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Abstract
A version of the singular Yamabe problem in bounded domains yields complete 
conformal metrics with negative constant scalar curvatures. In this paper, we study 
whether these metrics have negative Ricci curvatures. Affirmatively, we prove that 
these metrics indeed have negative Ricci curvatures in bounded convex domains 
in the Euclidean space. On the other hand, we provide a general construction of 
domains in compact manifolds and demonstrate that the negativity of Ricci curva-
tures does not hold if the boundary is close to certain sets of low dimension. The 
expansion of the Green’s function and the positive mass theorem play essential roles 
in certain cases.

Keywords Negativity of Ricci curvatures · The singular Yamabe problem · Negative 
sectional curvatures

Mathematics Subject Classification 53C21

1 Introduction

Let (M, g) be a compact Riemannian manifold of dimension n without boundary, 
for n ≥ 3 , and Γ be a smooth submanifold in M. For (M, g) = (Sn, gSn ) , Loewner 
and Nirenberg [15] proved that there exists a complete conformal metric on Sn ⧵ Γ 
with a negative constant scalar curvature if and only if dim(Γ) > (n − 2)∕2 . Aviles 
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and McOwen [4] proved a similar result for the general manifold (M,  g). As a 
consequence, we can take the dimension of the submanifold to be n − 1 and con-
clude the following result: In any compact Riemannian manifold with boundary, 
there exists a complete conformal metric with a negative constant scalar curva-
ture. See [4]. For convenience, we always take the constant scalar curvature to be 
−n(n − 1) . In this paper, we will study whether Ricci curvatures of such a metric 
remain negative.

For the case of positive scalar curvatures, the existence and asymptotic behav-
iors of solutions have been extensively studied over the years. We shall not dis-
cuss this case here, but refer to [5, 12, 19–21, 23].

There are several classical results for metrics with negative Ricci curvatures. 
Gao and Yau [7] proved that there exists a metric of negative Ricci curvature on 
every compact 3-dimensional manifold without boundary. Lohkamp [16] general-
ized this to arbitrary dimensions and proved that any manifold of dimension n ≥ 3 
(compact or not) admits a complete metric of negative Ricci curvature. Restricted 
to conformal metrics, by solving det(Ric) = constant with a precise boundary 
asymptotics, Guan [8] and Gursky, Streets and Warren [9] proved that there exists 
a complete conformal metric with negative Ricci curvature on a compact Rie-
mannian manifold with boundary.

In the unit ball in the Euclidean space, the complete conformal metric with 
scalar curvature −n(n − 1) is exactly the Poincaré metric of the unit ball model 
of the hyperbolic space and has sectional curvatures −1 and Ricci curvatures 
−(n − 1) . In particular, it has negative sectional curvatures and Ricci curvatures. 
A natural question is whether this remains true for the more general case; namely, 
whether the complete conformal metric with a negative constant scalar curvature 
in a compact Riemannian manifold with boundary has negative sectional curva-
tures or negative Ricci curvatures. We point out that a straightforward calculation 
based on the polyhomogeneous expansion established in [1] and [18] yields that 
such a metric has sectional curvatures asymptotically equal to −1 near boundary. 
Our main concern is whether the negativity of the sectional curvatures or Ricci 
curvatures near boundary can be carried over to the entire domain.

In view of the Poincaré metric in the unit ball model of the hyperbolic space, 
it is reasonable to expect that the complete conformal metric with a negative con-
stant scalar curvature should have negative sectional curvatures in a domain close 
to the unit ball in the Euclidean space. We will confirm this in this paper. In fact, 
we will prove an affirmative result for convex domains in the Euclidean space.

Theorem  1.1 Let Ω ⊂ ℝ
n be a bounded convex domain, for n ≥ 3 , and gΩ be the 

complete conformal metric in Ω with the constant scalar curvature −n(n − 1) . Then, 
gΩ has negative sectional curvatures in Ω . Moreover, gΩ has Ricci curvatures strictly 
less than −n∕2 in Ω.

The convexity assumption of the domain Ω is crucial. It allows us to apply 
a convexity theorem by Kennington [10] directly to conformal factors. The-
orem  1.1 does not hold for general bounded domains in ℝn . In fact, in certain 
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bounded star-shaped domains, the conformal metrics may have arbitrarily large 
positive Ricci curvature components. See Example 5.6. Note that bounded convex 
domains and bounded star-shaped domains have the same topology.

Closely related to the negativity of the Ricci curvatures is whether there is 
a constant rank theorem for metrics with negative Ricci curvatures, since it is 
already known that the Ricci curvatures are negative near boundary. Caffarelli, 
Guan, and Ma [6] proved a constant rank theorem for the �k-curvature equations 
under certain positivity conditions on curvatures. However, their result is not 
applicable in our case. Our strategy is to connect directly boundary curvatures of 
domains with the interior curvature tensors of the complete conformal metrics.

We now turn our attention to bounded smooth domains which are sufficiently 
“far” from the unit ball. According to Aviles and McOwen [4], to have a complete 
conformal metric with constant negative scalar curvature in M ⧵ Γ , it is required 
that dim(Γ) > (n − 2)∕2 . Closely related is a result proved by Mazzeo and Pacard 
[19] that there exist complete conformal metrics in Sn ⧵ Γ with constant positive 
scalar curvatures if dim(Γ) ≤ (n − 2)∕2 . In view of these results, we can ask what 
happens to Ricci curvatures of the complete conformal metrics with scalar curva-
tures fixed at −n(n − 1) in domains Ω ⊂ M whose (n − 1)-dimensional boundary is 
close to a smooth submanifold Γ of dimension ≤ (n − 2)∕2 . Do Ricci curvatures 
have mixed signs as �Ω becomes close to a low dimensional set, say a single 
point?

In this paper, we will construct domains where complete conformal metrics have 
large positive Ricci curvatures in domains in compact Riemannian manifolds.

Theorem  1.2 Let (M,  g) be a compact Riemannian manifold of dimension n ≥ 3 
without boundary and Γ be a disjoint union of finitely many closed smooth embed-
ded submanifolds in M of varying dimensions, between 0 and (n − 2)∕2 . Consider 
the following cases:

Case 1.  Γ contains a submanifold of dimension j, with 1 ≤ j ≤ (n − 2)∕2.
Case 2.  If (M, g) is not conformally equivalent to the standard sphere Sn , Γ con-

sists of finitely many points.
Case 3.  If (M, g) is conformally equivalent to Sn , Γ consists of at least two but only 

finitely many points.

Suppose that Ωi is a sequence of increasing domains with smooth boundary in M 
which converges to M ⧵ Γ and that gi is the complete conformal metric in Ωi with the 
constant scalar curvature −n(n − 1) . Then, for sufficiently large i, gi has a positive 
Ricci curvature component somewhere in Ωi . Moreover, the maximal Ricci curva-
ture in Ωi diverges to ∞ as i → ∞.

By the convergence of Ωi to M ⧵ Γ , we mean 
⋃∞

i=1
Ωi = M ⧵ Γ and, for any 

𝜀 > 0 , �Ωi is in the �-neighborhood of Γ for all large i. By convention, a zero 
dimensional submanifold is simply a point.
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The difference between Case 2 and Case 3 in Theorem  1.2 lies on the num-
ber of isolated points when closed smooth embedded submanifolds of positive 
dimension are absent from Γ . On manifolds conformally equivalent to the stand-
ard sphere, the number of the isolated points has to be at least two; while on man-
ifolds not conformally equivalent to the standard sphere, we can allow one point. 
Theorem  1.2 does not necessarily hold if Γ consists of one point on manifolds 
conformally equivalent to the standard sphere. See Remark 4.5. Such a difference 
demonstrates that the background manifolds also play a decisive role in the issue 
studied in this paper.

As a consequence of Case 2, with Γ consisting of just one point, we have the 
following rigidity result.

Theorem  1.3 Let (M,  g) be a compact Riemannian manifold of dimension n ≥ 3 
without boundary and x0 be a point in M. Suppose that there exists a sequence Ωi 
of increasing domains with smooth boundary in M which converges to M⧵{x0} , 
such that the complete conformal metric in Ωi with the constant scalar curvature 
−n(n − 1) has uniformly bounded Ricci curvatures in Ωi . Then, M is conformally 
equivalent to the standard sphere Sn.

The set Γ in Theorem  1.2 resembles that in [19]. The metric gi in Ωi as in 
Theorem 1.2 is assumed to have a negative constant scalar curvature, −n(n − 1) . 
As Ωi becomes close to M ⧵ Γ , Ricci curvatures split in sign. Some components 
become negatively large, while some others positively large.

The proof of Theorem 1.2 relies on a careful analysis of the Ricci curvatures of 
the complete conformal metrics near boundary. The polyhomogeneous expansion 
provides correct values near boundary for applications of the maximum principle. 
The Yamabe invariant of (M,  g) plays a crucial role and determines behaviors of 
the convergence of the conformal factors. Among the three cases listed in Theo-
rem 1.2, Case 2 is the most difficult to prove, especially when the Yamabe invariant 
is between zero and that of the standard sphere. When Γ consists of one point x0 , 
we need expansions of Green’s functions. If n = 3, 4, 5 , or M is conformally flat in a 
neighborhood of x0 , we need to employ the positive mass theorem. If n ≥ 6 and M 
is not conformally flat in a neighborhood of x0 , we need to distinguish the two cases 
W(x0) ≠ 0 and W(x0) = 0 . Discussions for the latter case is much more complicated 
than the former case. The proof here seems to resemble the solution of the Yamabe 
problem, but with one twist. In solving the Yamabe problem, we can choose a point 
where the Weyl tensor is not zero in the case that M is not conformally flat. In our 
case, x0 is a given point and the Weyl tensor can be zero even if M is not conformally 
flat in a neighborhood of x0 . Different vanishing orders of W at x0 requires different 
methods. In fact, we also need to employ the positive mass theorem if the Weyl ten-
sor vanishes at x0 up to a sufficiently high order. The positive mass theorem has been 
known to be true if 3 ≤ n ≤ 7 , or M is locally conformally flat, or M is spin. See [13, 
22, 24] and [26]. These conditions might be technical and could be removed accord-
ing to the recent papers [17] and [25]. Refer to Remark 4.4 on how the positive mass 
theorem is used in the proof of Theorem 1.2.
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The paper is organized as follows. In Sect. 2, we discuss some preliminary iden-
tities. In Sect.  3, we study the Ricci curvatures of complete conformal metrics in 
bounded convex domains in the Euclidean space and prove Theorem 1.1. In Sect. 4, 
we study the Ricci curvatures of complete conformal metrics in domains in compact 
manifolds and prove Theorem 1.2. In Sect.  5, we present several examples in the 
Euclidean space.

