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Abstract

This is the third paper in a three-part sequence in which we prove that steady,
incompressible Navier—Stokes flows posed over the moving boundary, y =0,
can be decomposed into Euler and Prandtl flows in the inviscid limit globally in
[1, 00) X [0, ), assuming a sufficiently small velocity mismatch. In this paper, we
prove existence and uniqueness of solutions to the remainder equation.

1 Introduction

In this paper, we will prove existence and uniqueness in the space Z [the Z norm is
recalled below in (1.45)] of solutions to the nonlinear system

—Au+S,w,v)+ P, =f(u,v), (1.1)
Py
—Av+S,u,v)+ - = g(u,v), (1.2)
u,+v, =0, (1.3)
with boundary conditions
[, V]l (y=0y = [ V]l (y=py = ylil?o[“’ v] = }Lrgo[u, v] =0. (1.4)

The terms in Egs. (1.1)—(1.2) are defined:
Fu,v) 1= e TR + N, v), gu,v) =€ 2 TR+ NVu,v), (1.5)

S, V) 1= uglty + g+ Vg, + gy v, S,(U,V) 1= UV, + Ve Ul + VRV, + VeV,
(1.6)

This research was completed under partial support by NSF Grant 1209437.

P4 Sameer Iyer
ssiyer @math.princeton.edu

! Fine Hall, Department of Mathematics, Princeton University, Princeton, NJ 08544, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s42543-019-00015-0&domain=pdf

48 S. lyer

n n n n
Nu,v) i=e2uu +ex vy, NVu,v) i=e7uv, +e2 v (17)

For the convenience of the reader, we recall below the main estimates estab-
lished in [3] which will be in use throughout this paper.

Theorem 1.1 [3] Let n > 2 € N Let 6, € be sufficiently small relative to universal
constants, and € << 6. Let the boundary and in-flow data be prescribed as described
in [3]. Then there exist Prandtl profiles [u’ V;,,P/p for j=1,....n, Euler profiles
(W, V,,P.] for j=1,...,n and auxiliary pressures [P/’a P for j=1,...,n such
that for any y € [0, i), n > 2, and for o, = x > 0 arbitrarily small, thefollow—
ing remainder estimate holds for any k > 0:

10000’

n 2
e i |OhR 4+ ek R < Cn, )i xR, (1.8)

n 1 2
€27 IVed R \/ed[R ||z < Cln, k)e ™ ar ! Tat2one™, (1.9)

The following bounds hold on [ug, vg] by construction, for any [k,j,m] > 0, so long
as n is sufficiently large relative to m.

||a§av§z'"x"+ e < Clhjom)  ifk > 1, (1.10)
10/ vEe"x 53 | < CGm) i 2 2, (L11)
ll9)viz" X 2IILm <O0@m,j) ifj=0,1, (1.12)
||aj§au§zmxk+' ;o < Clk,j,m) fork>1,j>0, (1.13)
Ilo, u 7"x|| e < O(65m), (1.14)

10,0 up"xll = < Cm,j)  forj =1, (1.15)
107" V2" | o < O(m,j)  for 0 <j <2, (1.16)
10" Y2l < COm,j)  forj > 2, (1.17)
||a/u"yx"""||m < C(n,j) forallj >0, (1.18)
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1050 VEX 3| < Clkj) fork +j > 0, (1.19)
1060 uEx 3 ||, < \/€Clk,j)  fork+j> 0, (1.20)
I18VER 3Vl < Clkj) fork > 1, (1.21)
(e = 1,vE )t vE x|, < O(6). (1.22)

We also recall briefly the estimate, established in [3], on the remainders,
R*" R which act as forcing terms:

Lemma 1.2 (Remainder Estimates) For anyy € [0, i), n 22, andforo, = 10(1)00’ k>0
arbitrarily small,

e‘§‘7|0fR“’" + \/Eaij“”I < C(n, K)ei_”_"x_k_%ﬂ"", (1.23)

eI I1Ved R \Jed R 2 S Cln, ke 7k TF T (104

The main result of this paper is:

Theorem 1.3 For €, 6 sufficiently small, € << 6,k > 0 small, and 0 <y < %, there
exists a unique solution [u,v] € Z(Q) to the system (1.1)—-(1.3), (1.4), (1.5) satisfying
the bound:

