at �. Then the functions A(t) and B(t) have C1 extensions to t = 1 with

A(1) = 0, A′(1) = −12π mc−1
�

, B(1) = 0, B ′(1) = −4π mc−1
�

.

Proof By Lemma 2.2, A(t) and B(t) extend continuously to t = 1 with A(1) = 0 and
B(1) = 0. By Theorem 2.1 (i), (2.27), (2.29) and (2.31),

lim
t→1

A′(t) = lim
t→1

[
1

1 − t
A(t) − 24πmH (�t )

(1 − t)rt
+ 1

1 − t
E(t)

]

= 12π mc−1
�

− 24π mc−1
�

= lim
t→1

1

t − 1
A(t).

Similarly, by Theorem 2.1 (i), (ii) and (2.36),

lim
t→1

B ′(t) = lim
t→1

1

1 − t
[2B(t) − A(t)] = −4π mc−1

�
= lim

t→1

1

t − 1
B(t).

This shows A′(t) and B ′(t) are continuous at t = 1 with A′(1) = −12π mc−1
�

and
B ′(1) = −4π mc−1

�
. �

Remark 2.1 Proofs in this section essentially only use the structure near ∞ of (M, g).
The arguments indeed establish (1.1) and (1.2) for any harmonic function u, satisfying

u(x) = 1 − c|x |−1 + o(|x |−1), as x → ∞,

for some constant c > 0. Another way to see this is to derive (1.1) and (1.2) as a
corollary of Theorem 2.1. For instance, we may assume 0 < u < 1 on {|x | ≥ r}
for some large r . Let T be a regular value of u so that max|x |=r u < T < 1. On
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MT = {u ≥ T }, consider uT = 1
1−T (u − T ), which is the capacitary function on

(MT , g). By Theorem 2.1 (ii),

lim
s→1

1

1 − s

[
4π − 1

(1 − s)2

∫
{uT =s}

|∇uT |2
]

= 4π mc−1
T

, (2.38)

where cT = 1
1−T c is the capacity of {u = T }. Re-writing (2.38) in terms of u, we then

obtain (1.1). Similarly, (1.2) follows from Theorem 2.1 (i).

3 Inequalities Along the Level Sets

In this section, we establish a family of geometric inequalities along {�t } under
assumptions that g has nonnegative scalar curvature and M has simple topology.

We first compare

A(t) = 8π − 1

1 − t

∫
�t

H |∇u| and B(t) = 4π − 1

(1 − t)2

∫
�t

|∇u|2.

Theorem 3.1 Let (M, g) be a complete, orientable, asymptotically flat 3-manifold
with boundary �. Suppose � is connected and H2(M, �) = 0. Let u be the harmonic
function that tends to 1 at∞ and vanishes at�. If g has nonnegative scalar curvature,
then

4π + 1

1 − t

∫
�t

H |∇u| ≥ 3

(1 − t)2

∫
�t

|∇u|2 (3.1)

for all regular values t , and equality holds at some t if and only if (M, g), outside �t ,
is isometric to R3 minus a round ball.

In particular, at �,

4π +
∫

�

H |∇u| ≥ 3
∫

�

|∇u|2, (3.2)

and equality holds if and only if (M, g) is isometric to R3 minus a round ball.

Remark 3.1 Inequality (3.1) is equivalent to

A(t) ≤ 3B(t). (3.3)

We will use Theorem 3.1 in this form later to derive other inequalities along {�t }.
Remark 3.2 To the author’s knowledge, inequality (3.2) represents a new result even
in the 3-dimensional Euclidean space.

To prove Theorem 3.1, we begin with a lemma which may be derived directly from
the work of Stern in [30].
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Lemma 3.1 Let (�, g) be a compact, orientable, Riemannian 3-manifoldwith nonneg-
ative scalar curvature, with boundary ∂�. Suppose ∂� has two connected components
S1 and S2. Let u be a harmonic function on (�, g) such that u = ci on Si , i = 1, 2,
where c1, c2 are constants with c1 < c2 < 1. If the level set�s := u−1(s) is connected
for s ∈ [c1, c2], then

�(t) := 4π(1 − t) +
∫

�t

H |∇u| − 3

1 − t

∫
�t

|∇u|2 ↘ as t ↗,

i.e., �(t) is monotone nonincreasing. Here t ∈ [c1, c2] denotes a regular value of u
and H is the mean curvature of �t with respect to the unit normal ν = |∇u|−1∇u.

Proof Let t1 < t2 be two regular values of u. On �[t1,t2] := {x ∈ � | t1 ≤ u(x) ≤ t2},
one has

∫
�t1

H |∇u| −
∫

�t2

H |∇u| ≥
∫ t2

t1

∫
�t

1

2

( |∇2u|2
|∇u|2 + R

)
− 2π

∫ t2

t1
χ(�t ).

(3.4)

Here ∇2u, ∇u denote the Hessian, the gradient of u on (M, g), respectively, R is the
scalar curvature of g, and χ(�t ) is the Euler characteristic of �t . Relation (3.4) is a
direct consequence of Stern’s computations in Section 2 of [30], and can also be found
explicitly from (4.7) in [7] and (2.18) in [16].

Let II denote the second fundamental form of �t w.r.t. ν. Let X ,Y denote vectors
tangent to �t . Along �t , one has

∇2u(X ,Y ) = |∇u|II(X ,Y ), ∇2u(X , ν) = X(|∇u|), ∇2u(ν, ν) = −H |∇u|.
(3.5)

Here the first two equations follow fromdefinitions of∇2u and II, and the last equation
follows from 0 = �u = ��t

u + H∂νu + ∇2u(ν, ν). As a result,

|∇u|−2 |∇2u|2 = |II|2 + 2|∇u|−2
∣∣∇�t

|∇u|∣∣2 + H2. (3.6)

Under the assumption �t is connected, it follows from (3.4) and (3.6) that

4π(t2 − t1) +
∫

�t1

H |∇u| −
∫

�t2

H |∇u|

≥
∫ t2

t1

∫
�t

1

2
|I̊I|2 + |∇u|−2

∣∣∇�t
|∇u|∣∣2 + 3

4
H2 + 1

2
R,

(3.7)

where I̊I denotes the traceless part of II.
To handle the term of H2 in (3.7), we follow the idea in [2, 25] to replace it with(

H − 2|∇u|(1 − u)−1
)2
. A motivation to this may be seen in the model case in which
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� = {R1 ≤ |x | ≤ R2} ⊂ R
3 and u = 1 − |x |−1. In this special setting, H and |∇u|

satisfy H = 2|∇u|(1 − u)−1 along any level set sphere.
Thus, one can rewrite (3.7) as

4π(t2 − t1) +
∫

�t1

H |∇u| −
∫

�t2

H |∇u|

+ 3
∫ t2

t1

[
− 1

1 − t

∫
�t

H |∇u| + 1

(1 − t)2

∫
�t

|∇u|2
]

≥
∫ t2

t1

∫
�t

1

2
|I̊I|2 + |∇u|−2

∣∣∇�t
|∇u|∣∣2 + 3

4

(
H − 2|∇u|

1 − u

)2

+ 1

2
R. (3.8)

At each regular value t , one has
( ∫

�t
|∇u|2)′ = − ∫

�t
H |∇u|, and therefore,

− 1

1 − t

∫
�t

H |∇u| + 1

(1 − t)2

∫
�t

|∇u|2 = d

dt

(
1

1 − t

∫
�t

|∇u|2
)

.

Thus, if [t1, t2] has no critical values, the above directly shows

∫ t2

t1

(
− 1

1 − t

∫
�t

H |∇u| + 1

(1 − t)2

∫
�t

|∇u|2
)

= 1

1 − t2

∫
�t2

|∇u|2 − 1

1 − t1

∫
�t1

|∇u|2.
(3.9)

In general, if [t1, t2] has critical values, one may use a regularization argument to
still obtain (3.9). For instance, applying Lemma A.1 of Appendix A to u on �[t1,t2],
one has

1

1 − t2

∫
�t2

|∇u|2 − 1

1 − t1

∫
�t1

|∇u|2

=
∫

�[t1,t2]

|∇u|3
(1 − u)2

+
∫

{∇u �=0}⊂�[t1,t2]

1

1 − u
|∇u|−1∇2u(∇u,∇u). (3.10)

This, together with the coarea formula and (3.5), gives (3.9).
By (3.8) and (3.9),

�(t1) − �(t2) ≥
∫ t2

t1

∫
�t

1

2
|I̊I|2 + |∇u|−2

∣∣∇�t
|∇u|∣∣2 + 3

4

(
H − 2|∇u|

1 − u

)2

+ 1

2
R.

(3.11)

For the later purpose in Appendix A, we note that (3.11) holds without assumptions
on the scalar curvature R.

If the scalar curvature R is nonnegative, then (3.11) implies �(t1) ≥ �(t2), which
proves the lemma. �
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In the context of Theorem 3.1, the assumption � is connected and H2(M, �) = 0
is a sufficient condition to ensure χ(�t ) ≤ 2 for a regular �t . Under this condition,
u being harmonic and the maximum principle guarantee �t is connected. (The same
assumption was used by Bray and the author [8] in estimating the capacity of � in
(M, g) via the solution to the weak inverse mean curvature (1/H ) flow [17]. In that
setting, a different reasoning shows the level set of the 1/H flow is connected.)

Proof of Theorem 3.1 Let �(t) be given from Lemma 3.1. On an asymptotically flat
(M, g), a corollary of Lemma 2.2 shows

lim
t→1

�(t) = 0.