We would like to thank Matthew Gursky for suggesting the problem studied in 
this paper and many helpful discussions. Gursky graciously shared many of his 
stimulating computations with us. We would also like to thank Yuguang Shi for 
helpful discussions.

2  Preliminaries

Let (M,  g) be a smooth Riemannian manifold of dimension n, for some n ≥ 3 , 
either compact without boundary or noncompact and complete. Assume Ω ⊂ M is a 
smooth domain, with an (n − 1)-dimensional boundary. If (M, g) is noncompact, we 
assume, in addition, that Ω is bounded. We consider the following problem:

where Sg is the scalar curvature of M. According to Loewner and Nirenberg [15] for 
(M, g) = (Sn, gSn ) and Aviles and McOwen [4] for the general case, (2.1) and (2.2) 
admits a unique positive solution. We note that u

4

n−2 g is the complete metric with a 
constant scalar curvature −n(n − 1) on Ω . Andersson, Chruściel and Friedrich [1] 
and Mazzeo [18] established the polyhomogeneous expansions for the solutions. For 
the first several terms, we have

where d is the distance to �Ω and H�Ω is the mean curvature of �Ω with respect to 
the interior unit normal vector of �Ω . Set

Then,

Moreover,

(2.1)Δgu −
n − 2

4(n − 1)
Sgu =

1

4
n(n − 2)u

n+2

n−2 in Ω,

(2.2)u = ∞ on �Ω,

u = d
−

n−2

2

[
1 +

n − 2

4(n − 1)
H�Ωd + O(d2)

]
,

(2.3)v = u
−

2

n−2 .

(2.4)vΔgv +
1

2(n − 1)
Sgv

2 =
n

2
(|∇gv|2 − 1) in Ω,

(2.5)v = 0 on �Ω.
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This implies

We will use this repeatedly later on.
Consider the conformal metric

For a unit vector X of g, vX is a unit vector of gΩ . Let Rij be the Ricci components of 
g in a local frame for the metric g and RΩ

ij
 be the Ricci components of gΩ in the cor-

responding frame for the metric gΩ . Then,

By (2.4), we have

or

We emphasize that (2.9) and (2.10) play important roles in the rest of the paper. By 
(2.5) and (2.7), we obtain

In other words, the Ricci curvatures of conformal metrics gΩ are asymptoti-
cally equal to −(n − 1) near boundary. We note that this holds in arbitrary smooth 
domains.

If (M, g) = (ℝn, gE) , then (2.1) and (2.2) reduce to

In this case, the function v given by (2.3) satisfies

(2.6)v = d −
1

2(n − 1)
H�Ωd

2 + O(d3).

(2.7)|∇gv| = 1 on �Ω.

(2.8)gΩ = u
4

n−2 g = v−2g.

RΩ
kl
= v2Rkl + (n − 2)

[
vv,kl −

1

2
gkl|∇gv|2

]
+ gkl

[
vΔgv −

n

2
|∇gv|2

]
.

(2.9)RΩ
kl
= v2Rkl + (n − 2)

[
vv,kl −

1

2
gkl|∇gv|2

]
− gkl

[
1

2(n − 1)
v2Sg +

n

2

]
,

(2.10)RΩ
kl
= v2Rkl −

1

2(n − 1)
v2gklSg + (n − 2)vv,kl −

n − 2

2
gkl|∇gv|2 − n

2
gkl.

RΩ
kl
= −(n − 1)gkl + O(d).

(2.11)Δu =
1

4
n(n − 2)u

n+2

n−2 in Ω,

(2.12)u = ∞ on �Ω.

(2.13)vΔv =
n

2
(|∇v|2 − 1).
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Let gΩ be the metric given by (2.8) with g = gE , i.e., gΩ = v−2gE . Denote by RΩ
ijij

 and 
RΩ
ij

 the sectional curvatures and Ricci curvatures of gΩ in the orthonormal coordi-
nates of gΩ , respectively. Then, for i ≠ j,

and, for any i, j,

Hence, for any i ≠ j,

and, for any i, j,

Note

and

We can also express RΩ
ijij

 and RΩ
ij

 in terms of u.

3  Convex Domains in Euclidean Spaces

In this section, we study Ricci curvatures and sectional curvatures of the complete 
conformal metrics associated with the Loewner–Nirenberg problem in bounded 
domains in the Euclidean space. We will prove that the complete conformal met-
rics in bounded convex domains have negative sectional curvatures. The convexity 
assumption allows us to apply a convexity theorem by Kennington [10] directly to 
conformal factors.

Proof of Theorem 1.1 Let u be the solution of (2.11) and (2.12) in Ω and v be given 
by (2.3). Then, g = v−2gE is the complete conformal metric in Ω with a constant 
scalar curvature −n(n − 1) . Denote by Rijij and Rij the sectional curvatures and Ricci 
curvatures of g in the orthonormal coordinates of g, given by (2.14) and (2.15), 
respectively. Here, we suppress Ω from the notations g, Rij and Rijij.

By applying the Laplacian operator to (2.13), we get

(2.14)RΩ
ijij

= vvii + vvjj − |∇v|2,

(2.15)RΩ
ij
= (n − 2)vvij −

[
n − 2

2
|∇v|2 + n

2

]
�ij.

RΩ
ijij

= −1 + O(d),

RΩ
ij
= −(n − 1)�ij + O(d).

vi = −
2

n − 2
u
−

2

n−2
−1
ui,

(2.16)vij = −
2

n − 2
u
−

2

n−2

(
uij

u
−

n

n − 2

uiuj

u2

)
.
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First, we assume that the boundary of Ω is smooth. By (2.6), we have

Since Ω is convex, we have Δv ≤ 0 on �Ω . By the strong maximum principle, we 
obtain Δv < 0 in Ω . Therefore, |∇v| < 1 in Ω by (2.13). Next, we apply [10, Theo-
rems 3.1 and 3.2] in Ω and conclude that v is concave. In fact, we write (2.13) as

Then, we can verify directly the hypothesis (i) of [10, Theorem 3.1] by |∇v| < 1 and 
the hypothesis (ii) of [10, Theorem 3.2], since |∇v| < 1 , v = 0 on �Ω , and ∇v is the 
inner unit normal vector on �Ω.

For general bounded convex domains, we can obtain the concavity of v by 
approximations.

Since vii ≤ 0 , by (2.14) and (2.15), we get, for any i ≠ j,

and, for any i,

By (2.16), we also have, for any i,

Next, we prove that Rijij does not vanish in Ω for any i ≠ j . If Rijij = 0 at some point 
x0 ∈ Ω for some i ≠ j , then

and

In fact, by (2.14) and vvii ≤ 0 , if Rijij(x0) = 0 , then ∇v(x0) = 0 and thus ∇u(x0) = 0 . 
Hence, uii(x0) = 0 . Applying �i twice to the equation (2.11), we get

Combining with (3.1), we have

vΔ(Δv) + (2 − n)∇v∇(Δv) = n|∇2v|2 − (Δv)2 ≥ 0.

Δv = −H�Ω −
1

n − 1
H�Ω + O(d) = −

n

n − 1
H�Ω + O(d).

Δv =
n(|∇v|2 − 1)

2v
.

Rijij ≤ 0,

Rii ≤ −
n

2
.

(3.1)uii

u
−

n

n − 2

u2
i

u2
≥ 0.

(
uii

u
−

n

n − 2

u2
i

u2

)
(x0) = 0,

∇u(x0) = 0.

Δuii =
1

4
n(n + 2)u

n+2

n−2

uii

u
+

n(n + 2)

n − 2
u

n+2

n−2

u2
i

u2
.
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By the strong maximum principle, we have uii ≡ 0 in Ω . On the other hand, by 
ui(x0) = 0 , we get ui ≡ 0 on Ω ∩ {x0 + tei | t ∈ ℝ} . Therefore, u is constant on 
Ω ∩ {x0 + tei | t ∈ ℝ} . This leads to a contradiction. Therefore, we have, for any 
i ≠ j,

Similarly, we have, for any i,

This completes the proof.   ◻

We point out that the upper bounds of sectional curvatures and Ricci curvatures in 
Theorem 1.1 are given by strict inequalities and, in fact, are optimal. To see this, set

Let gD be the complete conformal metric with the constant scalar curvature 
−n(n − 1) in D, and RD

ijij
 and RD

ii
 be the sectional curvatures and Ricci curvatures of 

gD , respectively. Then, RD
ijij
(0) = 0 , for i ≠ j , i, j ≠ n , and RD

ii
(0) = −n∕2 , for i ≠ n . 

Set ΩR = D ∩ BR . Then, RΩR

ijij
(0) → 0 , for i ≠ j , i, j ≠ n , and RΩR

ii
(0) → −n∕2 for i ≠ n , 

as R → ∞.

4  Domains in Compact Manifolds

In this section, we discuss domains in compact Riemannian manifolds without bound-
ary. We construct domains with boundary close to certain sets of low dimension such 
that the complete conformal metrics with a negative constant scalar curvature have 
positive Ricci components somewhere. Throughout this section, the Yamabe invariant 
plays a crucial role. It determines convergence behaviors of conformal factors and, as a 
consequence, the methods to be employed. In certain cases, we need to employ expan-
sions of the Green’s function, and also the positive mass theorem.