Iy
“u9V”Z(Q) S Clug, vg)er . (1.25)

The main result of the three-paper sequence, Theorem 1.2 of [3], follows immedi-
ately from Theorem 1.3. The proof of this theorem proceeds in several steps, which
we now outline:

(Step 1) Linear existence of solutions to weighted Stokes system, defined as follows:

Ay +aeAy)=F,-€eG, onQ", F,GeL*QY), (1.26)
W|y:O,N = Wyly:O,N = 0’ and W|x:1 = lex:l = O’ (1'27)
}il?o v, y,1 =0, (1.28)

where a > 0, and
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A(W) — [l[/.xzm _ ll,yyme+2 _ ax(lllxxzm+2) + l//yyyyx2m+4
+ 0,y X" + 0, (w, )] (1.29)

Here, m > 0 is sufficiently large, and can remain temporarily unspeci-
fied. The scaled Bilaplacian is defined as A7 :=d} +€d;d; +€°0;. The
right-hand sides, F, G, should be thought of as generic elements satisfying
F,—¢G, € H~!. Upon introducing appropriate function spaces, we define
the weak formulation of (1.26)-(1.27) in (2.6). Depicting the weak-solution
operator to the above system by S;l (see (2.12) for a precise definition), Step 1
amounts to studying the solvability of S,y = F, — €G,.

The boundary conditions as x — oo in (1.28) are selected in order to be
consistent with (1.4). However, due to the terms in A(y ), the weak solution,
[w, u, v] exhibits rapid decay as x — .

(Step 2) Linear existence of compact perturbations to S,. Define the maps:

Tly] := dy[ — ugy,, — gy, — (Vg + €2 M)y, + uqu/x]

(1.30)

- €ax [uRWxx - vRyWy + VRny + VRny] ’
Toly] := Tyl + €277 0,[pw,, ], (1.31)
Tyl 1= —ugy,, — ug W, — Vg¥,, + Ug ¥y, (1.32)
Tylw] i= ugWy = VRyW¥y + VaWyy + VW, (1.33)

T has a dependence on 7, so to be precise we will sometimes write T [y ;V].
When there is no danger of confusion, we simply write Ty ]. The map T,,[y]
is defined to match the profile terms, S,(u, V), S,(u,v) [see the definition in
(1.6)], when they are written in terms of the stream function, y. We have
defined the notation 7, T}, so that we can write T, = 0, T, — €9, T, In this step,
we are interested in establishing solvability of the system:

Sew + Tyl =F, -G, onQ", (1.34)

v =yl = v =yl = v = wll,oy = lim [y, y,1 = 0. (1.35)

The essence of the arguments in this step is that upon applying S;l to both
sides above, S;l T is seen as a compact perturbation of the identity. Despite QV
being unbounded in the x-direction, the required compactness arises from the
weights, w, present in A(y) above in (1.29). The solution of (1.34) is known
to decay rapidly as x — oo, due to the presence of A(y). This is captured in
estimate (3.67).

(Step 3) Nonlinear existence of auxiliary system: we first invite the reader to refer
back to (1.5) for the definitions of fand g. Given this and the definition of 7'in
(1.30), we define:
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Z DY +— o5V ol Sy == = =N T S4rs
f@,v) =€ 2"R"" + e, sothat f(u,i,v)=f(@,v)+e" vu,.
(1.36)
The aim of this step is to obtain existence of solutions (which we now index
by a and N for clarity) to the nonlinear system:

Sew ™ + Ty N o™ V] = F @™, vo) + eg (™ vy on QY. (1.37)

This existence is obtained in the unit ball of Z(Q") via Schaefer’s fixed point
theorem.

(Step 4) Nonlinear existence of solutions to the system (1.1)—(1.3), with f, g as in
(1.5): By re-applying the analyses in [4], one obtains the uniform-in-(a, N)
estimate: [|u®Y, v¥N|| ;v S O(8)e7™" ™", which then enables the passage to
weak limits in the space X; N X, N X;. The weak limit is denoted by [u, v], and
is demonstrated to satisfy a weak formulation of system (1.1)—(1.3), see (5.10)
for this formulation. Moreover, [i, v] € X; N X, N X3, gives enough regularity
to upgrade immediately to a strong solution of (1.1)—(1.3).