Thus, letting t2 → 1 in (3.11) gives

�(t) ≥
∫ 1

t

∫
�s

1

2
|I̊I|2 + |∇u|−2

∣∣∇�t
|∇u|∣∣2 + 3

4

(
H − 2|∇u|

1 − u

)2

+ 1

2
R

(3.12)

for every regular value t . In particular, if R ≥ 0, then �(t) ≥ 0.
Inequality (3.1) follows from (3.12) by noting that

1

1 − t
�(t) = 3B(t) − A(t). (3.13)

To show the rigidity case of (3.1), it suffices to establish it for the case t = 0.
Suppose the equality in (3.2) holds, then, by (3.12) and its proof, for every regular
value t ∈ [0, 1], �t is connected (orientable) with χ(�t ) = 2, hence �t is a 2-sphere;
moreover, R = 0, |∇u| only depends on t , �t is totally umbilic, and H = 2

1−t |∇u|.
To show (M, g) is isometric toR3 minus a round ball, we start from a neighborhood

of the boundary�. For convenience, we normalize (M, g) so that |�| = 4π . It follows
from the equality

4π +
∫

�

H |∇u| = 3
∫

�

|∇u|2

that |∇u| = 1 and H = 2 at� = �0. Locally, g takes the form of g = η(t)−2dt2 +γt
near �0, where t = u, η(t) = |∇u| and γt denotes the induced metric on �t , which
satisfies ∂tγt = 2η(t)−1

IIt = η(t)−1Hγt = 2(1 − t)−1γt . Thus, (1 − t)2γt = a
fixed metric. Similarly, since |∇u|′ = −H , η(t) satisfies η′(t) = −2

1−t η(t). Hence,
(1 − t)−2η = a constant. As |∇u| = 1 at �, we thus have η = (1 − t)2 and g =
(1− t)−4dt2 + (1− t)−2σo for some fixed metric σo on the 2-sphere �. Invoking the
fact R = 0 near �, we see σo is a round metric with Gauss curvature 1 on �.

Now, if u has a critical value, let t0 ∈ (0, 1) be the smallest critical value of u. The
above argument then shows (u−1([0, t0)), g) is isometric to

(
� × [0, t0), (1 − t)−4dt2 + (1 − t)−2σo

)
.
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In particular, this implies |∇u| = (1− t0)2 �= 0 on the set ∂{u < t0} = ∂{u ≥ t0}. As
a result, ∂{u ≥ t0} is an embedded surface in M . Therefore, ∂{u ≥ t0} = {u = t0} by
the strong maximum principle. In summary, this shows ∇u �= 0 on the set {u = t0},
which contradicts to the assumption t0 is a critical value. Hence, u has no critical
values. We conclude (M, g) is isometric to

(
� × [0, 1), (1 − t)−4dt2 + (1 − t)−2σo

)
,

which, upon a change of variable 1− t = r−1, is isometric to R3 minus a unit ball. �
Remark 3.3 In Theorem 3.1, if u = c at � for some constant c < 1, (3.1) and
its equality case still hold. This can be seen either from the above proof, or from
considering the function 1

1−c (u − c).

Theorem 3.1 implies an upper bound of 1
(1−t)2

∫
�t

|∇u|2 via ∫
�t

H2.

Corollary 3.1 Let (M, g) be a complete, orientable, asymptotically flat 3-manifold
with boundary �. Suppose � is connected and H2(M, �) = 0. Let u be the harmonic
function such that u = 0 at� and u → 1 at∞. If g has nonnegative scalar curvature,
then

1

4π

∫
�

|∇u|2 ≤ 1

9

[
2W + 2

√
W 2 + 3W + 3

]
, (3.14)

where W = 1
16π

∫
�
H2, and equality holds if and only if (M, g) is isometric to R

3

minus a round ball.

Proof Let z = (∫
�

|∇u|2) 1
2 . By Theorem 3.1 and Hölder’s inequality,

4π + √
16πWz ≥ 3z2.

This implies the bound of z in (3.14) by elementary reason. The equality case follows
from the equality case in Theorem 3.1. �

We next apply Theorem 3.1 to show that the quantities in Theorem 2.1, which
approach to constant multiples of mc−1

�
at ∞, are actually monotone.

Theorem 3.2 Let (M, g) be a complete, orientable, asymptotically flat 3-manifold
with boundary �. Suppose � is connected and H2(M, �) = 0. Let u be the harmonic
function such that u = 0 at� and u → 1 at∞. If g has nonnegative scalar curvature,
then

(i) A(t) := 1
1−t

[
8π − 1

1−t

∫
�t

H |∇u|] ↗ as t ↗, i.e., A(t) is monotone non-

decreasing in t. If in addition ∂∂∂gi j = O(|x |−3−τ )at∞, thenA(t) ≤ 12π mc−1
�

.

In particular, at �,

8π −
∫

�

H |∇u| ≤ 12π mc−1
�

, (3.15)
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and equality holds if and only if (M, g) is isometric to R3 minus a round ball.
(ii) B(t) := 1

1−t

[
4π − 1

(1−t)2
∫
�t

|∇u|2] ↗ as t ↗, i.e., B(t) is monotone non-

decreasing in t. If in addition ∂∂∂gi j = O(|x |−3−τ ) at ∞, then B(t) ≤ 4π mc−1
�

.

In particular, at �,

4π −
∫

�

|∇u|2 ≤ 4π mc−1
�

, (3.16)

and equality holds if and only if (M, g) is isometric to R3 minus a round ball.

Proof We first show (ii) as it is more straightforward. By (2.36) and (3.3), at every
regular value t , we have

−B ′(t) = 1

1 − t
[−2B(t) + A(t) ] ≤ 1

1 − t
B(t).

Therefore,
[ 1
1−t B(t)

]′ ≥ 0, which implies the monotonicity of B(t) = 1
1−t B(t) in

the case that u has no critical values. If u has critical values, we may again apply a
regularization argument to show thatB(t2)−B(t1) ≥ 0 for t2 > t1, see PropositionA.1
in Appendix A for details.

By Theorem 2.1 (ii),

lim
t→1

B(t) = 4π mc−1
�

.

Therefore, the monotonicity of B(t) shows

B(t) ≤ 4π mc−1
�

.

At t = 0, this gives

B(0) = 4π −
∫

�

|∇u|2 ≤ 4π mc−1
�

.

The rigidity part follows from the rigidity part of Theorem 3.1.
To show (i), we calculate, at a regular value t ,

A′(t) = 1

(1 − t)2

[
A(t) − 1

1 − t

∫
�t

H |∇u| −
(∫

�t

H |∇u|
)′]

.
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By (2.25) and the Gauss–Bonnet theorem,

A′(t) ≥ 1

(1 − t)2

[
A(t) − 1

1 − t

∫
�t

H |∇u| +
∫

�t

(
−K + 3

4
H2

)]

≥ 1

(1 − t)2

[
A(t) − 1

1 − t

∫
�t

H |∇u| − 4π + 3

4

∫
�t

H2
]

= 1

(1 − t)2

⎡
⎣ 4π + 1

1 − t

∫
�t

H |∇u| − 3

(1 − t)2

∫
�t

|∇u|2
︸ ︷︷ ︸

I (t)

+ 3

4

∫
�t

(
H − 2|∇u|

1 − u

)2
⎤
⎦ .

By (3.3),

I (t) = 3B(t) − A(t) ≥ 0.

Therefore,A′(t) ≥ 0, which implies themonotonicity ofA(t) in the absence of critical
values. The general case can be again handled by a regularization argument that shows
A(t2) − A(t1) ≥ 0 for t2 > t1, see Proposition A.1 in Appendix A.

The remaining conclusions in (i) follow from Theorem 2.1 (i) and Theorem 3.1. �

Remark 3.4 If u = c at � for some constant c < 1, Theorem 3.2 still holds with c�

replaced by c, the constant in the asymptotic expansion u = 1− c|x |−1 + o(|x |−1) as
x → ∞.

Remark 3.5 In the above proof of (3.15) and (3.16), we assumed ∂3gi j = O(|x |−τ−3)

to obtain limt→1A(t) = 12πmc−1
�

and limt→1 B(t) = 4πmc−1
�

by applying The-
orem 2.1. We mention that this assumption on ∂3gi j can indeed be dropped, due to
some recent developments since the appearance of this work. In [15], it was shown
that, under the general asymptotic condition (2.1), one has

lim sup
t→1

A(t) ≤ 12πmc−1
�

and lim sup
t→1

B(t) ≤ 4πmc−1
�

.

(See [15, Proposition 4.1], which made use of [1, Lemma 2.5].) Combined with the
monotonicity, such inequalities are sufficient to obtain (3.15) and (3.16) in Theo-
rem 3.2. For this reason, theorems in later sections of this paper, which made use of
(3.15) and (3.16), do not need the assumption on ∂3gi j neither.

Remark 3.6 Comparing (3.2), (3.15) and (3.16), we have (3.2) + (3.16) ⇒ (3.15).
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4 Proofs of the Positive Mass Theorem

The 3-dimensional Riemannian positivemass theorem (PMT), first proved by Schoen–
Yau [27] and later by Witten [31], asserts that if (M, g) is a complete, asymptotically
flat 3-manifold without boundary, with nonnegative scalar curvature, thenm ≥ 0, and
m = 0 if and only if (M3, g) is isometric to R3.

Since the work of Schoen–Yau and Witten, other proofs of this theorem have been
given by Huisken–Ilmanen [17], by Li [21], by Bray–Kazaras–Khuri–Stern [7], and
by Agostiniani–Mazzieri–Oronzio [2]. (Agostiniani–Mantegazza–Mazzieri–Oronzio
[1] also gave a new proof of the Riemannian Penrose inequality, first proved by Bray
[6] and Huisken–Ilmanen [17].)

To show the 3-dimensional PMT, it is known it suffices to assumeM is topologically
R
3, see [7, Section 2] for instance; it also suffices to assume g has higher order

derivatives decay near∞, see [26, 28]. For this reason, one canmake these assumptions
in proving m ≥ 0. Once the inequality is shown, the rigidity case of m = 0 follows
from a variational argument, see [27].

As applications of Theorems 2.1 and 3.2, we observe a few additional arguments
that demonstrate m ≥ 0. We first outline the tools and features of the proofs to be
given:

• Proof I uses Theorem 2.1 (ii) and a result of Munteanu–Wang [25].
• Proof II is self-contained. It makes use of Theorems 2.1 and 3.2.
• Proof III is self-contained. It uses the inequalities in Theorem 3.2. Proof III leads
to new sufficient conditions that guarantee the positivity of the mass, see Sect. 5.

In what follows, let (M, g) be a complete, asymptotically flat 3-manifold with
nonnegative scalar curvature. Suppose M is topologically R

3.

Proof I Take p ∈ M . Let G(x) be the minimal positive Green’s function with a pole
at p, withG(x) → 0 as x → ∞. Let u = 1−G. By Theorem 1.1 of Muntenau–Wang
[25],

4π(1 − t) − 1

1 − t

∫
�t

|∇u|2 ↘ as t ↗,

i.e., it is monotone non-increasing in t .
As x → ∞, u = 1 − 1

4π |x |−1 + O(|x |−1−τ ). By Lemma 2.2, 1
1−t

∫
�t

|∇u|2 → 0
as t → 1. Hence,

4π(1 − t) − 1

1 − t

∫
�t

|∇u|2 ≥ 0.