Suppose (M, g) is a compact Riemannian manifold of dimension n ≥ 3 without 
boundary. The Yamabe invariant of M is given by

The conformal Laplacian of (M, g) is given by

Δuii −
1

4
(n + 2)(n + 4)u

4

n−2 uii = (n + 2)u
n+2

n−2

(
n

n − 2

u2
i

u2
−

uii

u

)
≤ 0.

Rijij < 0.

Rii < −
n

2
.

D =
{
(x1,… , xn) | − 1 < xn < 1

}
⊂ ℝ

n.

𝜆(M, [g]) = inf

⎧
⎪⎨⎪⎩

∫
M

��∇g𝜙�2 + n−2

4(n−1)
Sg𝜙

2
�
dVg

� ∫
M
𝜙

2n

n−2 dVg

� n−2

n

�����
𝜙 ∈ C∞(M),𝜙 > 0

⎫
⎪⎬⎪⎭
.
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For any function � in M, we have

We first prove a convergence result which plays an important role in this sec-
tion. According to signs of Yamabe invariants, conformal factors exhibit different 
convergence behaviors. We note that the maximum principle is applicable to the 
operator Lg if Sg ≥ 0.

Lemma 4.1 Suppose (M, g) is a compact Riemannian manifold of dimension n ≥ 3 
without boundary, with a constant scalar curvature Sg , and Γ is a closed smooth 
submanifold of dimension d in M, 0 ≤ d ≤ n−2

2
 . Suppose Ωi is a sequence of increas-

ing domains with smooth boundary in M which converges to M ⧵ Γ . Let ui be the 
solution of (2.1) and (2.2) in Ωi . Then, for any positive integer m, if Sg ≥ 0,

and, if Sg < 0,

Proof We first consider the case Sg ≥ 0 . By the maximum principle, we have 
ui ≥ ui+1 in Ωi . It is straightforward to verify, for any m,

where u is a nonnegative solution of (2.1) in M ⧵ Γ . By the second part of [4, 
p. 398], u is bounded. Let �(x) be a positive smooth function in M ⧵ Γ which equals 
to dist(x,Γ) in a neighborhood of Γ in M. Then,

Take 𝜖0 > 0 sufficiently small. Then,

Since d ≤ n−2

2
 , we have Δ𝜌−

n−2

2
+𝜖0 < 0 near Γ . For any 𝜖 > 0 , we can find 𝛿 < 𝜖 suf-

ficiently small such that

By the maximum principle, we have

Lg = −Δg +
n − 2

4(n − 1)
Sg.

Lg(u�) = u
n+2

n−2 L
u

4
n−2 g

(�).

(4.1)u
i
→ 0 in C

m

loc
(M ⧵ Γ) as i → ∞,

(4.2)u
i
→

(
−S

g

n(n − 1)

) n−2

4

in C
m

loc
(M ⧵ Γ) as i → ∞.

ui → u in Cm
loc
(M ⧵ Γ) as i → ∞,

�(x)Δg�(x) → n − d − 1 as x → Γ.

Δg�
−

n−2

2
+�0 =

(
−

n − 2

2
+ �0

)
�−

n+2

2
+�0

(
�Δg� −

(
n

2
− �0

)
|∇g�|2

)
.

Δg(��
−

n−2

2
+�0 + �) − Sg(��

−
n−2

2
+�0 + �) ≤ n − 2

4
(��−

n−2

2
+�0 + �)

n+2

n−2 in M ⧵ Γ.
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This implies u ≡ 0 . In conclusion, we obtain (4.1).
We now consider the case Sg < 0 . We first prove Δgui ≥ 0 in Ωi, or equivalently

If (4.3) is violated somewhere, then ui must assume its minimum at some point x0 in 
the set

On the other hand, we have Δgui(x0) ≥ 0 , which leads to a contradiction. By taking 
a difference, we have

where ci is a nonnegative function in Ωi by (4.3). The maximum principle implies 
ui+1 ≤ ui in Ωi . Then, for any m,

where u is a solution of (2.1) in M ⧵ Γ . By (4.3), we have

For 𝜖 > 0 sufficiently small, let u�
i
 be the solution of

The existence of u�
i
 can be obtained by the standard method. More specifically, for 

each integer j, we solve

By the maximum principle, we have u�,j
i

≤ u
�,k
i

 if j ≤ k . For any x0 ∈ Ωi , choose nor-
mal coordinates near x0 . Then, it is easy to check that

u ≤ ��−
n−2

2
+�0 + � in M ⧵ Γ.

(4.3)ui ≥
(

−Sg

n(n − 1)

) n−2

4

in Ωi.

{
x ∈ Ωi ∶

1

4
n(n − 2)u

n+2

n−2

i
+

n − 2

4(n − 1)
Sgui < 0

}
.

Δg(ui+1 − ui) = ci(ui+1 − ui) in Ωi,

ui → u in Cm
loc
(M ⧵ Γ) as i → ∞,

(4.4)u ≥
(

−Sg

n(n − 1)

) n−2

4

in M ⧵ Γ.

(4.5)Δgu
�
i
= �

n(n − 2)

4
(u�

i
)
n+2

n−2 in Ωi,

(4.6)u�
i
= ∞ on �Ωi.

(4.7)Δgu
�,j

i
= �

n(n − 2)

4
(u

�,j

i
)
n+2

n−2 in Ωi,

(4.8)u
�,j

i
= j on �Ωi.
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is a supersolution of (4.5) when r is sufficiently small, depending on x0 . Hence, by 
the maximum principle, we have for each point x, u�,j

i
(x) ≤ C(x) , independent of j. 

Therefore, by standard estimates, u�,j
i

 converges to some u�
i
 in Cm

loc
(Ωi) as j → ∞ for 

any m, and u�
i
∈ C∞(Ωi) is a solution of (4.5)–(4.6).

By the same method as in the proof of the case Sg ≥ 0 , we obtain, for any m,

Next, we can verify

To prove this, we simply split the last term according to 1 = � + (1 − �) . Then,

which is nonnegative. By the maximum principle, we have

where we can verify the boundary condition by the polyhomogeneous expansions of 
ui and u�

i
 . Therefore, we have

This holds for any � ∈ (0, 1) . Combining (4.4) and (4.9), we obtain

ur,x0 (x) =

(
2r

r2 − |x|2
) n−2

2

u�
i
→ 0 in Cm

loc
(M ⧵ Γ) as i → ∞.

Δg

[
u�
i
+

(
−Sg

(1 − �)n(n − 1)

) n−2

4
]
≤ n − 2

4(n − 1)
Sg

[
u�
i
+

(
−Sg

(1 − �)n(n − 1)

) n−2

4
]

+
n(n − 2)

4

[
u�
i
+

(
−Sg

(1 − �)n(n − 1)

) n−2

4
] n+2

n−2

.

n − 2

4(n − 1)
S
g

[
u
�
i
+

(
−S

g

(1 − �)n(n − 1)

) n−2

4

]

+
n(n − 2)

4

[
u
�
i
+

(
−S

g

(1 − �)n(n − 1)

) n−2

4

] n+2

n−2

− �
n(n − 2)

4
(u�

i
)
n+2

n−2

≥ n(n − 2)

4

[
u
�
i
+

(
−S

g

(1 − �)n(n − 1)

) n−2

4

]

⋅

{
(1 − �)

[
u
�
i
+

(
−S

g

(1 − �)n(n − 1)

) n−2

4

] 4

n−2

+
1

n(n − 1)
S
g

}
,

ui ≤ u�
i
+

(
−Sg

(1 − �)n(n − 1)

) n−2

4

in Ωi,

(4.9)u ≤
(

−Sg

(1 − �)n(n − 1)

) n−2

4

in M ⧵ Γ.
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In conclusion, we obtain (4.2).   ◻

A similar result holds if the scalar curvature has a fixed sign, not necessarily 
constant.

Now, we study the case that the boundary is close to a closed smooth submani-
fold of low dimension. The result below holds for all compact manifolds without 
boundary, but different signs of the Yamabe invariants require different methods, 
mostly due to the different convergence behaviors as in Lemma 4.1.

Theorem  4.2 Suppose (M,  g) is a compact Riemannian manifold of dimension 
n ≥ 3 without boundary and Γ is a closed smooth submanifold of dimension d in M, 
1 ≤ d ≤ n−2

2
 . Suppose Ωi is a sequence of increasing domains with smooth boundary 

in M which converges to M ⧵ Γ and gi is the complete conformal metric in Ωi with 
the scalar curvature −n(n − 1) . Then, for sufficiently large i, gi has a positive Ricci 
curvature component somewhere in Ωi . Moreover, the maximal Ricci curvature of gi 
in Ωi diverges to ∞ as i → ∞.

Proof Let ui be the solution of (2.1) and (2.2) in Ωi and set vi = u
−

2

n−2

i
 . Then,

By the solution of the Yamabe problem, we can assume the scalar curvature Sg of M 
is the constant �(M, [g]) . Since M is compact, we can take Λ > 0 such that

We now discuss two cases according to the sign of Sg.
Case 1. We first consider the case Sg ≥ 0 . By Lemma 4.1, for any m,

and hence

We now consider two subcases.
Case 1.1. Γ is not totally geodesic. For any 𝜖 > 0 , there exist two points p, q ∈ Γ , 

such that the length of the shortest geodesic �pq connecting p and q is less than � and 
�pq ∩ Γ = {p, q} . When � is sufficiently small, we can assume q is located in a small 
neighborhood of p covered by normal coordinates. Without loss of generality, we 
assume p = 0 and q = Len.

For i large, set pi = t̂ien and qi = t̃ien , where

u =

(
−Sg

n(n − 1)

) n−2

4

.

gi = u
4

n−2

i
g = v−2

i
g.

|Rij| ≤ Λgij.

ui → 0 in Cm
loc
(M ⧵ Γ) as i → ∞,

vi diverges to∞ locally uniformly in M ⧵ Γ as i → ∞.
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Then, pi, qi ∈ �Ωi . By the convergence of Ωi to M ⧵ Γ , we have

By the polyhomogeneous expansions of vi , we have

where Ci is some positive constant which converges to 1 as i → ∞ and � → 0.
Since vi(Len∕2) → ∞ as i → ∞ , for i large, we can take ti ∈ (̂ti, t̃i) such that, for 

any t ∈ (̂ti, t̃i),

Then,

and

We also have

Denote by Ri
nn

 the Ricci curvature of gi acting on the unit vector vi
�

�xn
 with respect to 

the metric gi . By (2.10), we have, at tien,

if L is sufficiently small. Hence, some component of the Ricci curvature of gi at the 
point tien diverges to ∞ as i → ∞.