Consequently,

1

(1 − t)

[
4π − 1

(1 − t)2

∫
�t

|∇u|2
]

≥ 0.

123



Mass, Capacitary Functions, and the Mass-to-Capacity Ratio

By Theorem 2.1 (ii),

lim
t→1

1

(1 − t)

[
4π − 1

(1 − t)2

∫
�t

|∇u|2
]

= (4π)2m.

Therefore, m ≥ 0. �
Proof II Take p ∈ M . Let G(x) be the minimal positive Green’s function with a pole
at p. Let d(x) denote the distance from x to p in (M, g). As x → p, it is known

G(x) = 1

4π
d(x)−1 + o(d(x)−1), |∇G(x)| = 1

4π
d(x)−2 + o(d(x)−2). (4.1)

(See [25, Equation (3.3)] or [23, Theorem 2.4] for instance.)
Consider u = 1 − G. By Theorem 3.2 (ii),

B(t) = 1

1 − t

[
4π − 1

(1 − t)2

∫
�t

|∇u|2
]

↗ as t ↗, (4.2)

i.e., it is monotone non-decreasing in t . Note this is different from the monotonicity
of Munteanu–Wang [25]. The latter asserts (1− t)2B(t) is monotone non-increasing.

As t → −∞, by (4.1), 1
(1−t)2

∫
�t

|∇u|2 is bounded, hence 1
(1−t)3

∫
�t

|∇u|2 → 0.
Thus,

lim
t→−∞B(t) = 0. (4.3)

Therefore, by (4.2) and (4.3), B(t) ≥ 0. By Theorem 2.1 (ii),

(4π)2 m = lim
t→1

B(t) ≥ 0. �
Remark 4.1 Proof II is similar to that of Agostiniani–Mazzieri–Oronzio [2]. The dif-
ference is the use of different monotone quantities, i.e., B(t) compared to F(t). A
feature of B(t) used here is that it does not involve derivatives of the metric.

Remark 4.2 One can also work with A(t), and apply Theorems 3.2 (i) and 2.1 (i). In
this case, one checks limt→−∞ 1

(1−t)2
∫
�t

H |∇u| = 0, which follows from known

estimates on ∇2G near the pole (see [2, 23, 25] for instance).

Proof III Take p ∈ M . Given a small r > 0, let Br denote the geodesic ball of radius
r centered at p. Let �r = ∂Br and u = ur be the harmonic function with u = 0 at
�r and u → 1 at ∞. Let cr be the capacity of �r in (M, g).

Applying (3.15) of Theorem 3.2 (i) to (M \ Br , g), we have

cr

(
8π −

∫
�r

H |∇u|
)

≤ 12π m. (4.4)
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It remains to check, as r → 0,

cr = O(r) and
∫

�r

H |∇u| = O(1). (4.5)

A conclusion m ≥ 0 will follow from (4.4) and (4.5).
To estimate cr , we may use the variational characterization of the capacity, i.e.,

cr = inf
f

{
1

4π

∫
M\Br

|∇ f |2
}

, (4.6)

where f is a Lipschitz function with f = 0 at �r and f → 1 at ∞. Consider a test
function f (x) = r−1 (d(x) − r) in B2r\Br and extend f to be 1 outside B2r . Here
d(x) is the distance from x to p. Then

cr ≤ 1

4π

∫
B2r \Br

|∇ f |2 = 1

4πr2
Vol(B2r\Br ) = O(r). (4.7)

For
∫
�r

H |∇u|, we have
∣∣∣∣
∫

�r

H |∇u|
∣∣∣∣ ≤ max

�r
|H |

∫
�r

|∇u| = max
�r

|H | cr = O(1)

by (4.7) and the fact H = 2r−1 + O(r) (see (3.34) in [13] for instance).
This verifies (4.5) and completes the proof. �

Remark 4.3 In the above proof, we estimated cr by the so-called relative capacity of
�r in B2r . By a result of Jauregui [18], one can indeed check

lim sup
r→0

(
8π −

∫
�r

H |∇u|
)

≥ 0.

Remark 4.4 Alternatively one may use (3.16) of Theorem 3.2 (ii) to have

cr

(
4π −

∫
�r

|∇u|2
)

≤ 4π m

and check
∫
�r

|∇u|2 = O(1). For instance, by themaximumprinciple, |∇u| ≤ |∇v| at
∂Br , where v is the harmonic functionwith v = 0 at ∂Br and v = 1 at ∂B2r . By scaling
and elliptic boundary estimates,

∫
∂Br

|∇v|2 = O(1) which shows
∫
�r

|∇u|2 = O(1).

In addition to the above proofs, we want to mention there is a more geometric
proof of PMT, which makes use of the full strength of our mass-capacity inequality
Theorem 7.4 in Sect. 7. We give that proof in Remark 7.1.
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5 Positive Mass Theorems with Boundary

Inspired by Proof III in the preceding section, we give some sufficient conditions that
imply positive mass on manifolds with boundary.

Theorem 5.1 Let (M, g) be a complete, orientable, asymptotically flat 3-manifold
with nonnegative scalar curvature, with boundary �. Suppose � is connected and
H2(M, �) = 0. Let� ⊂ M be a bounded region separating� and∞. More precisely,
this means ∂� has two connected components S0 and S1, where S0 encloses � (and
is allowed to coincide with �) and S1 encloses S0. Let u� be the function on � with

�u� = 0, u� |S0 = 0, and u� |S1 = 1.

Let c(�) = 1
4π

∫
�

|∇u� |2 = 1
4π

∫
S0

|∇u� |. Then

H ≤ 2

c(�)
�⇒ m > 0. (5.1)

In particular, this implies

H ≤ 8πL2

Vol(�)
�⇒ m > 0. (5.2)

Here H is the mean curvature of � in (M, g), Vol(�) is the volume of (�, g), and L
is the distance between S0 and S1.

Proof Let u be the harmonic function on M with u = 0 at � and u → 1 at ∞. By
(3.15) of Theorem 3.2 (i),

12π mc−1
�

≥ 8π −
∫

�

H |∇u|

≥ 4π
(
2 − c� max

�
H
)
,

(5.3)

where c� is the capacity of � in (M, g). This shows

max
�

H ≤ 2c−1
�

�⇒ m ≥ 0, max
�

H < 2c−1
�

�⇒ m > 0, (5.4)

respectively.
Let D denote the region enclosed by S1 with �. Extending u� to be 1 on M \ D

and to be 0 on D \ �. By the variational characterization of the capacity,

c� <
1

4π

∫
M

|∇u� |2 = c(�). (5.5)

Therefore, (5.1) follows from (5.4) and (5.5).
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To see (5.2), it suffices to estimate c(�). On �, consider a test function f (x) which
equals L−1d(x) if d(x) ≤ L and is identically 1 if d(x) ≥ L . Here d(x) denotes the
distance from x to S0. Then

c(�) ≤ 1

4π

∫
�

|∇ f |2 ≤ 1

4πL2 Vol(�). (5.6)

Hence, (5.2) follows from (5.1) and (5.6). �

The next result does not involve the mean curvature of the boundary. It makes use
of (3.16) in Theorem 3.2 (ii).

Theorem 5.2 Let (M, g), �, S0, S1 and u� be given as in Theorem 5.1. Then

∫
S0

|∇u� |2 ≤ 4π �⇒ m > 0. (5.7)

Proof Let M̃ denote the region outside S0. Let ũ be the harmonic function on M̃ with
ũ = 0 at S0 and ũ → 1 at ∞. Applying (3.16) of Theorem 3.2 (ii) to (M̃, g, ũ), we
have

∫
S0

|∇ũ|2 ≤ 4π �⇒ m ≥ 0,
∫
S0

|∇ũ|2 < 4π �⇒ m > 0, (5.8)

respectively. On (�, g), the maximum principle shows

|∇ũ| < |∇u� | at S0. (5.9)

Therefore, (5.7) follows from (5.8) and (5.9). �

Remark 5.1 It may be worthy of noting that the condition in (5.7) and the upper bound
of H in (5.1) only involve the C0-geometry of (�, g).

It is conceivable that Theorems 5.1 and 5.2 may be used to study the mass of
incomplete asymptotically flat 3-manifolds. Recently Cecchini–Zeidler [10] and Lee–
Lesourd–Unger [19] have given sufficient conditions, involving a positive lower bound
of the scalar curvature on suitable regions in a manifold (Mn, g) that is spin or of
dimension 3 ≤ n ≤ 7, which guarantee the positivity of the mass. If such conditions
are interpreted as shielding the incomplete part by regions with sufficiently positive
scalar curvature, conditions in (5.1), (5.2) and (5.7) may be thought as shielding
conditions in terms of the C0-geometry of a separating region.

We end this section with the following proposition which was known and proved
previously via the weak inverse mean curvature (1/H ) flow developed by Huisken–
Ilmanen [17]. We include it here to show that the result can also be proved using
harmonic functions.
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Proposition 5.1 Let (M, g) be a complete, orientable, asymptotically flat 3-manifold
with boundary �. Suppose � is connected and H2(M, �) = 0. If g has nonnegative
scalar curvature, then

∫
�

H2 ≤ 16π �⇒ m ≥ 0,

and m = 0 if and only if (M, g) is isometric to R3 minus a round ball.

Proof By Corollary 3.1,

∫
�

H2 ≤ 16π �⇒
∫

�

|∇u|2 ≤ 4π.

Hence, m ≥ 0 by (3.16). The rigidity case follows from that of Corollary 3.1. �

6 Integral Identities for theMass-to-Capacity Ratio

In [7], Bray–Kazaras–Khuri–Stern found an integral identity for themass of an asymp-
totically flat manifold. More precisely, if (E, g) denotes the exterior region of a
complete, asymptotically flat Riemannian 3-manifold (M, g) with mass m, then

16πm ≥
∫
E

( |∇2u|
|∇u| + R|∇u|

)
, (6.1)

where u is a harmonic function on (E, g) satisfying Neumann boundary conditions at
∂E , and which is asymptotic to one of the asymptotically flat coordinate functions at
∞. In particular, if the scalar curvature is nonnegative, then m ≥ 0.

In this section, we derive mass identities analogous to (6.1) with u being a harmonic
function that equals 0 at the boundary and is asymptotic to 1 at ∞.

Theorem 6.1 Let (M, g) be a complete, orientable, asymptotically flat 3-manifold
with boundary �. Suppose � is connected and H2(M, �) = 0. Let u be the harmonic
function such that u = 0 at � and u → 1 at ∞. Let �u be a symmetric (0, 2) tensor
given by

�u = |∇u|2
1 − u

g − 3du ⊗ du

1 − u
.

Let m be the mass of (M, g) and c� be the capacity of � in (M, g). Then

mc−1
�

−
(
1 − 1

4π

∫
�

|∇u|2
)

≥ 1

16π

∫
M

[
1

(1 − u)2
− 1

]( |∇2u − �u |2
|∇u| + R|∇u|

) (6.2)
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and

mc−1
�

− 2

3

(
1 − 1

8π

∫
�

H |∇u|
)

≥ 1

16π

∫
M

[
1

(1 − u)2
− 1

3

]( |∇2u − �u |2
|∇u| + R|∇u|

)
.

(6.3)

Proof By (3.5), along a regular level set �t , (∇2u − �u) satisfies

(
∇2u − �u

)
(ν, ν) = −H |∇u| + 2|∇u|2

1 − u
,

(
∇2u − �u

)
(ν, ·)|�t

= 〈∇�t
|∇u|, ·〉,

(
∇2u − �u

)
(·, ·)|�t

= |∇u|
(
II − |∇u|

1 − u
γ

)
,

where γ denotes the induced metric on �t . Therefore,

|∇u|−2
∣∣∣∇2u − �u

∣∣∣2

= 3

2

(
H − 2|∇u|

1 − u

)2

+ 2|∇u|−2
∣∣∇�t

|∇u|∣∣2 + |I̊I|2.
(6.4)

Given two regular values t1 < t2, by (A.14) in Proposition A.1 of Appendix A, we
have

B(t2) − B(t1) =
∫ t2

t1

1

(1 − t)2
[3B(t) − A(t)] . (6.5)

By (3.13) and (3.12),

3B(t) − A(t) = 1

1 − t
�(t) and �(t) ≥

∫ 1

t
ψ(s), (6.6)

where

ψ(t) =
∫

�t

[
3

4

(
H − 2|∇u|

1 − u

)2

+ |∇u|−2
∣∣∇�t

|∇u|∣∣2 + 1

2
|I̊I|2 + 1

2
R

]

= 1

2

∫
�t

( |∇2u − �u |2
|∇u|2 + R

)
.

(6.7)
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Taking t1 = 0 and letting t2 → 1, applying Theorem 2.1, we hence have

4πmc−1
�

− B(0) =
∫ 1

0

1

(1 − t)3
�(t)

≥
∫ 1

0

1

(1 − t)3

(∫ 1

t
ψ(s)

)
.

(6.8)

Integration by parts gives

∫ 1

0

1

(1 − t)3

(∫ 1

t
ψ(s)

)

= 1

2

[
lim
t→1

1

(1 − t)2

∫ 1

t
ψ(s) −

∫ 1

0
ψ(s) +

∫ 1

0

ψ(t)

(1 − t)2

]
.

(6.9)

We claim

lim
t→1

1

(1 − t)2

∫ 1

t
ψ(s) = 0. (6.10)

This is because, by (2.32),

∫ 1

t

∫
�s

|∇u|−2
∣∣∇� |∇u|∣∣2 + 1

2
|I̊I|2 = O((1 − t)1+2τ ),

and, by (2.33),

∫ 1

t

∫
�s

|R| = o((1 − t)2).

Also, by (2.11), (2.12) and Lemma 2.1,

∫ 1

t

∫
�s

(
H − 2|∇u|

1 − u

)2

= O((1 − t)1+2τ ). (6.11)

Therefore, (6.10) holds.
Now it follows from (6.8)–(6.10) that

4πmc−1
�

− B(0)

≥ 1

2

∫ 1

0

[
1

(1 − t)2
− 1

]
ψ(t)

= 1

4

∫ 1

0

[
1

(1 − t)2
− 1

] ∫
�t

( |∇2u − �u |2
|∇u|2 + R

)

= 1

4

∫
M

[
1

(1 − u)2
− 1

]( |∇2u − �u |2
|∇u| + R|∇u|

)
.

(6.12)
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This proves (6.2).
Similarly, by (A.17) following Proposition A.1 of Appendix A,

[A(t2) − B(t2)] − [A(t1) − B(t1)] ≥
∫ t2

t1

1

(1 − t)2
ψ(t). (6.13)

Taking t1 = 0, letting t2 → 1 and applying Theorem 2.1, we have

8πmc−1
�

− (A(0) − B(0))

≥ 1

2

∫ 1

0

1

(1 − t)2

∫
�t

( |∇2u − �u |2
|∇u|2 + R

)

= 1

2

∫
M

1

(1 − u)2

( |∇2u − �u |2
|∇u| + R|∇u|

)
.

(6.14)

This together with (6.12) proves (6.3). �
Remark 6.1 If the scalar curvature R is nonnegative, then (6.2) implies (3.16), (6.3)
implies (3.15), and (6.14) implies

4π −
∫

�

H |∇u| +
∫

�

|∇u|2 ≤ 8πmc−1
�

. (6.15)

For manifolds that are spatial Schwarzschild manifolds near infinity, (6.15) also fol-
lows from the work of Agostiniani–Mazzieri–Oronzio [2]. On the other hand, one sees
(6.15) is an algebraic consequence of (3.2) and (3.16).

Remark 6.2 If the manifold M in Theorem 6.1 has no boundary, let G be a minimal
positive Green’s function with a pole at some p ∈ M . Taking u = 1− 4πG in (6.13),
and letting t2 → 1, t1 → −∞, one finds

m ≥ 1

(8π)2

∫
M

1

G2

( |∇2G + �G |2
|∇G| + R|∇G|

)
. (6.16)

Here �G is the (0, 2) tensor given by

�G = |∇G|2
G

g − 3dG ⊗ dG

G
.

Inequality (6.16) gives the integral version of the proof of the 3-dimensional PMT in
[2].

7 Promoting Inequalities via Schwarzschild Models

Inequalities in Sect. 3 are derived via monotone quantities that become constant in
Euclidean spaces outside round balls. As a result, they are strict inequalities when
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evaluated in spatial Schwarzschild manifolds with nonzero mass outside rotationally
symmetric spheres.

Inspired by Bray’s proof of the Riemannian Penrose inequality [6], in this section
we apply results from the previous sections to derive inequalities that become equality
in Schwarzschild spaces.

We first outline the idea. Given a tuple (M, g, u) satisfying assumptions in The-
orem 3.1 (or equivalently in Theorem 3.2), let v be any other harmonic function on
(M, g) with v → 1 at ∞ and v > 0 at �. The following facts hold:

1. the metric ḡ := v4g is asymptotically flat, with nonnegative scalar curvature;
2. the function ū := v−1u is a harmonic function with respect to the metric ḡ, and

satisfies ū = 0 at � and ū → 1 at ∞.

Thus, results from the previous sections are applicable to M with the conformally
deformed metric ḡ and the ḡ-harmonic function ū.

To proceed, we compute the quantities involved. Let ∇̄ denote the gradient on
(M, ḡ), let H̄ be the mean curvature of � in (M, ḡ) with respect to the ∞-pointing
normal. Let dσ , dσ̄ denote the surface measure on � in (M, g), (M, ḡ), respectively.
As � has dimension two, it can be checked

∫
�

|∇̄ū|2ḡ dσ̄ =
∫

�

|∇ū|2 dσ. (7.1)

(We omitted writing the area and volume measures in previous integrals as there was
only one metric g involved therein.) The mean curvature H̄ is related to the mean
curvature H of � in (M, g) via H̄ = v−2(4v−1∂νv + H). Thus,

∫
�

H̄ |∇̄ū|ḡ dσ̄ =
∫

�

(
4v−1∂νv + H

)|∇ū| dσ. (7.2)

Let m̄ denote the mass of (M, ḡ). m̄ and m are related by

m̄ = m − 2cv, (7.3)

where cv is the constant in the expansion

v = 1 − cv

|x | + o(|x |−1),

as x → ∞. Since ū = v−1u, ū satisfies

ū = 1 − c� − cv

|x | + o(|x |−1),

where c� > cv by the fact v > u and the maximum principle. The capacity of � in
(M, ḡ), which we denote by c̄� , is then given by

c̄� = c� − cv. (7.4)
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Finally, we note, as u = 0 at �,

|∇ū| = v−1|∇u| at �. (7.5)

We want to seek implications of the inequalities (3.2), (3.16), (3.15) and (6.15),
i.e.,

4π +
∫

�

H |∇u| ≥ 3
∫

�

|∇u|2, (7.6)

4π −
∫

�

|∇u|2 ≤ 4πmc−1
�

, (7.7)

8π −
∫

�

H |∇u| ≤ 12πmc−1
�

, (7.8)

4π −
∫

�

H |∇u| +
∫

�

|∇u|2 ≤ 8πmc−1
�

, (7.9)

when they are applied to the conformally deformed triple (M, ḡ, ū). As mentioned in
Remark 3.6 and Remark 6.15, one knows

(7.6) + (7.7) �⇒ (7.8) and (7.9).

For this reason, we focus on the use of (7.6) and (7.7) below.

Theorem 7.1 Let (M, g) be a complete, orientable, asymptotically flat 3-manifold
with boundary �. Suppose � is connected and H2(M, �) = 0. Let u be the harmonic
function such that u = 0 at� and u → 1 at∞. If g has nonnegative scalar curvature,
then, for any constant k > 0,

4π + k
∫

�

H |∇u| ≥ k(4 − k)
∫

�

|∇u|2. (7.10)

Moreover, equality in (7.10) holds for some k if and only if (M, g) is isometric to a
spatial Schwarzschild manifold outside a rotationally symmetric sphere, that is, up to
isometry,

(M, g) =
(
R
3 \ {|x | < r},

(
1 + m

2|x |
)4

gE

)
,

where r > 0 is a constant, gE = δi jdxidx j is the Euclidean metric, and m, k, r are
related by m = 2r(k − 1).