Case 1.2. Γ is totally geodesic. Fix a point x0 ∈ Γ and choose normal coordinates 
near x0 such that x0 = 0 and Γ near x0 is given by xi = 0 , i = 1,… , n − d . Consider 
the curve � given by

where R is some sufficiently large constant and � is some sufficiently small constant 
such that � ∩ Γ = {�(−�), �(�)}.

For i large, set pi = � (̂ti) and qi = � (̃ti) , where

t̂i = min{t� ∈ [0, L∕2] | ten ∈ Ωi, for any t ∈ (t�, L∕2]},

t̃i = max{t� ∈ [L∕2, L] | ten ∈ Ωi, for any t ∈ [L∕2, t�)}.

pi → p, qi → q.

|�nvi(pi)| ≤ Ci and |�nvi(qi)| ≤ Ci,

�nvi(ten) ≤ �nvi(tien).

𝜕nvi(tien) >
vi(

L

2
en) − 0

L

2

≥ 2

L
vi

(
L

2
en

)
,

�nnvi(tien) = 0.

(4.10)|vi(tien)| ≤ L

2
�nvi(tien).

Ri
nn

≤ v2
i
|Rnn| − n − 2

2
(�nvi)

2 ≤
[
L2

4
|Rnn| − n − 2

2

]
(�nvi)

2
→ −∞,

�(t) = (
√
R2 − t2 −

√
R2 − �2, 0,… , 0, t) for t ∈ [−�, �],
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Then, pi, qi ∈ �Ωi and

By the polyhomogeneous expansion of vi , we have

where C is some positive bounded constant independent of i.
Consider the single variable function (vi◦�)(t) . Since (vi◦�)(0) → ∞ as i → ∞ , 

for i large, we can take ti ∈ (̂ti, t̃i) such that, for any t ∈ (̂ti, t̃i),

Then,

and

We also have

Note that

Set

By (4.11), we have

Hence, (��i�i vi)(�(ti)) is sufficiently small compared with (|∇vi|)(�(ti)) , for R suffi-
ciently large and � sufficiently small. Write g�i�i = g(�i, �i) and denote by Ri

�i�i
 the 

Ricci curvature of gi acting on the unit vector vi�i√
g�i�i

 with respect to the metric gi . 

t̂i = min{t� ∈ [−�, 0] | �(t) ∈ Ωi, for any t ∈ (t�, 0]},

t̃i = max{t� ∈ [0, �] | �(t) ∈ Ωi, for any t ∈ [0, t�)}.

pi → �(−�), qi → �(�).

|�nvi(� (̂ti))| ≤ Ci and |�nvi(� (̃ti))| ≤ C,

�t(vi◦�)(t) ≤ �t(vi◦�)(ti).

𝜕t(vi◦𝜎)(ti) >
1

𝜖
(vi◦𝜎)(0),

(4.11)�tt(vi◦�)(ti) = 0.

(4.12)|(vi◦�)(ti)| ≤ ��t(vi◦�)(ti).

�t(vi◦�)(ti) = (�nvi)(�(ti)) −
ti√

R2 − t2
i

(�1vi)(�(ti)).

�i =
�

�xn
−

ti√
R2 − t2

i

�

�x1
.

(��i�i vi)(�(ti)) =

(
−

1√
R2 − t2

i

+
t2
i

(R2 − t2
i
)
3

2

)
�1vi(�(ti)).
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Similarly as in Case 1.1, we can verify at the point �(ti) , Ri
�i�i

 diverges to −∞ as 
i → ∞ . Hence, some component of the Ricci curvature of gi at the point �(ti) 
diverges to ∞ as i → ∞.

Case 2. We now consider the case Sg < 0 . By Lemma 4.1, for any m,

and hence

Fix a point x0 ∈ Γ and choose normal coordinates in a small neighborhood of x0 
such that x0 = 0 and xn-axis is a normal geodesic of Γ near x0 . Take 𝜖 > 0 suffi-
ciently small. For i large, set pi = tien , where

Then, pi ∈ �Ωi and

By the polyhomogeneous expansion of vi , we have

where Ci is some positive constant which converges to 1 as i → ∞ . By (4.13),

For i large, we take t̃i ∈ (ti, �) such that, for any t ∈ (ti, �),

Then,

and

Denote by Ri
nn

 the Ricci curvature of gi acting on the unit vector vi
�

�xn
 with respect to 

the metric gi . Similarly, by (2.10) at the point t̃ien , Ri
nn

≤ −C�−2 , for all large i, for 
some positive constant C independent of i and � . By choosing appropriate � , we have 
the desired result.   ◻

ui →

(
−Sg

n(n − 1)

) n−2

4

in Cm
loc
(M ⧵ Γ) as i → ∞,

(4.13)vi →

(
−Sg

n(n − 1)

)−
1

2

in Cm
loc
(M ⧵ Γ) as i → ∞.

ti = min{t� ∈ [0, �] | ten ∈ Ωi, for any t ∈ (t�, �]}.

pi → 0.

|�nvi(pi)| ≤ Ci,

�vi
�xn

(�en) → 0 as i → ∞.

�nvi(ten) ≤ �nvi (̃tien).

𝜕nvi(�tien) >
vi(𝜖en) − 0

𝜖 − ti
>

1

2
𝜖−1

(
−Sg

n(n − 1)

)−
1

2

,

�nnvi (̃tien) = 0.
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Next, we discuss the case that the boundary is close to a point x0 . The proof 
of the next result is rather delicate if the Yamabe invariant is positive, in which 
case expansions of the Green’s function play an essential role. We need to 
employ the positive mass theorem if the manifold has a dimension 3, 4, or 5, or 
is locally conformally flat. In the case that n ≥ 6 and M is not conformally flat in 
a neighborhood of x0 , we need to analyze Weyl tensors and distinguish two cases 
W(x0) ≠ 0 and W(x0) = 0 . The proof for the case W(x0) = 0 is quite delicate. It is 
worth emphasizing that the Weyl tensor can be zero at x0 even if M is not confor-
mally flat in a neighborhood of x0 . Different vanishing orders of W at x0 requires 
different methods. In fact, we also need to employ the positive mass theorem if 
the Weyl tensor vanishes at x0 up to a sufficiently high order.

Theorem  4.3 Let (M,  g) be a compact Riemannian manifold of dimension n ≥ 3 
without boundary, with 𝜆(M, [g]) < 𝜆(Sn, [gSn ]) , where Sn is the sphere with its 
standard metric gSn , and let x0 be a point in M. Suppose that Ωi is a sequence of 
increasing domains with smooth boundary in M which converges to M ⧵ {x0} and 
gi is the complete conformal metric in Ωi with the scalar curvature −n(n − 1) . Then, 
for i sufficiently large, gi has a positive Ricci curvature component somewhere in Ωi . 
Moreover, the maximal Ricci curvature of gi in Ωi diverges to ∞ as i → ∞.

Proof Let ui be the solution of (2.1) and (2.2) in Ωi and set vi = u
−

2

n−2

i
 . Then,

We consider several cases according to the sign of the Yamabe invariant �(M, [g]).
Case 1. We first consider 𝜆(M, [g]) < 0 . We point out that the proof of Case 2 of 

Theorem 4.2 can be adapted to yield the conclusion.
Case 2. Next, we consider �(M, [g]) = 0 . As in the proof of Theorem  4.2, we 

assume the scalar curvature of M is 0 and 

Let � be some small positive constant such that Λ𝛿 < 1∕10 and there exist normal 
coordinates in B�(x0).

Take a sufficiently small r > 0 with r ≤ � . Since Ωi → M ⧵ {x0} , we have 
M ⧵ Br(x0) ⊂⊂ Ωi for i large. For such i, by the Harnack inequality, we have

where C is some positive constant depending only on n, M and r. Then for i suffi-
ciently large, by (4.1), we have

We denote by mi the minimum of ui in Ωi . With the definition of vi , we have, for i 
sufficiently large,

gi = u
4

n−2

i
g = v−2

i
g.

|Rij| ≤ Λgij.

max ui ≤ Cmin ui in M ⧵ Br(x0),

(4.14)|∇gui| ≤ C
(
ui + u

n+2

n−2

i

) ≤ Cui in M ⧵ Br(x0).
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where C is some positive constant depending only on n, M and � . Set

Then, for any fixed r > 0 with r ≤ � and any i sufficiently large, we have 
Ai ∩ Br(x0) ≠ �. Otherwise, by the maximum principle, we have

where C is some constant depending only on n, M and r. Hence,

Note that mi → 0 as i → ∞ , which leads to a contradiction.
By vi = 0 on �Ωi , we have, for any fixed r > 0 with r ≤ � and for any i sufficiently 

large,

Therefore, for i sufficiently large, |∇gvi| must assume its maximum at 
pi ∈ Ωi ∩ B�(x0) . Write �i =

∇gvi

|∇gvi| and denote by Ri
�i�i

 the Ricci curvature of gi acting 
on the unit vector vi�i with respect to the metric gi . Then, we can proceed as in the 
proof of Theorem 4.2 to verify at the point pi , Ri

�i�i
 diverges to −∞ as i → ∞ . Hence, 

some component of the Ricci curvature of gi at the point pi diverges to ∞ as i → ∞.
Case 3. We now consider the case 𝜆(M, [g]) > 0 . In this case, there exists 

Gx0
∈ C∞(M ⧵ {x0}) , the Green’s function for the conformal Laplacian Lg , such that

where �n−1 is the volume of Sn−1 . Up to a conformal factor, we can assume (M, g) 
has conformal normal coordinates near x0 . See [13, p. 69] or [24, Chapter 5]. We can 
perform a conformal blow up at x0 to obtain an asymptotic flat and scalar flat man-
ifold using Gx0

 . Specifically, if we define the metric g̃ = G
4

n−2
x0

g on M̃ = M ⧵ {x0} , 
then, (M̃, g̃) is an asymptotically flat and scalar flat manifold, and g̃ has an asymp-
totic expansion near infinity. See [13, pp. 64–65] or [24, Chapter 5].