Proof Given any positive harmonic function v on (M, g), let ḡ = v4 g and ū = v−1u.
Applying (3.2) in Theorem 3.1 to the triple (M, ḡ, ū), we have

4π +
∫

�

H̄ |∇̄ū|ḡ dσ̄ ≥ 3
∫

�

|∇̄ū|2ḡ dσ̄ . (7.11)
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By (7.1)–(7.5), (7.11) shows

4π +
∫

�

(
4v−1∂νv + H

)
v−1|∇u| dσ ≥ 3

∫
�

v−2|∇u|2 dσ. (7.12)

Given any constant k > 0, choose

v = u + 1

k
(1 − u). (7.13)

It follows from (7.12) and the fact ∂νu = |∇u| at � that

4π + k
∫

�

H |∇u| dσ ≥ k(4 − k)
∫

�

|∇u|2 dσ,

which proves (7.10).
The above also shows equality in (7.10) holds for some k if and only if equality

in (7.11) holds for the corresponding (M, ḡ, ū). By Theorem 3.1, this occurs if and
only if (M, ḡ) is isometric to

(
R
3\Br , gE

)
, where Br = {x ∈ R

3 | |x | < r} for some
constant r > 0. In this case,

ū = 1 − r

|x | . (7.14)

This combined with (7.13) and the fact ū = v−1u shows

v−1 = 1 + r(k − 1)

|x | . (7.15)

As a result,

g = v−4gE =
(
1 + r(k − 1)

|x |
)4

δi j dx
idx j , (7.16)

which is a spatial Schwarzschild metric with mass m = 2r(k − 1). �
Theorem 7.1 implies a sharp bound of

∫
�

|∇u|2 by the Willmore functional of �,
with the bound achieved by Schwarzschild spaces outsidemean-convex round spheres.

Corollary 7.1 Let (M, g) be a complete, orientable, asymptotically flat 3-manifold
with boundary �. Suppose � is connected and H2(M, �) = 0. Let u be the harmonic
function such that u = 0 at� and u → 1 at∞. If g has nonnegative scalar curvature,
then

(
1

π

∫
�

|∇u|2
) 1

2 ≤
(

1

16π

∫
�

H2
) 1

2 + 1. (7.17)
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Moreover, equality holds if and only if (M, g) is isometric to a spatial Schwarzschild
manifold outside a rotationally symmetric sphere with nonnegative constant mean
curvature.

Proof Consider the following quadratic form of k,

Q(k) := α(u) k2 + β(u) k + 4π, (7.18)

where

α(u) =
∫

�

|∇u|2, β(u) =
∫

�

H |∇u| − 4
∫

�

|∇u|2.

We have Q(0) = 4π , and Theorem 7.1 shows

Q(k) ≥ 0, ∀k > 0.

Thus, by elementary reasons, either

β(u)2 − 16πα(u) ≤ 0 (7.19)

or

β(u)2 − 16πα(u) > 0 and − β(u) +
√

β(u)2 − 16πα(u) < 0. (7.20)

The latter case is equivalent to

β(u) >
√
16πα(u),

that is

∫
�
H |∇u|

(∫
�

|∇u|2) 1
2

− 4

(∫
�

|∇u|2
) 1

2

>
√
16π. (7.21)

If (7.21) holds, then, by Hölder’s inequality,

(
1

16π

∫
�

H2
) 1

2

> 1 +
(
1

π

∫
�

|∇u|2
) 1

2

. (7.22)

If (7.19) holds, then

∣∣∣∣
∫

�

H |∇u| − 4
∫

�

|∇u|2
∣∣∣∣ ≤ 4

(
π

∫
�

|∇u|2
) 1

2

,
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which in particular implies

4
∫

�

|∇u|2 ≤ 4

(
π

∫
�

|∇u|2
) 1

2 +
∫

�

H |∇u|. (7.23)

Combined with Hölder’s inequality, this shows

(
1

π

∫
�

|∇u|2
) 1

2 ≤ 1 +
(

1

16π

∫
�

H2
) 1

2

. (7.24)

Therefore, in either case, we conclude (7.17) holds.
If equality in (7.17) holds, then (7.20) does not hold; (7.23) holds with equality;

and H = c|∇u| for some constant c ≥ 0. In particular, this gives

−β(u) = 4
∫

�

|∇u|2 −
∫

�

H |∇u| = √
16πα(u) > 0.

As a result, Q(k0) = 0 at

k0 = − β(u)

2α(u)
= 2

(
1

π

∫
�

|∇u|2
)− 1

2 = 2

1 + ( 1
16π

∫
�
H2

) 1
2

> 0.

By Theorem 7.1, (M, g) is isometric to a spatial Schwarzschild manifold

(M, g) =
(
R
3 \ {|x | < r},

(
1 + m

2|x |
)4

gE

)
,

where r > 0 andm = 2r(k0 − 1). As k0 ≤ 2, the boundary {|x | = r} has nonnegative
mean curvature in (M, g).

On such an (M, g), direct calculation shows

(
1

16π

∫
�

H2
) 1

2 =
∣∣∣∣2k − 1

∣∣∣∣ and

(
1

π

∫
�

|∇u|2
) 1

2 = 2

k
.

As k ≤ 2, equality holds in (7.17). This completes the proof. �
An immediate application of Corollary 7.1 yields a result of Bray and the author

[8] on the estimate of the capacity-to-area–radius ratio.

Theorem 7.2 ([8]) Let (M, g) be a complete, orientable, asymptotically flat 3-
manifold with boundary �. Suppose � is connected and H2(M, �) = 0. If g has
nonnegative scalar curvature, then

2c�

r�

≤
(

1

16π

∫
�

H2
) 1

2 + 1. (7.25)
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Here c� is the capacity of � in (M, g) and r� = ( |�|
4π

) 1
2 is the area–radius of �.

Moreover, equality holds if and only if (M, g) is isometric to a spatial Schwarzschild
manifold outside a rotationally symmetric sphere with nonnegative constant mean
curvature.

Proof This follows directly from

(∫
�

|∇u|2
) 1

2 ≥
∫
�

|∇u|
|�| 12

= √
π
2c�

r�

and Corollary 7.1. �
Next, we proceed to find implications of (3.16) in Theorem 3.2.

Theorem 7.3 Let (M, g) be a complete, orientable, asymptotically flat 3-manifold
with boundary �. Suppose � is connected and H2(M, �) = 0. Let u be the harmonic
function such that u = 0 at� and u → 1 at∞. If g has nonnegative scalar curvature,
then

m

2c�

≥ 1 −
(

1

4π

∫
�

|∇u|2 dσ
) 1

2

. (7.26)

Moreover, equality holds if and only if (M, g) is isometric to a spatial Schwarzschild
manifold outside a rotationally symmetric sphere.

Proof Given any positive harmonic function v on (M, g), let ḡ = v4 g and ū = v−1u.
Applying (3.16) in Theorem 3.2 to (M, ḡ, ū), we have

4π −
∫

�

|∇̄ū|2ḡ dσ̄ ≤ 4πm̄c̄−1
�

. (7.27)

By (7.1)–(7.5), (7.27) becomes

4π −
∫

�

v−2|∇u|2 dσ ≤ 4π
m − 2cv
c� − cv

. (7.28)

Given any constant k > 0, choose

v = u + 1

k
(1 − u). (7.29)

Then v = k−1 at �, cv = (1 − k−1)c� , and (7.28) shows

m

c�

≥ 2 − 1

k
− k

4π

∫
�

|∇u|2 dσ. (7.30)
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Maximizing the right side of (7.30) over all k > 0, we have

m

2c�

≥ 1 −
(

1

4π

∫
�

|∇u|2 dσ
) 1

2

, (7.31)

which proves (7.26).
If equality in (7.26) holds, then equality in (7.27) holds for v = u + k−1(1 − u)

with the constant k given by

k =
(

1

4π

∫
�

|∇u|2 dσ
)− 1

2

. (7.32)

By Theorem 3.2, (M, ḡ) is isometric to
(
R
3 \ Br , gE

)
, where Br = {x ∈ R

3 | |x | < r}
for some r > 0, and

ū = 1 − r

|x | . (7.33)

This combined with ū = v−1u and (7.29) shows

v−1 = 1 + r(k − 1)

|x | . (7.34)

As a result,

g = v−4gE =
(
1 + r(k − 1)

|x |
)4

δi j dx
idx j , (7.35)

which is a spatial Schwarzschild metric with the mass m = 2r(k − 1).
On any such an (M, g), direct calculation shows

m

2c�

= 1 − 1

k
and

(
1

4π

∫
�

|∇u|2
) 1

2 = 1

k
,

which verifies equality in (7.26). This completes the proof. �
We now have a succinct lower bound of the mass-to-capacity ratio by the Willmore

functional.

Theorem 7.4 Let (M, g) be a complete, orientable, asymptotically flat 3-manifoldwith
boundary�. Suppose� is connected and H2(M, �) = 0. If g has nonnegative scalar
curvature, then

m

c�

≥ 1 −
(

1

16π

∫
�

H2
) 1

2

. (7.36)
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Moreover, equality holds if and only if (M, g) is isometric to a spatial Schwarzschild
manifold outside a rotationally symmetric sphere with nonnegative constant mean
curvature.

Proof This is a direct consequence of Corollary 7.1 and Theorem 7.3. �
We give a few remarks.

Remark 7.1 Theorem 7.4 gives another way to see the 3-dimensional positive mass
theorem. In the context of Proof III in Sect. 4, Theorem 7.4 gives

m

cr
≥ 1 −

(
1

16π

∫
�r

H2
) 1

2 = o(1), as r → 0,

where cr is the capacity of a small geodesic ball of radius r . Hence, m ≥ 0.

Remark 7.2 Theorem 7.4 improves the result of Bray and the author in [8]. Under
an additional assumption of

∫
�
H2 ≤ 16π , in [8] the capacity estimate (7.25) was

converted into a Hawking mass estimate

mH (�) ≥
[
1 −

(
1

16π

∫
�

H2
) 1

2
]
c�

and the relation m ≥ mH (�) was applied (if � is outer-minimizing) to obtain (7.36).
In the current derivation of (7.36), we bound the ratiomc−1

�
via

∫
�

|∇u|2 and bound∫
�

|∇u|2 via ∫
�
H2, hence bypassing the use of mH (�) in relating m and c� .

Remark 7.3 One may re-write (7.36) as

M(g) := m

c�

+
(

1

16π

∫
�

H2
) 1

2 − 1 ≥ 0.

This gives a nonnegative quantity M(g) on asymptotically flat 3-manifolds (M, g)
with boundary (under the curvature and topological assumptions). M(g) vanishes
precisely if (M, g) is rotationally symmetric with mean-convex boundary.

8 Manifolds with theMass-to-Capacity Ratio≤ 1

In this section, prompted by Theorem 7.4, we consider a class of manifolds satisfying
a mass-capacity relation

mc−1
�

≤ 1. (8.1)

As we will see later in Proposition 8.1, such a class of manifolds includes static metric
extensions in the context of the Bartnik quasi-local mass [5].
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Theorem 8.1 Let (M, g) be a complete, orientable, asymptotically flat 3-manifoldwith
boundary �, satisfying a mass-capacity relation

mc−1
�

≤ 1.

Let u be the harmonic function with u = 0 at� and u → 1 near∞. If� is connected,
H2(M, �) = 0, and g has nonnegative scalar curvature, then

1

4π

∫
�

H |∇u| ≥ (
2 − mc−1

�

)(
1 − mc−1

�

)
. (8.2)

Moreover, equality holds if and only if (M, g) is isometric to a spatial Schwarzschild
manifold outside a rotationally symmetric sphere with nonnegative constant mean
curvature.

Proof For a regular value t ∈ [0, 1), if u(t) denotes the harmonic function outside �t

with u(t) = 0 at �t and u(t) → 1 at ∞, then

u(t) = u − t

1 − t
. (8.3)

As a result, the capacity c�t
of �t is related to that of � by

c�t
= c�

1 − t
. (8.4)

Therefore, by Theorem 7.4,

(
1

16π

∫
�t

H2
) 1

2 ≥ 1 − mc−1
�t

= 1 − mc−1
�

(1 − t).

(8.5)

Under the assumption mc−1
�

≤ 1, we have

1 − mc−1
�

(1 − t) ≥ 0.

Hence, (8.5) is equivalent to

1

16π

∫
�t

H2 ≥ [
1 − mc−1

�
(1 − t)

]2
. (8.6)

To proceed, we return to the basic identity (3.7) in Sect. 3. Given any regular values
t1 < t2 < 1, by (3.7),

4π(t2 − t1) +
∫

�t1

H |∇u| −
∫

�t2

H |∇u|
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≥
∫ t2

t1

∫
�t

1

2
|I̊I|2 + |∇u|−2

∣∣∇�t
|∇u|∣∣2 + 3

4
H2 + 1

2
R

≥
∫ t2

t1

3

4

∫
�t

H2. (8.7)

Thus, it follows from (8.6) and (8.7) that

4π(t2 − t1) +
∫

�t1

H |∇u| −
∫

�t2

H |∇u|

≥ 12π
∫ t2

t1

[
1 − mc−1

�
(1 − t)

]2
.

Letting t2 → 1, by Lemma 2.2, we obtain

4π(1 − t1) +
∫

�t1

H |∇u|

≥ 12π
∫ 1

t1

[
1 − mc−1

�
(1 − t)

]2

= 12π(1 − t1) − 12πmc−1
�

(1 − t1)
2 + 4π(mc−1

�
)2(1 − t1)

3,

or, equivalently

12πmc−1
�

(1 − t1) − 4π(mc−1
�

)2(1 − t1)
2

≥ 8π − 1

1 − t1

∫
�t1

H |∇u|. (8.8)

In particular, at t1 = 0, we have

12πmc−1
�

− 4π(mc−1
�

)2 ≥ 8π −
∫

�

H |∇u|,

which proves (8.2).
If equality in (8.2) holds, then equality in (8.8) holds with t1 = 0. This necessarily

implies equality in (8.6) holds for a.e. t ∈ [0, 1]. As a result, at t = 0,

1

16π

∫
�

H2 = [
1 − mc−1

�

]2
.

Since 1−mc−1
�

≥ 0, we conclude by Theorem 7.4 that (M, g) is isometric to a spatial
Schwarzschild manifold outside a rotationally symmetric sphere with nonnegative
mean curvature.

Suppose (M, g) = (
R
3\{|x | < r}, (1 + m

2|x | )
4gE

)
with mean-convex boundary

{|x | = r}, then (8.5)–(8.8) all become equality. Hence, equality in (8.2) holds. This
completes the proof. �
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Remark 8.1 We compare (8.2) and (3.15). If (M, g) has m = 0, (8.2) is as the same
as (3.15), both of which reduce to

∫
�
H |∇u| ≥ 8π. For (M, g) with m �= 0, (8.2)

improves (3.15) by unveiling the quadratic term 4π(mc−1
�

)2.

Remark 8.2 Condition (8.1) is a global condition on the triple (M, g, �). It has a
feature of being inheritable to other surfaces enclosing �. More precisely,

mc−1
�

≤ 1 �⇒ mc−1
S

≤ 1

for any other surfaces S in M enclosing �. This follows from the fact c� ≤ cS , which
is a consequence of the variational characterization of the surface capacity.

Remark 8.3 Theorem 8.1 shows a necessary condition ofmc−1
�

≤ 1 is
∫
�
H |∇u| ≥ 0.

Therefore, by Remark 8.2,

mc−1
�

≤ 1 �⇒
∫
S
H |∇uS | ≥ 0,

for any surfaces S enclosing �. Here uS denotes the harmonic function in the exterior
of S, with uS = 0 at S and uS → 1 at ∞.

Manifolds (M, g) satisfying mc−1
�

≤ 1 include regions, in a spatial Schwarzschild
manifold with positive mass, which are the exterior to a surface enclosing the horizon.
That is, if

(Mm, gm) =
(
R
3 \

{
|x | <

1

2
m

}
,

(
1 + m

2|x |
)4

gE

)

with m > 0 and if � ⊂ Mm is a closed surface bounding some region D with the
horizon �h = {|x | = 1

2m}, then (Mm\D, gm) satisfies

mc−1
�

≤ 1.

This is because of c�h
= m on (Mm, gm) and c�h

≤ c� .
To put the next corollary of Theorem 8.1 in context, we mention a few additional

facts on (Mm, gm). Let �r = {|x | = r} ⊂ Mm. The mean curvature Hr of �r equals

Hr = k−2(2k−1 − 1)2r−1,

where k ∈ (1, 2] is the constant determined by m = 2r(k − 1). The product mHr

satisfies

mHr = 2k−1(2k−1 − 1)2(1 − k−1).

The capacity cr of �r is given by

cr = r + m

2
, and hence mc−1

r = 2(1 − k−1).
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As a result, mHr and mc−1
r are related by

mHr = (2 − mc−1
r )(1 − mc−1

r )mc−1
r . (8.9)

As a function of r , calculation shows

max
1
2m≤r<∞

mHr = 2

3
√
3
, (8.10)

where this maximum is achieved uniquely at

rp =
(
1 +

√
3

2

)
m, satisfying

(
1 + m

2rp

)2

rp = 3m. (8.11)

The sphere {|x | = rp} is often known as the photon sphere in (Mm, gm). The mass-
to-capacity ratio at �rp is given by

mc−1
rp = 1 − 1√

3
. (8.12)

The following corollary gives a partial classification or comparison result for
manifolds with mc� ≤ 1, depending on the maximum of mH at the boundary.

Corollary 8.1 Let (M, g) be a complete, orientable, asymptotically flat 3-manifold
with boundary �, with the mass-to-capacity ratio satisfying

0 < mc−1
�

≤ 1.

Suppose � is connected, H2(M, �) = 0, and g has nonnegative scalar curvature.
Then

(i) either � has vanishing mean curvature, in which case (M, g) must be isometric
to a spatial Schwarzschild manifold outside the horizon;

(ii) or Hmax = max� H > 0 and one of the following holds:

(a) mHmax < 2
3
√
3
and

c� ≤ cr1 or c� ≥ cr2 .

Here cri is the capacity of the sphere �ri = {|x | = ri }, i = 1, 2, in the spatial
Schwarzschild manifold

(Mm, gm) =
(
R
3 \

{
|x | <

1

2
m

}
,

(
1 + m

2|x |
)4

gE

)
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which has the same mass as (M, g), and the constants r1, r2 are chosen so
that

Hr1 = Hr2 = Hmax and
1

2
m < r1 <

(
1 + 1

2

√
3

)
m < r2, (8.13)

where Hri is the mean curvature of �ri in (Mm, gm). Moreover, c� = cri for
an ri if and only if (M, g) is isometric to (Mm, gm) outside �ri ;

(b) mHmax ≥ 2
3
√
3
and equality holds if and only if (M, g) is isometric to the

spatial Schwarzschild manifold (Mm, gm) outside the photon sphere
{|x | =

(1 + 1
2

√
3)m

}
.

Proof Let q = mc−1
�

∈ (0, 1]. By Theorem 8.1,

1

4π

∫
�

H |∇u| ≥ (2 − q) (1 − q) . (8.14)

In particular,
∫
�
H |∇u| ≥ 0. As |∇u| > 0 along�, we have Hmax ≥ 0, and Hmax = 0

if and only if H = 0.
If H = 0, Theorem 7.4 shows q ≥ 1. Hence, q = 1, and therefore q = 1 −( 1

16π

∫
�
H2

) 1
2 . By the equality case of Theorem 7.4, (M, g) is isometric to a spatial

Schwarzschild manifold outside the horizon.
In what follows, we suppose Hmax > 0. Since

∫
�

|∇u| = 4πc� , (8.14) implies

Hmax c� ≥ (2 − q) (1 − q) . (8.15)

As m > 0, this gives

m Hmax ≥ (2 − q) (1 − q) q. (8.16)

As a result, either

m Hmax ≥ 2

3
√
3

= max
x∈[0,1](2 − x)(1 − x)x, (8.17)

or

0 < m Hmax <
2

3
√
3
. (8.18)

If (8.17) holds with equality, then

Hmaxc� = 1

4π

∫
�

H |∇u| = (2 − q) (1 − q) ,

with q = 1 − 1√
3
. By Theorem 8.1 and the fact (8.10)–(8.12), (M, g) is isometric to

a spatial Schwarzschild manifold with the photon sphere boundary.
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Next, we suppose (8.18) holds. Let ri , i = 1, 2, be the constants given in (8.13). It
follows from (8.9) and (8.16) that

(2 − mc−1
ri )(1 − mc−1

ri )mc−1
ri

= mHri = mHmax

≥ (2 − q)(1 − q)q.