Set ũi = ui∕Gx0
 . Then, ũi satisfies

and for any m,

(4.15)|∇gvi| ≤ Cvi ≤ Cm
−

2

n−2

i
in M ⧵ Br(x0),

Ai = {x ∈ Ωi | ui(x) < 2mi}.

ui(x) ≥ 2mi − Cm
n+2

n−2

i
in Ai,

mi ≥ 2mi − Cm
n+2

n−2

i
.

|∇gvi| ≥ 1

r
(2mi)

−
2

n−2 somewhere in Ωi ∩ Br(x0).

LgGx0
= (n − 2)𝜔n−1𝛿x0 , Gx0

> 0,

(4.16)Δg̃ũi =
1

4
n(n − 2)ũ

n+2

n−2

i
in Ωi,

(4.17)ũi = ∞ on �Ωi,
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Fix a point p0 ∈ M ⧵ {x0} . Then, p0 ∈ Ωi , for i sufficiently large. Set w̃i = ũi∕ũi(p0) . 
Then, w̃i(p0) = 1 , and w̃i satisfies

By interior estimates, there exists a positive function w̃ ∈ M̃ such that, for any m,

and

Hence,

By the expansion of Gx0
 near x0 and [14, Proposition 9.1], we conclude that w̃ con-

verges to some constant as x → x0 . Therefore, w̃ ≡ 1 in M̃ . Hence, for any m,

In the following, we always discuss in the conformal normal coordinates near x0 . Set

We will fix a direction appropriately, which we call x1 . Denote by Ri
11

 the Ricci cur-
vature of gi acting on the unit vector vi

�

�x1
 with respect to the metric gi . To study Ri

11
 

given by (2.9), we need to analyze the expansion of G
−

2

n−2
x0

. See [13] or [24] for 
details.

Now we discuss several cases.
Case 3.1. n = 3, 4, 5 , or M is conformally flat in a neighborhood of x0 . In this 

case, we have

where A is a constant. Since 𝜆(M, [g]) < 𝜆(Sn, [gSn ]) , we have A > 0 when 3 ≤ n ≤ 7 , 
or M is locally conformally flat, or M is spin. We also have A > 0 when M is just 
conformally flat in a neighborhood of x0 under the assumption that the positive mass 
theorem holds. Then,

(4.18)ũi → 0 in Cm
loc
(M ⧵ {x0}) as i → ∞.

(4.19)Δg̃w̃i =
1

4
n(n − 2)ui(p0)

4

n−2 w̃
n+2

n−2

i
in Ωi,

(4.20)w̃i = ∞ on �Ωi.

w̃i → w̃ in Cm
loc
(M̃) as i → ∞,

(4.21)Δg̃w̃ = 0 in M̃.

(4.22)Lg(Gx0
w̃) = 0 in M ⧵ {x0}.

(4.23)
ui

ũi(p0)Gx0

→ 1 in Cm
loc
(M ⧵ {x0}) as i → ∞.

vi = u
−

2

n−2

i
= (ũi(p0))

−
2

n−2

(
ui

ũi(p0)Gx0

)−
2

n−2

G
−

2

n−2
x0

.

Gx0
= r2−n + A + O(r),
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and hence

For n = 3, 4, 5 , by [13, p. 61], R11(x0) = 0 , R11,1(x0) = 0 and R11,11(x0) ≤ 0 , we have

We also have Sg(x0) = 0 and Sg,1(x0) = 0 , and hence

Take any x1 > 0 small. Then, at the point x1e1,

and

For i large, by (2.9), we have, at the point x1e1,

where o(1) denotes terms converging to zero as i → ∞ , uniformly for small x1 away 
from 0. The dominant term in (4.26) is the xn

1
-term, with a negative coefficient. 

Hence, the expression inside the bracket in (4.26) is strictly less than 0, for a fixed 
small x1 ≠ 0 and i large. Therefore, at the point x1e1 , Ri

11
 diverges to −∞ as i → ∞ . 

Hence, some component of the Ricci curvature of gi at the point x1e1 diverges to ∞ 
as i → ∞.

If M is conformally flat in a neighborhood of x0 , then R11 = 0 and Sg = 0 on the 
x1-axis and near x0 = 0 . The x6

1
-term in (4.26) is absent. Similarly, at the point x1e1 

for x1 > 0 sufficiently small, Ri
11

 diverges to −∞ as i → ∞.
If we denote by Ri

rr
 the Ricci curvature of gi acting on the unit vector vi

�

�r
 with 

respect to the metric gi , then we conclude similarly that Ri
rr

 at x diverges to −∞ as 
i → ∞ , for some x sufficiently close to x0.

Case 3.2. n = 6 and M is not conformally flat in a neighborhood of x0 . In this 
case,

G
−

2

n−2
x0

= r2 −
2

n − 2
Arn + O(rn+1),

�rG
−

2

n−2
x0

= 2r −
2n

n − 2
Arn−1 + O(rn),

�rrG
−

2

n−2
x0

= 2 −
2n(n − 1)

n − 2
Arn−2 + O(rn−1),

G
−

2

n−2
x0

�rrG
−

2

n−2
x0

−
1

2

(
�rG

−
2

n−2
x0

)2

= −2(n − 1)Arn + O(rn+1).

R11 ≤ C|x1|3 on the x1-axis near x0 = 0.

|Sg| ≤ Cx2
1

on the x1-axis near x0 = 0.

(4.24)v2
i
R11 ≤ C(ũi(p0))

−
4

n−2 x7
1
,

(4.25)v2
i
|Sg| ≤ C(ũi(p0))

−
4

n−2 x6
1
.

(4.26)Ri
11

≤ (ũi(p0))
−

4

n−2

[
− 2(n − 1)(n − 2)Axn

1
+ Cx6

1
+ o(1)

]
,
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where W is the Weyl tensor, P(x) is a polynomial with P(0) = 0 , and � is a C2,�-func-
tion. We note that Wijkl is given by

Case 3.2.1. If W(x0) ≠ 0 , then,

and hence

Take any x1 > 0 small. Then, at the point x1e1 , (4.24) and (4.25) still hold. For i 
large, instead of (4.26), we have, at the point x1e1,

Similarly as in Case 3.1, at the point x1e1 for x1 > 0 sufficiently small, Ri
11

 diverges 
to −∞ as i → ∞.

Similarly, Ri
rr

 at x diverges to −∞ as i → ∞ , for some x sufficiently close to x0.
Case 3.2.2. We now consider the case W(x0) = 0 . By (4.27), we have Rijkl(x0) = 0 . 

Hence, (M̃, g̃) is asymptotically flat of order 3. Using the spherical coordinates, we 
set

and denote by r2g2(�) the degree two part of the Taylor expansion of Sg at x0 . Since

then,

Gx0
(x) = r2−n −

n − 2

1152(n − 1)
|W(x0)|2 log r − 1

96
Sg,ij(x0)

xixj

r2
+ P(x) log r + �(x),

(4.27)
Wijkl = Rijkl −

1

n − 2

(
Rikgjl − Rilgjk + Rjlgik − Rjkgil

)

+
Sg

(n − 1)(n − 2)

(
gikgjl − gilgjk

)
.

G
−

2

n−2
x0

= r2 +
1

2880
|W(x0)|2r6 log r + O(r7 log r),

�rG
−

2

n−2
x0

= 2r +
1

480
|W(x0)|2r5 log r + O(r5),

�rrG
−

2

n−2
x0

= 2 +
1

96
|W(x0)|2r4 log r + O(r4),

G
−

2

n−2
x0

�rrG
−

2

n−2
x0

−
1

2

(
�rG

−
2

n−2
x0

)2

=
1

144
|W(x0)|2r6 log r + O(r6).

Ri
11

≤ (ũi(p0))
−1

[
1

36
|W(x0)|2x61 log x1 + Cx6

1
+ o(1)

]
.

�4(�) =
1

96
Sg,ij(x0)

xixj

r2
,

n∑
i=1

Sg,ii(x0) = −
1

6
|W|2(x0) = 0,
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By the positive mass theorem, see [13, pp. 79–80], we have

Along a radial geodesic {(r, �) ∶ 0 ≤ r ≤ �} , for a small constant � , we have

and hence

By [13, p. 61], along the radial geodesic (⋅, �) , �3
r
Rrr(x0) = 0 and �4

r
Rrr(x0) ≤ 0 . 

Therefore, for i large, by (2.9), we have, along the radial geodesic (⋅, �),

where o(1) denotes terms converging to zero as i → ∞ , uniformly for small x away 
from 0. Hence,

Therefore, we can find �0 ∈ Sn−1 that Ri
rr

 at (r, �0) diverges to −∞ as i → ∞ , for some 
r sufficiently small.

Case 3.3. n ≥ 7 and M is not conformally flat in a neighborhood of x0 . In this 
case,

where �i is a homogeneous polynomial of degree i, c is a constant, P(x) is a poly-
nomial with P(0) = 0 , and � is a C2,�-function. We note that c = 0 and P ≡ 0 if n is 
odd. Moreover,

where W is the Weyl tensor.

∫Sn−1
g2(�)d� = 0.

∫Sn−1

(
𝜙4(𝜃) + 𝛼(0)

)
d𝜃 > 0.

G
−

2

n−2
x0

= r2 −
1

2

(
�4(�) + �(0)

)
r6 + o(r6),

�rG
−

2

n−2
x0

= 2r − 3
(
�4(�) + �(0)

)
r5 + o(r5),

�rrG
−

2

n−2
x0

= 2 − 15
(
�4(�) + �(0)

)
r4 + o(r4),

G
−

2

n−2
x0

�rrG
−

2

n−2
x0

−
1

2

(
�rG

−
2

n−2
x0

)2

= −10
(
�4(�) + �(0)

)
rn + o(rn).