Analyzing the function f (x) = (2− x)(1− x)x and using the assumption 0 < q ≤ 1,
we conclude

q ≤ mc−1
r2 or q ≥ mc−1

r1 ,

or equivalently

cr2 ≤ c� or cr1 ≥ c� . (8.19)

If c� = cri for an ri , then

Hmaxc� = 1

4π

∫
�

H |∇u| = (2 − q) (1 − q) ,

with q = mc−1
ri . By Theorem 8.1, (M, g) is isometric to a spatial Schwarzschild

manifold with boundary {|x | = ri }. This completes the proof. �
Remark 8.4 Corollary 8.1 can be applied to manifolds (M, g) with CMC boundary,
i.e., � has constant mean curvature. In this case, it might be interesting to understand
the supremum of mH over such manifolds.

Remark 8.5 Corollary 8.1 (i) shows (Mm, gm), Schwarzschild manifolds outside
the horizon, are the unique manifolds with the given topological and curvature
assumptions, satisfying mc−1

�
≤ 1 and the boundary being minimal.

On the other hand, we note (Mm, gm) is not characterized by the conditionmc−1
�

=
1. Toget other exampleswithmc−1

�
= 1,we canfirst return to the proof ofTheorem8.1.

Suppose we start with an arbitrary (M, g) with boundary � satisfying c� < m. Then,
by (8.4), we may consider the value t0 determined by

m = c�

1 − t0
. (8.20)

If t0 is a regular value of u, then the exterior region of�t0 in (M, g) satisfiesmc−1
�t0

= 1.

(Otherwise, one can still consider regular values t greater than and close to t0. For
these t , the exterior region of �t satisfiesmc−1

�t
< 1 andmc−1

�t
can be made arbitrarily

close to 1.) To get a precise example, we may consider a rotationally symmetric,
asymptotically flat metric g on R3 so that g has nonnegative scalar curvature, positive
mass, and (R3, g) has no closed minimal surfaces; see [20, Section 2.4] for this class
of metrics. By (4.7), there is a small, rotationally symmetric sphere�r in (R3, g)with
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c� < m. Let u be the capacitary function on the exterior of �r , then u is rotationally
symmetric, and the level set {u = t} is a rotationally symmetric sphere for each
t ∈ (0, 1). The region exterior to {u = t0} then satisfiesmc−1

�t0
= 1; moreover, it is not

(Mm, gm) as {u = t0} is not minimal.

Next, we mention some other implications of (8.1) which are corollaries of
Theorems 7.2 and 7.3.

Corollary 8.2 Let (M, g) be a complete, orientable, asymptotically flat 3-manifold
with boundary �, satisfying

mc−1
�

≤ 1.

Suppose � is connected, H2(M, �) = 0, and g has nonnegative scalar curvature.
Then

(i) m ≤ r
�

2

[
1 + ( 1

16π

∫
�
H2)

1
2
]
, where r� is the area–radius of �; and

(ii) 1
π

∫
�

|∇u|2 ≥ 1, where u is the harmonic function on (M, g) with u = 0 at �

and u → 1 near ∞.

Moreover, equality holds in either inequality if and only if (M, g) is isometric to a
spatial Schwarzschild manifold outside the horizon.

Proof Inequalities in (i), (ii) follow from (7.25) in Theorem 7.2, (7.26) in Theorem 7.3,
respectively. The rigidity part follows from the rigidity conclusion in Theorem 7.2 or
Theorem 7.3, together with the extra information m = c� . �
Remark 8.6 Heuristically, (ii) of Corollary 8.2 suggests the condition

mc−1
�

≤ 1

may rule out manifolds having long cylindrical neighborhoods shielding the boundary.
The following is a simple example. Suppose � is a sphere or a torus and γ is a metric
of nonnegative Gauss curvature on �. Given a constant L > 0, consider the product
manifold

(P, gP ) = (� × [0, L], γ + dt2).

If (M, g) contains a neighborhood U of ∂M so that (U , g) is isometric to (P, gP )

with ∂M = � × {0}, then one can consider the harmonic function v on (P, gP ) with
v = 0 on � × {0} and v = 1 on � × {L}. By the maximum principle, |∇u| ≤ |∇v|.
Hence

4r2
�
L−2 = 1

π

∫
�

|∇v|2 ≥ 1

π

∫
�

|∇u|2, (8.21)

where 4πr2
�
is the area of (�, γ ). Therefore, if (M, g) satisfies condition (8.1), then

(ii) of Corollary 8.2 shows L ≤ 2r� .
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One can always construct manifolds satisfying (8.1) by cutting off a compact set in
a given asymptotically flat (M, g). For instance, if a triple (M, g, �) hasm > c� , then,
by (8.4), the exterior of �t in (M, g) satisfiesm ≤ c�t

for any regular t ≥ 1− c�m
−1.

The complement of a finite domain enclosing the Schwarzschild horizon in
(Mm, gm) is an example of a static extension in the context of Bartnik’s quasi-local
mass [5]. Here an asymptotically flat (M, g) is called static (see [12] for instance) if
there is a nontrivial function N on (M, g), referred as a static potential, such that

{
N Ric = ∇2N ,

�N = 0,
(8.22)

where Ric denotes the Ricci curvature of g. These spaces necessarily have zero scalar
curvature.

The next proposition, among other things, shows an asymptotically flat manifold
with boundary, admitting a positive static potential, satisfies (8.1).

Proposition 8.1 Let (M, g) be a complete, orientable, asymptotically flat 3-manifold
with boundary �. Suppose there is a static potential N that is positive in the interior
of (M, g). Then

mc−1
�

≤ 1.

If � is connected and H2(M, �) = 0, then

(i) m ≤ r
�

2

[
1 + ( 1

16π

∫
�
H2)

1
2
]
, where r� is the area-radius of �; and

(ii) any closed, regular level set St = N−1(t) is connected and enclosing �; if N is
normalized so that N → 1 at ∞, then, along St ,

N 2 ≤ 1

16π

∫
St
H2,

1 − N 2 ≤
(
1

π

∫
St

|∇N |2
) 1

2 ≤ (1 − N )

[
1 +

(
1

16π

∫
St
H2

) 1
2
]

,

and

N (1 − N )(1 + N ) ≤ 1

4π

∫
St
H |∇N |.

Moreover, equality holds in any of these inequalities if and only if the exte-
rior of St in (M, g) is isometric to a spatial Schwarzschild manifold outside a
rotationally symmetric sphere with nonnegative constant mean curvature.

Proof The static system (8.22) and the assumption N > 0 near ∞ imply that, upon
multiplying N by a constant,

N = 1 − m

|x | + o(|x |−1),
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where m is the mass of (M, g) (see [9, 24] for instance). If in addition N ≥ 0 at �,
then m ≤ c� by the maximum principle.

The mass estimate in (i) follows from (i) of Corollary 8.2.
Suppose St is a closed, regular level set of N . By the topological assumption on

M and the fact N is harmonic, St only has one connected component and it encloses
�. Let Et denote the exterior of St in M . The inequalities in (ii), with the rigidity
conclusions, follow from applying Theorem 7.4, Corollary 7.1, Theorem 7.3, and
Theorem 8.1, respectively, to

u(t) = N − t

1 − t

on (Et , g) and using the fact cSt = m

1 − t
. �

In the context of the Bartnik mass [5], asymptotically flat extensions are often
assumed to have no closed minimal surface enclosing the boundary to prevent the
infimum of the mass over all extensions from being trivially zero. We note here, if an
asymptotically flat 3-manifold (M, g) with boundary � satisfies the mass-to-capacity
relation mc−1

�
≤ 1, then necessarily there are no closed minimal surfaces enclosing

�. This is because, if such a minimal surface S exists, then m ≥ cS by the result of
Bray [6]. On the other hand, cS > c� . Hence, m > c� , violating (8.1).

Considering this and Proposition 8.1, we think manifolds satisfying condition (8.1)
are worthy of further study. The mass-to-capacity ratio condition mc−1

�
≤ 1 may

serve as an alternative to the no-minimal-surface or outer-minimizing conditions in
the formulation of the Bartnik mass.
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Appendix A: Regularization and Integration

In this appendix, we give the regularization arguments that can be used to verify the
monotonicity of �(t), A(t) and B(t) in Sect. 3.

Lemma A.1 Let u be a harmonic function on a compact Riemannian manifold (�, g)
with boundary ∂�. Suppose max� u < 1. Then

∫
∂�

|∇u|
1 − u

∂u

∂ζ
=

∫
�

|∇u|3
(1 − u)2

+
∫

{∇u �=0}⊂�

∇2u(∇u,∇u)

(1 − u)|∇u| (A.1)
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and

∫
∂�

|∇u|
(1 − u)3

∂u

∂ζ
=

∫
�

3|∇u|3
(1 − u)4

+
∫

{∇u �=0}⊂�

∇2u(∇u,∇u)

(1 − u)3|∇u| . (A.2)

Here ζ denotes the unit normal to ∂� pointing out of �.

Proof Given any constant ε > 0, one has

div

(√|∇u|2 + ε

1 − u
∇u

)
=

√|∇u|2 + ε

(1 − u)2
|∇u|2 + 1

1 − u

∇2u(∇u,∇u)√|∇u|2 + ε
.

Therefore,

∫
∂�

√|∇u|2 + ε

1 − u

∂u

∂ζ
=

∫
�

√|∇u|2 + ε

(1 − u)2
|∇u|2 +

∫
�

1

1 − u

∇2u(∇u,∇u)√|∇u|2 + ε
. (A.3)

For the third term in (A.3), one notes

∫
�

1

1 − u

∇2u(∇u,∇u)√|∇u|2 + ε
=

∫
{∇u �=0}⊂�

1

1 − u

∇2u(∇u,∇u)√|∇u|2 + ε

=
∫

{∇u �=0}⊂�

1

1 − u
∇2u

( ∇u

|∇u| ,
∇u

|∇u|
) |∇u|2√|∇u|2 + ε

.