Ri
rr
|(r,�) ≤ (ũi(p0))

−1

[
−

1

10
g2(�)r

6 − 40
(
�4(�) + �(0)

)
r6 + o(r6) + o(1)

]
,

�Sn−1
Ri
rr
d� ≤ (ũi(p0))

−1

[
− 40r6 �Sn−1

(
�4(�) + �(0)

)
d� + o(r6) + o(1)

]
.

Gx0
(x) = r2−n

[
1 +

n∑
i=4

�i

]
+ c log r + P(x) log r + �(x),

�4(x) =
n − 2

48(n − 1)(n − 4)

(
r4

12(n − 6)
|W(x0)|2 − Sg,ij(x0)x

ixjr2
)
,
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Case 3.3.1. First, we consider the case |W(x0)| ≠ 0 . Note that Sg(x0) = 0 , 
∇gSg(x0) = 0 , and

Without loss of generality, we assume Sg,11(x0) < 0 . Take any x1 > 0 small. Then, at 
the point x1e1 , (4.24) still holds. Set

Then, on the positive x1-axis near x0 = 0 , we have

and

By the definition of A, we obtain

For i large, instead of (4.26), we have, at the point x1e1,

for some positive constant B. Then, we conclude Ri
11

 at the point x1e1 diverges to −∞ 
as i → ∞ , for x1 > 0 sufficiently small.

Case 3.3.2. We now consider the case W(x0) = 0 . By (4.27), we have Rijkl(x0) = 0 . 
Using the spherical coordinates, we set

and denote by rigi(�) the i-th Taylor expansion of Sg at x0 . Let rlgl(�) be the first 
nonzero term in the Taylor expansion of Sg at x0.

ΔgSg(x0) = −
1

6
|W(x0)|2.

A =
n − 2

48(n − 1)(n − 4)

[
1

12(n − 6)
|W(x0)|2 − Sg,11(x0)

]
.

G
−

2

n−2
x0

= x2
1
−

2

n − 2
Ax6

1
+ O(x7

1
),

�x1G
−

2

n−2
x0

= 2x1 −
12

n − 2
Ax5

1
+ O(x6

1
),

�x1x1G
−

2

n−2
x0

= 2 −
60

n − 2
Ax4

1
+ O(x5

1
),

(n − 2)

[
G

−
2

n−2
x0

�x1x1G
−

2

n−2
x0

−
1

2

(
�x1G

−
2

n−2
x0

)2
]
−

1

2(n − 1)
SgG

−
4

n−2
x0

= −40Ax6
1
−

1

4(n − 1)
Sg,11(x0)x

6
1
+ O(x7

1
).

(n − 2)

[
G

−
2

n−2
x0

�x1x1G
−

2

n−2
x0

−
1

2

(
�x1G

−
2

n−2
x0

)2
]
−

1

2(n − 1)
SgG

−
4

n−2
x0

= −
1

12(n − 1)(n − 4)

[
5(n − 2)

6(n − 6)
|W(x0)|2 − (7n − 8)Sg,11(x0)

]
x6
1
+ O(x7

1
).

Ri
11

≤ (ũi(p0))
−

4

n−2

[
− Bx6

1
+ Cx7

1
+ o(1)

]
,

�i = ri�i(�),
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Subcase 3.3.2(a). 2 ≤ l ≤ n − 5 . By [13] or [24], we have �i = 0 , i = 4,… , l − 1 , 
and

where

Here, Δ is the standard Laplacian on the Euclidean space, i.e.,

Then, we have

Hence,

We also have

Note that the sign of limr→0 r
2−n−l ∫

Br(x0)
|W|2dVg is independent of g ∈ [g] . Hence, 

if for some i with 2 ≤ i ≤ n − 5,

then the i-th Taylor expansion of Sg at x0 must not be identical to zero.
Note

L�l+2 = −
n − 2

4(n − 1)
rl+2gl(�),

L = −r2Δ + 2(n − 2)r�r.

Δ =
�2

�r2
+

n − 1

r

�

�r
+

1

r2
ΔSn−1 .

(l + 2)(n − 4 − l)∫Sn−1
�l+2 = ∫Sn−1

L�l+2 = −
n − 2

4(n − 1) ∫Sn−1
rl+2gl(�).

(4.28)∫Sn−1
�l+2 = −

n − 2

4(n − 1)(l + 2)(n − 4 − l) ∫Sn−1
gl(�).

(4.29)

�Sn−1
gl(�) =

r2−n−l

l �
r

0 �Sn−1
Δ
(
slgl(�)

)
sn−1drd�

= lim
r→0

r2−n−l

l �Br(x0)

ΔgSgdVg

= lim
r→0

−r2−n−l

6l �Br(x0)

|W|2dVg ≤ 0.

0 < lim
r→0

r2−n−i ∫Br(x0)

|W|2dVg < ∞,
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and hence,

By [13, p. 61], along a radial geodesic (⋅, �) , �i
r
Rrr(x0) = 0 , i = 1,… , l − 1 , and 

�l
r
Rrr(x0) ≤ 0 . Therefore, for i large, by (2.9), we have, along a radial geodesic (⋅, �),

where o(1) denotes terms converging to zero as i → ∞ , uniformly for small x away 
from 0. By (4.28) and (4.29), we have

By [13, Lemma 5.3] or [24, Chapter 5],

Hence, we can find �0 ∈ Sn−1 such that

for some positive constant �0 . Therefore, along the radial geodesic (r, �0),

Then, we conclude Ri
rr

 at the point (r, �0) diverges to −∞ as i → ∞ , for r > 0 suf-
ficiently small.

Subcase 3.3.2(b). l ≥ n − 4 . When n is even, we have

G
−

2

n−2
x0

= r2 −
2

n − 2
rl+4�l+2 + o(rl+4),

�rG
−

2

n−2
x0

= 2r −
2

n − 2
(l + 4)rl+3�l+2 + o(rl+3),

�rrG
−

2

n−2
x0

= 2 −
2

n − 2
(l + 4)(l + 3)rl+2�l+2 + o(rl+2),

(n − 2)

[
G

−
2

n−2
x0

�x1x1G
−

2

n−2
x0

−
1

2

(
�x1G

−
2

n−2
x0

)2
]
−

1

2(n − 1)
SgG

−
4

n−2
x0

=

[
− 2(l + 2)(l + 3)�l+2(�) −

1

2(n − 1)
gl(�)

]
rl+4 + o(rl+4).

(4.30)

Ri
rr
|(r,�) ≤ (ũi(p0))

−
4

n−2

{[
− 2(l + 2)(l + 3)�l+2(�) −

1

2(n − 1)
gl(�)

]
rl+4

+ o(rl+4) + o(1)

}
,

− 2(l + 2)(l + 3)�Sn−1
�l+2(�)d� −

1

2(n − 1) �Sn−1
gl(�)d�

=
(n − 2)(l + 3) − (n − 4 − l)

2(n − 1)(n − 4 − l) �Sn−1
gl(�)d� ≤ 0.

2(l + 2)(l + 3)�l+2 ≠ 1

2(n − 1)
gl.

−2(l + 2)(l + 3)�l+2(�0) −
1

2(n − 1)
gl(�0) ≤ −�0,

Ri
rr
|(r,�0) ≤ (ũi(p0))

−
4

n−2

[
− �0r

l+4 + o(rl+4) + o(1)
]
.
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Then,

We note

when n is odd, since ∫
Sn−1

gn−2(�)d� = 0 when n is odd.
If c > 0 , we can proceed as in the proof of Case 3.2.1, n = 6 and |W(x0)| ≠ 0 , and 

conclude that Ri
rr

 at x diverges to −∞ as i → ∞ , for some x sufficiently close to x0.
In general, we first consider the case that there exist a pair 

(i, j) ∈ {1,… , n} × {1,… , n} and a constant k < [
n−4

2
] such that Rij ≠ 0 and k is the 

order of the first nonzero term in the Taylor expansion of Rij at x0.
Without loss of generality, we assume the order of the first nonzero term in the 

Taylor expansion of some Rpq at x0 is k, k < [
n−4

2
] , and all other Rij vanish up to 

order k at x0 . Then, by (4.27), all Rijkl vanish up to order k, and hence, all gij − �ij 
vanish up to order k + 2 . By a rotation, we can assume

By [13, p.  61], (p, q) ≠ (1, 1) . If p ≠ 1 and q ≠ 1 , by a rotation, we can assume 
p = q = 2 . Otherwise, we can assume (p, q) = (1, 2).

We consider the case (p, q) = (2, 2) . By the Gauss Lemma, we have

Then, we have, on the x1-axis near x0 = 0,

L(�n−2 + crn−2 log r) = L�n−2 − (n − 2)crn−2 = −
n − 2

4(n − 1)
rn−2gn−4(�).

(4.31)

(n − 2)cwn−1 = −r2−n �Sn−1
L(�n−2 + crn−2 log r)

=
(n − 2)r6−2n

4(n − 1)(n − 4) �
r

0 �Sn−1
Δ
(
sn−4gl(�)

)
sn−1drd�

= lim
r→0

(n − 2)r6−2n

4(n − 1)(n − 4) �Br(x0)

ΔgSgdVg

= lim
r→0

−(n − 2)r6−2n

24(n − 1)(n − 4) �Br(x0)

|W|2dVg ≤ 0.

lim
r→0

r6−2n ∫Br(x0)

|W|2dVg = 0,

�k

�xk
1

Rpq|x0 ≠ 0.

xj =

n∑
i=1

gjixi.

(4.32)1 = x1
�

�x2
g12 + g22,
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and

We also have, at x0 = 0,

and

Hence, we have, at x0,

Therefore, by (4.27), we have

Then, for i large, by (2.9), we have, at the point x1e1,

where o(1) denotes terms converging to zero as i → ∞ , uniformly for small x1 away 
from 0. At the point x1e1,

Combining with (4.32), we get, at the point x1e1,

(4.33)0 = x1
�

�x2
g11 + g12,

0 = x1
�2

�x2
2

g22 + 2
�

�x2
g12.