Thus, taking ε → 0 in (A.3) proves (A.1).
Similarly, to show (A.2), one has

div

[√|∇u|2 + ε

(1 − u)3
∇u

]
= 3

√|∇u|2 + ε

(1 − u)4
|∇u|2 + 1

(1 − u)3

∇2u(∇u,∇u)√|∇u|2 + ε
.

Consequently,

∫
∂�

√|∇u|2+ε

(1−u)3

∂u

∂ζ
=
∫

�

3
√|∇u|2+ε

(1−u)4
|∇u|2+

∫
�

1

(1−u)3

∇2u(∇u,∇u)√|∇u|2+ε
. (A.4)

The third term above satisfies

∫
�

1

(1 − u)3

∇2u(∇u,∇u)√|∇u|2 + ε

=
∫

{∇u �=0}⊂�

1

(1 − u)3
∇2u

( ∇u

|∇u| ,
∇u

|∇u|
) |∇u|2√|∇u|2 + ε

.

Thus, (A.2) follows by taking ε → 0 in (A.4). �
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Lemma A.2 Let u be a harmonic function on a compact, orientable, Riemannian 3-
manifold (�, g) with boundary ∂�. Supposemax� u < 1 and u equals a constant on
each connected component of ∂�. Then

∫
∂�

H |∇u|
(1 − u)2

≤
∫ t2

t1

1

(1 − t)2

{∫
�t

[
2H |∇u|
1 − t

− 1

2

( |∇2u|2
|∇u|2 +R

)]
+2πχ(�t )

}
.

(A.5)

Here the mean curvature H of ∂� is taken with respect to the unit normal ζ pointing
out of �, the mean curvature H of a regular level set �t is taken with respect to
|∇u|−1∇u, χ(�t ) is the Euler characteristic of �t , t1 = min� u, and t2 = max� u.

Proof For any constant ε > 0, one has

div

[
∇√|∇u|2 + ε

(1 − u)2

]
= �

√|∇u|2 + ε

(1 − u)2
+ 2∇2u(∇u,∇u)

(1 − u)3
√|∇u|2 + ε

.

Therefore,

∫
∂�

∂ζ

√|∇u|2 + ε

(1 − u)2
=

∫
�

�
√|∇u|2 + ε

(1 − u)2
+

∫
�

2∇2u(∇u,∇u)

(1 − u)3
√|∇u|2 + ε

. (A.6)

As u is constant on each connected component of ∂�, direct calculations gives

∂ζ

√
|∇u|2 + ε = − |∇u|2√|∇u|2 + ε

H .

(See Lemma 2.1 in [16] for instance.) Thus,

lim
ε→0

∫
∂�

∂ζ

√|∇u|2 + ε

(1 − u)2
= −

∫
∂�

H |∇u|
(1 − u)2

. (A.7)

As in the proof of the previous lemma, taking ε → 0 in the third term in (A.6)
gives

lim
ε→0

∫
�

2∇2u(∇u,∇u)

(1 − u)3
√|∇u|2 + ε

=
∫

{∇u �=0}⊂�

2∇2u(∇u,∇u)

(1 − u)3|∇u|

= −
∫ t2

t1

2

(1 − t)3

∫
�t

H |∇u|,
(A.8)

where the second equation follows from the coarea formula and (3.5).
To deal with the second term in (A.6), we follow an argument of Stern [30]. Let

C denote the set of critical values of u in [t1, t2]. Let W denote an open set of [t1, t2]
such that W contains C. Let D be the complement of W in [t1, t2].
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On u−1(D), �
√

|∇u|2+ε

(1−u)2|∇u| is integrable. By coarea formula,

∫
u−1(D)

�
√|∇u|2 + ε

(1 − u)2
=

∫
D

∫
�t

�
√|∇u|2 + ε

(1 − u)2|∇u| .

Along �t which a regular level set of u, by equation (14) in [30],

�
√

|∇u|2 + ε ≥ 1

2
√|∇u|2 + ε

[|∇2u|2 + (R − 2K�t
)|∇u|2], (A.9)

where K�t
is the Gauss curvature of �t . Thus,

∫
u−1(D)

�
√|∇u|2 + ε

(1 − u)2
≥

∫
D

∫
�t

1

(1 − u)2|∇u|
[|∇2u|2 + (R − 2K�t

)|∇u|2]
2
√|∇u|2 + ε

.

(A.10)

With W fixed, letting ε → 0 in (A.10) gives

lim inf
ε→0

∫
u−1(D)

�
√

|∇u|2 + ε

(1 − u)2
≥

∫
D

∫
�t

[|∇2u|2 + (R − 2K�t
)|∇u|2]

(1 − u)2 2|∇u|2

=
∫
D

1

(1 − t)2

[∫
�t

1

2

(|∇u|−2|∇2u|2 + R
)

−2πχ(�t )] , (A.11)

where one also used the Gauss–Bonnet theorem.
To estimate the integral on u−1(W ), one notes

�
√

|∇u|2 + ε = 1√|∇u|2 + ε

[
|∇2u|2 + Ric(∇u,∇u) − 1

4(|∇u|2 + ε)

∣∣∇|∇u|2∣∣2
]

≥ 1√|∇u|2 + ε
Ric(∇u,∇u).

This implies

∫
u−1(W )

�
√|∇u|2 + ε

(1 − u)2
≥ −max

�
|Ric|

∫
u−1(W )

|∇u|
(1 − u)2

= −max
�

|Ric|
∫
W

∫
�t

1

(1 − u)2
.

(A.12)
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It follows from (A.11) and (A.12) that

lim
ε→0

∫
�

�
√|∇u|2 + ε

(1 − u)2
≥

∫
D

1

(1 − t)2

[∫
�t

1

2

(|∇u|−2|∇2u|2 + R
) − 2πχ(�t )

]

− max
�

|Ric|
∫
W

∫
�t

1

(1 − u)2
.

As
∫
�

|∇u|
(1−u)2

< ∞, by choosing the measure of W to be arbitrarily small, one has

lim
ε→0

∫
�

�
√

|∇u|2 + ε

(1 − u)2
≥

∫ t2

t1

1

(1 − t)2

[∫
�t

1

2

(|∇u|−2|∇2u|2 + R
) − 2πχ(�t )

]
.

(A.13)

The lemma now follows from (A.6), (A.7), (A.8) and (A.13). �
Remark A.1 (A.5) may be viewed as a weighted version of the identity (3.4).

Proposition A.1 Let (�, g) be a connected, compact, orientable, Riemannian 3-
manifold with boundary ∂�. Suppose ∂� is the disjoint union of two nonempty pieces
S1 and S2. Let u be a harmonic function on (�, g) such that u = ci on Si , i = 1, 2,
where c1, c2 are constants with c1 < c2 < 1. For regular values t , let

A(t) = 8π − 1

(1 − t)

∫
�t

H |∇u|, A(t) = A(t)

1 − t
,

B(t) = 4π − 1

(1 − t)2

∫
�t

|∇u|2, B(t) = B(t)

1 − t
.

Then, for any two regular values t1 < t2,

B(t2) − B(t1) =
∫ t2

t1

1

(1 − t)2
[3B(t) − A(t)] , (A.14)

and

A(t2) − A(t1) ≥
∫ t2

t1

1

(1 − t)2
[
3B(t) − A(t) + 2π

(
2 − χ(�t )

) + ψ(t)
]
,

(A.15)

where

ψ(t) =
∫

�t

[
3

4

(
H − 2|∇u|

1 − u

)2

+ |∇u|−2
∣∣∇�t

|∇u|∣∣2 + 1

2
|I̊I|2 + 1

2
R

]
.

As a result, if
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• (M, g) is a complete, orientable, asymptotically flat 3-manifold with connected
boundary � and H2(M, �) = 0;

• u is the harmonic function on (M, g) with u = 0 at � and u → 1 at ∞; and
• g has nonnegative scalar curvature,

then �t is connected, 3B(t) − A(t) ≥ 0 by (3.3), and consequently,

B(t2) − B(t1) ≥ 0 and A(t2) − A(t1) ≥ 0.

Proof Applying (A.2) in Lemma A.1 to �[t1,t2] = {x | t1 ≤ u(x) ≤ t2}, one has
∫

�t2

|∇u|2
(1 − u)3

−
∫

�t1

|∇u|2
(1 − u)3

=
∫

�[t1,t2]

3|∇u|3
(1 − u)4

+
∫

{∇u �=0}⊂�[t1,t2]

∇2u(∇u,∇u)

(1 − u)3|∇u|

=
∫ t2

t1

∫
�t

[
3|∇u|2
(1 − t)4

− H |∇u|
(1 − t)3

]
,

This, combined with 1
1−t2

− 1
1−t1

= ∫ t2
t1

1
(1−t)2

, shows

B(t2) − B(t1) =
∫ t2

t1

[
4π

(1 − t)2
+

∫
�t

H |∇u|
(1 − t)3

−
∫

�t

3|∇u|2
(1 − t)4

]

=
∫ t2

t1

1

(1 − t)2
[3B(t) − A(t)] ,

(A.16)

which proves (A.14).
Similarly, applying Lemma A.2 to u on �[t1,t2] and using (3.6), one has

1

(1 − t2)2

∫
�t2

H |∇u| − 1

(1 − t1)2

∫
�t1

H |∇u|

≤
∫ t2

t1

1

(1 − t)2

[
2πχ(�t ) +

∫
�t

2H |∇u|
1 − t

−
∫

�t

3

4
H2 −

∫
�t

(
|∇u|−2

∣∣∇�t
|∇u|∣∣2 + 1

2
|I̊I|2 + 1

2
R

)]

=
∫ t2

t1

1

(1 − t)2

[
2πχ(�t ) − ψ(t) − 1

1 − t

∫
�t

H |∇u| + 3

(1 − t)2

∫
�t

|∇u|2
]

.

Therefore,

A(t2) − A(t1) ≥
∫ t2

t1

1

(1 − t)2
[
3B(t) − A(t) + 2π

(
2 − χ(�t )

) + ψ(t)
]
,

which proves (A.15). �

123



Mass, Capacitary Functions, and the Mass-to-Capacity Ratio

Remark A.2 As a corollary of (A.14) and (A.15),

[A(t2) − B(t2)] − [A(t1) − B(t1)]

≥
∫ t2

t1

1

(1 − t)2
[
2π

(
2 − χ(�t )

) + ψ(t)
]
.

(A.17)

This corresponds to the monotonicity of F(t) = A(t) − B(t) in [2].
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