(k + 2)
�k+2

�xk+1
1

�x2
g21 +

�k+2

�xk+2
1

g22 = 0,

(k + 1)
�k+2

�xk
1
�2x2

g11 + 2
�k+2

�xk+1
1

�x2
g12 = 0.

�k

�xk
1

R1212 =
1

2

(
2

�k+2

�xk+1
1

�x2
g21 −

�k+2

�xk+2
1

g22 −
�k+2

�xk
1
�2x2

g11

)

= −
k + 3

k + 1

�k+2

�xk+2
1

g22(x0).

(4.34)
𝜕k

𝜕xk
1

|x0R22 = (n − 2)
𝜕k

𝜕xk
1

|x0R1212 = −(n − 2)
k + 3

k + 1

𝜕k+2

𝜕xk+2
1

g22(x0) < 0.

Ri
22

= (ũi(p0))
−

4

n−2

[
1

k!

�k

�xk
1

|x0R22x
k+4
1

+ (n − 2)
(
− 2Γ1

22
x3
1
− 2(g22 − 1)x2

1

)

+ O(xk+5
1

) + o(1)

]
,

Γ1
22

=
1

2

(
2

�

�x2
g12 −

�

�x1
g22

)
.
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Then, we conclude Ri
22

 at the point x1e1 diverges to −∞ as i → ∞ , for x1 > 0 suf-
ficiently small.

If (p, q) = (1, 2) , we can argue similarly to conclude that |Ri
12
| at the point x1e1 

diverges to ∞ as i → ∞ , for x1 > 0 sufficiently small.
We now consider the case that the order of the first nonzero term in the Taylor 

expansion of all Rpq is greater or equal to [ n−4
2
] at x0 , and

Then, by (4.27), the order of the first nonzero term in the Taylor expansion of Rijkl 
at x0 is greater or equal to [ n−4

2
] , and hence, the order of the first nonzero term in the 

Taylor expansion of gij − �ij at x0 is greater or equal to [ n−4
2
] + 2 . Hence, (M̃, g̃) is 

asymptotically flat of order [ n−4
2
] + 2 . Thus, the ADM-mass of (M̃, g̃) is well defined. 

By the positive mass theorem, we have

Then, we can proceed as in the proof of Case 2.2, n = 6 and |W(x0)| = 0 , and find 
�0 ∈ Sn−1 such that Ri

rr
 at (r, �0) diverges to −∞ as i → ∞ , for some r sufficiently 

small.   ◻

Remark 4.4 We point out that we used the positive mass theorem in the proof of 
Theorem  4.3 if the Yamabe invariant of (M,  [g]) is between zero and that of the 
standard sphere and one of the following conditions holds: (1) M is locally confor-
mally flat, (2) 3 ≤ n ≤ 5 , or (3) for n ≥ 6 , the Weyl tensor W at x0 satisfies

Remark 4.5 The blow-up phenomena in Theorem  4.3 are significantly differ-
ent from those for the case that the underlying manifold is Sn . For example, take 
Ω = Sn ⧵ Br(en) , where Br(en) is a small ball on Sn centered at the north pole. Then, 
Ω is close to Sn ⧵ {en} and the complete conformal metric gΩ in Ω with the con-
stant scalar curvature −n(n − 1) has a constant sectional curvature −1 ! This can be 
verified by the stereographic projection, as the image of Sn ⧵ Br(en) under the stereo-
graphic projection from the north pole is a ball in ℝn centered at the origin.

We note that Theorem 1.3 follows easily from Theorem 4.3. Now we are ready 
to prove Theorem 1.2.

Ri
22

= (ũi(p0))
−

4

n−2

[
1

k!

�k

�xk
1

|x0R22x
k+4
1

+ (n − 2)
�

�x1
g22x

3
1
+ O(xk+5

1
) + o(1)

]

= (ũi(p0))
−

4

n−2

[
− (n − 2)

k + 2

(k + 1)!

�k+2

�xk+2
1

g22(x0)x
k+4
1

+ O(xk+5
1

) + o(1)

]
.

lim
r→0

r6−2n ∫Br(x0)

|W|2dVg = 0.

∫Sn−1

(
𝜙n−2(𝜃) + 𝛼(0)

)
d𝜃 > 0.

∇i|W|2(x0) = 0 for any i = 0,… , n − 6.
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Proof of Theorem 1.2 Let ui be the solution of (2.1) and (2.2) in Ωi . Then, gi = u
4

n−2

i
g.

The proof of Theorem 4.2 can be adapted to prove Case 1, i.e., Γ contains a sub-
manifold of dimension j, with 1 ≤ j ≤ n−2

2
.

Next, we consider Case 2, i.e., (M, g) is not conformally equivalent to the stand-
ard sphere Sn and Γ consists of finitely many points. If �(M, [g]) ≤ 0 , the proofs 
of Theorem 4.2 and Theorem 4.3 can be adapted to yield the desired conclusion. 
Hence, we only need to discuss the case 𝜆(M, [g]) > 0 and Γ consists of finitely 
many points {p1,… , pk}.

Let Gpj
∈ C∞(M ⧵ {pj}) be the Green’s function for the conformal Laplacian Lg 

with the pole at pj , j = 1,… , k , respectively; namely,

where �n−1 is the volume of Sn−1 . Up to conformal factors, we assume (M, g) has 
conformal normal coordinates in small neighborhoods of pi . Consider the metric

Then, (M̃, g̃) is an asymptotically flat and scalar flat manifold, and g̃ has an asymp-
totic expansion near infinity.

Set ui = (Gp1
+⋯ + Gpk

)ũi . Then, ũi satisfies

and, for any m,

Fix a point p0 ∈ M ⧵ {p1,… , pk} . Then, for i sufficiently large, p0 ∈ Ωi . Set 
w̃i = ũi∕ũi(p0) . Then, w̃i(p0) = 1 and w̃i satisfies

By interior estimates, there exists a positive function w̃ ∈ M̃ such that, for any m,

and

Hence,

LgGpj
= (n − 2)𝜔n−1𝛿pj , Gpj

> 0,

g̃ =
(
Gp1

+⋯ + Gpk

) 4

n−2 g on M̃ = M ⧵ {p1,… , pk}.

Δg̃ũi =
1

4
n(n − 2)ũ

n+2

n−2

i
in Ωi,

ũi = ∞ on �Ωi,

ũi → 0 in Cm
loc
(M ⧵ {p1,… , pk}) as i → ∞.

Δg̃w̃i =
1

4
n(n − 2)ui(p0)

4

n−2 w̃
n+2

n−2

i
in Ωi,

w̃i = ∞ on �Ωi.

w̃i → w̃ in Cm
loc
(M̃) as i → ∞,

Δg̃w̃ = 0 in M̃.
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By the expansions of Gpj
 near pj , j = 1,… , k , respectively, and [14, Proposition 

9.1], we conclude that w̃ converges to some constant �j as x → pj . Without loss of 
generality, we assume

Then, �1 ≥ 1 . By [14, Proposition 9.1], (Gp1
+⋯ + Gpk

)w̃ can be extended to a  
C2-function in a neighborhood of pj if �j = 0.

If some of �1 , … , �k is zero, we denote by l the first integer in {1,… , k} such that 
�l = 0 . Otherwise, we set l = k + 1 . We always have l ≥ 2.

Consider the metric

Set (Gp1
+⋯ + Gpk

)w̃ = (Gp1
+⋯ + Gpl−1

)ŵ . Then, ŵ satisfies

and

We also have that ŵ converges to �j as x → pj , j = 1,… , l − 1 . By [14, Proposition 
9.1] and the maximum principle, we have, near the point pl−1,

for some nonnegative constant Cl−1 . Then, the proof follows similarly as that of 
Theorem 4.3.

Next, we consider Case 3, i.e., (M, g) is conformally equivalent to the standard 
sphere Sn and Γ consists of at least two but only finitely many points. We can assume 
(M, g) = (Sn, gSn ) . By Lemma 4.1, we have, for any m,

Set vi = u
−

2

n−2

i
 . Then,

Take two different points p, q ∈ Γ and let �pq be the shorter geodesic connecting p 
and q. Up to a conformal transform if necessary, we assume |�pq| = 2� , which is less 
than 1

100n
 , and �pq ∩ Γ = {p, q} . We parametrize �pq by its arc length t ∈ [0, 2�] , with 

p corresponding to t = 0 and q to t = 2�.
For i large, let pi and qi be the points parametrized by t̂i and t̃i , respectively, where

Lg
(
(Gp1

+⋯ + Gpk
)w̃
)
= 0 in M ⧵ {p1,… , pk}.

�1 ≥ �2 ≥ ⋯ ≥ �k ≥ 0.

ĝ = (Gp1
+⋯ + Gpl−1

)
4

n−2 g on M̂ = M ⧵ {p1,… , pl−1}.

Lg
(
(Gp1

+⋯ + Gpl−1
)ŵ

)
= 0 in M ⧵ {p1,⋯ , pl−1},

Δĝŵ = 0 in M̂.

ŵ = �l−1 + Cl−1r
n−2 + O(rn−1),

ui → 0 in Cm
loc
(Sn ⧵ Γ) as i → ∞.

vi diverges to∞ locally uniformly in Sn ⧵ Γ as i → ∞.
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Then, pi, qi ∈ �Ωi and

For convenience, we denote by vi(t) the function vi restricted to the geodesic �pq . By 
the polyhomogenous expansion of vi , we have |�tvi(pi)| ≤ 1 and |�tvi(qi)| ≤ 1.

Since vi(�) → ∞ , for i large, we take ti ∈ (̂ti, t̃i) such that, for any t ∈ (̂ti, t̃i),

Then,

and

Denote by Ri
tt
 the Ricci curvature of gi acting on the unit vector vi

�

�t
 with respect to 

the metric gi . Then, we can verify at the point tie , Ri
tt
 diverges to −∞ as i → ∞ .   ◻

5  General Domains in Euclidean Spaces

In this section, we present several examples of smooth bounded domains Ω in the 
Euclidean space and examine whether the complete conformal metrics gΩ associ-
ated with the Loewner–Nirenberg problem have negative Ricci curvatures. We 
demonstrate by these examples the complexity of the issue studied in this paper. 
Topological conditions are not sufficient to determine whether these complete 
conformal metrics have negative Ricci curvatures.

There are two classes of examples. First, we construct nonconvex smooth 
domains in which the complete conformal metrics with a constant scalar curva-
ture still have negative Ricci curvatures. Second, we construct bounded smooth 
domains in which the complete conformal metrics have positive Ricci compo-
nents at some points.

By the Cartan–Hadamard Theorem, we know that �i(Ω) = 0 for i ≥ 2 if gΩ has 
negative sectional curvatures in Ω , where �i(Ω) is the i-th homotopy group of Ω . 
The following example shows that �1(Ω) = 0 is not necessary for gΩ to have nega-
tive sectional curvatures.

Example 5.1 Set

t̂i = min{t� ∈ [0, �] | ten ∈ Ωi, for any t ∈ (t�, �]},

t̃i = max{t� ∈ [�, 2�] | t� ∈ Ωi, for any t ∈ [�, t�)}.

pi → p, qi → q.

�tvi(t) ≤ �tvi(ti).

𝜕tvi(ti) >
vi(𝜖) − 0

𝜖 −�ti
≥ vi(𝜖)

𝜖
,

�ttvi(ti) = 0.
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where 0 < r < 1∕100 . Then, �1(Ωr) = ℤ and �i(Ω) = 0 for i ≥ 2 . We claim that gΩr
 

has negative sectional curvatures in Ωr , if r is sufficiently small. By symmetry, it 
suffices to show gΩr

 has negative sectional curvatures in

Note that Ωr is transformed to

under the transform

Then, {Ω̃r} converges in Ck , for any integer k ≥ 1 , to

in any compact sets in ℝn . Let u0 be the positive solution of (2.11)−(2.12) for 
Ω = Ω0 . Then, u0 has the form

By the same method as in the proof of Theorem 1.1, we can prove (u0)
4

n−2 |dx|2 has 
negative sectional curvatures in Ω0 . Then, the polyhomogeneous expansions for ur 
imply that gΩ̃r

 has negative sectional curvatures in

for some small 𝛿 > 0 , independent of r. It is straightforward to prove that gΩ̃r
 has 

negative sectional curvatures in

since {Ω̃r} converges to Ω0 in any compact sets in ℝn.

In the next example, we construct a bounded smooth domain Ω ⊂ ℝ
n which 

is diffeomorphic to the unit ball and cannot be conformally transformed to a 

Ωr =

{
(x1,… , xn)

||||
(
x1 −

x1√
x2
1
+ x2

n

)2

+

n−1∑
i=2

x2
i
+

(
xn −

xn√
x2
1
+ x2

n

)2

< r2
}

⊂ ℝ
n,

{
(x1,… , xn) | (x1 − 1)2 +

n−1∑
i=2

x2
i
< r2, xn = 0

}
⊂ ℝ

n.

�Ωr =

�
y ∈ ℝ

n
����
�
y1 +

1

r
−

ry1 + 1

r
√
(ry1 + 1)2 + (ryn)

2

�2

+

n−1�
i=2

y2
i
+

�
yn −

yn√
(ry1 + 1)2 + (ryn)

2

�2

< 1

�
,

y1 =
x1 − 1

r
, y2 =

x2

r
, … , yn =

xn

r
.

Ω0 = {(x1,… , xn) | x21 +⋯ + x2
n−1

< 1} ⊂ ℝ
n

u0(x1,… , xn) = u0(x1,… , xn−1, 0).

{(x1,… , xn) | 1 − 𝛿 < x2
1
+⋯ + x2

n−1
< 1, xn = 0},

{(x1,… , xn) | x21 +⋯ + x2
n−1

≤ 1 − �, xn = 0},



115

1 3

Negativity of Ricci Curvatures of Complete Conformal Metrics

bounded convex domain such that the complete conformal metric gΩ with a nega-
tive scalar curvature possesses negative sectional curvatures in Ω.

Example 5.2 Let � be a U-shaped smooth curve in ℝn with two endpoints p and q. 
Let Ωr , 0 < r < 1∕100 , be a family of tubular domains with smooth boundaries sat-
isfying the following conditions: 

 (A1) Ωr2 ⊆ Ωr1 if r2 < r1;
 (A2) 

⋂
Ωr = �;

 (A3) For a fixed point x0 ∈ � ⧵ {p, q} , {x ∈ ℝ
n | rx + x0 ∈ Ωr} converges 

in Ck , for any integer k ≥ 1 , to a smooth domain which is equal to 
{(x1,… , xn) | x21 +⋯ + x2

n−1
< 1} ⊂ ℝ

n up to a Euclidean transformation in 
any compact set in ℝn as r → 0;

 (A4) At the point p or q, {x ∈ ℝ
n | rx + x0 ∈ Ωr} converges in Ck , for any integer 

k ≥ 1 , to a smooth domain which is equal to Ω0 up to a Euclidean transforma-
tion in any compact set in ℝn as r → 0 , where Ω0 is a smooth convex domain 
which coincides {(x1,… , xn) | x21 +⋯ + x2

n−1
< 1} when xn ≥ 0 , and coincides 

{(x1,… , xn) | −
√

x2
1
+⋯ + x2

n−1
< xn < 0} when −1 < xn < 1∕3.

Then, Ωr cannot be conformally transformed to bounded convex domains if r is suf-
ficiently small. Otherwise, there would exist an arc �r with endpoints p and q such 
that 𝜎r ⊆ Ωr . Let w be the positive solution of (2.11)–(2.12) for Ω = Ω0 . Then by 
approximation and using the same method as in the proof of Theorem 1.1, we can 
prove w−

2

n−2 is concave in Ω0 and w
4

n−2 |dx|2 has negative sectional curvatures in Ω0 . 
Arguing as in Example 5.1, we can show that the sectional curvatures in Ω0 is close 
to the sectional curvatures in Ω0 when xn is sufficiently large. Hence, the sectional 
curvatures in Ω0 are bounded above by a negative constant. Then, arguing as in 
Example 5.1 again, we obtain that gΩr has negative sectional curvatures in Ωr when r 
is sufficiently small.

Example 5.3 For R > r > 0 , consider the annular region ΩR,r = BR ⧵ Br in ℝn . Let 
gΩR,r

 be the complete conformal metric with the constant scalar curvature −n(n − 1) 
in ΩR,r . Arguing as in Example 5.1, we can prove that the maximum Ricci curvature 
component of gΩR,r

 is close to −n∕2 as R and r tend to 1. Hence, gΩR,r
 has negative 

Ricci curvatures in ΩR,r as R is sufficiently close to r.

In the rest of this section, we construct bounded domains in which the complete 
conformal metrics have positive Ricci components at some points. The most straight-
forward way to do this is to combine Theorem 1.2 for the case (M, g) = (Sn, gSn ) and 
the stereographic projections.

We identify ℝn in ℝn+1 as ℝn × {0} and write x = (x1,… , xn) ∈ ℝ
n . Then,

Consider the transform T ∶ ℝ
n
→ Sn given by

Sn = {(x, xn+1) ∶ |x|2 + x2
n+1

= 1}.
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Then, T is the inverse transform of the stereographic projection which lifts ℝn × {0} 
to Sn.

Proposition 5.4 Let Γ be a set in Sn as in Theorem 1.2, containing the north pole. 
Suppose Ω̃i is a sequence of increasing smooth domains in Sn which converges to 
Sn ⧵ Γ , with �Ω̃i not containing the north pole, and set Ωi = T−1(Ω̃i) . Assume gi is 
the complete conformal metric in Ωi with the constant scalar curvature −n(n − 1) . 
Then, for sufficiently large i, gi has a positive Ricci curvature component somewhere 
in Ωi . Moreover, the maximal Ricci curvature of gi in Ωi diverges to ∞ as i → ∞.

Proposition 5.4 follows easily from Theorem 1.2 for the case (M, g) = (Sn, gSn ).
We point out that notations in Proposition 5.4 is slightly different from those 

in Theorem 1.2. In Proposition 5.4, Ω̃i is a domain in Sn and Ωi is a domain in ℝn . 
We also note that Ωi is a bounded domain in ℝn if the north pole is not in the clo-
sure of Ω̃i.

Example 5.5 Let {p1,… , pk} be a collection of finitely many points in ℝn , with 
k ≥ 1 , and set ΩR,r = BR(0)�

⋃k

i=1
Br(pi) . Then, for R sufficiently large and r suffi-

ciently small, the complete conformal metric in ΩR,r with the constant scalar cur-
vature −n(n − 1) has a positive Ricci curvature component somewhere. Note that 
the corresponding Γ in Sn is given by Γ = {en+1, T(p1),… , T(pk)} , which consists of 
at least two points. If k = 1 and p1 = 0 , then ΩR,r is the annular region as in Exam-
ple 5.3. Combining with Example 5.3 for a fixed constant r, we conclude that the 
maximum Ricci curvature component of gΩR,r

 tends to −n∕2 as R → r and tends to ∞ 
as R → ∞.

Next, we construct bounded star-shaped domains in which the complete con-
formal metrics have positive Ricci components somewhere.

Example 5.6 For n ≥ 4 , set

Let Ωi be a sequence of increasing bounded smooth domains in ℝn , star-shaped with 
respect to the origin, which converges to ℝn ⧵ � . Then, for i sufficiently large, the 
complete conformal metric in Ωi with the constant scalar curvature −n(n − 1) has 
a positive Ricci curvature component somewhere. Note that the corresponding Γ in 
Sn is given by the equator in the xn-xn+1 plane minus the image under T of the seg-
ment (−1, 1) on xn-axis. Hence, the dimension of Γ is 1. This is the reason we require 
n ≥ 4 . We point out that domains in this example are diffeomorphic to balls.

T(x) =

(
2x

1 + |x|2 ,
|x|2 − 1

1 + |x|2
)
.

𝛾 = {(0,… , 0, xn) | |xn| ≥ 1} ⊂ ℝ
n.
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