Remark 1.4 To establish existence, we rely on compactness methods as opposed
to applying a contraction mapping. The essential reason for this is seen by exam-
ining calculation (4.5) in [4], in which the structure is not preserved under taking
differences.

Remark 1.5 It is important to establish nonlinear existence of the auxiliary system
before establishing nonlinear existence of the system (1.1)—(1.3), as opposed to
jumping from linear existence of (1.1)—(1.3) to nonlinear existence because the com-
pactness methods we rely on require the weights from aA(y).

(Step 5) Nonlinear uniqueness for solutions to the system (1.1)—(1.3), with f, g as in
(1.5): In order to prove uniqueness, we re-apply the estimates from [4] with
weights that are weaker by x™?, where b < 1, but is arbitrarily close to 1. This
step is necessary (with the weaker weight) due again to the calculation in (4.5)
from [4], whose structure is destroyed upon considering differences.

1.1 Notations and Norms

We briefly recall the norms introduced in [4] for the convenience of the reader. First
define the cut-off functions:

0 forl<x<?
= - -2’
&3 (x) { | forx>2. (1.38)
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@) = 0 forl<x<50+50k—2),

PEO=Y 1 forx > 60 + 50k — 2). (1.39)
The energy norms are defined as follows:
1
vy, 2= luyllZ, + I{Vevevixzlz, (1.40)
3

luvIg, 2= Ny - poxll7, + [RYZS RY IS E [ (1.41)
VI, 2= ity - (0307172 + VeV vy} - (0307 1 (1.42)

Definition 1.6 The norms Y,,Y; are strengthenings of X,,X; near the boundary,
x = 1, and defined through:

2 . 2 22
vy, == Nugxll7, + VeV Vi 12172+ Ny 1l 12 e<2000)» (1.43)

2 . 2)12 202
et VI, = Nty - G213, + IV Vi Vi } - G522 M1 (1.44)

Definition 1.7 The norm Z is defined through:

1 1
2Vliz == 1% Viix nx Vlly. V. ’ L
ot vil7 2= llu, vilx, ax,nx, + €M u, || 2 + €M, v| g + €M ||uxs \/vaz”

N ERN N 1
+ €' sup ||\/vax2,uxx4 Iz + €7 sup [|ux2 ||L§
x>20 x>20

o0
+€N7[/ x4||\/2vxx||imdx] .
20

y

P

(1.45)

Here, N,, are some large universal numbers.

The following embedding result from [4] appears repeatedly in the present
paper:

Lemma 1.8 For o > 0 arbitrarily small,

sup [Il\/Zl//x_l_UHiz + ||ux_”||iz + ||\/EVX_6||iz] p C(6)||“7V||;2(]’ (1.46)
¥y y y

x>1

22 2 2 2
sup [l 12, + e 612 | + sup IVer, oz, S vl s 147)
xxl y vl %220 y ne
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22 22
SuZF()) “uxy'x2 ”Lz + ”{vxw \/vax}x ”in| ~ ”I/l V”yzny,‘ (148)
x> y y

The constant C(c) 1 o0 as o | 0. Finally, for [u,v] € Z, we have the following
property:

SUp [[{vyps Uy X[l 12 < 00,
e v IS (1.49)

2 Invertibility of Weighted Stokes Operator, S,

In this step, we study the system (1.26)—(1.27). We remind the reader that still, all
integrations and all norms are taken over Q" unless otherwise specified. There is
an abuse of notation here; y should be indexed by « and N, but this will not cause
any confusion for this step, as we view both @ and N as fixed. Our intention of this
section is to exhibit solvability of the system (1.26) in the space Z(Q2"). Denote by
1 (x) a cut-off function satisfying (refer to (1.38) for the definition of {5):

;(lzlonxz%, xn=0 forles%. 2.1

We define higher-order cut-offs similar to (2.1), satisfying the following property:
support (y;) C { x,_; = 1}. Define the following auxiliary norms via:

”W”i]z :://W2x2m+ |VW|2 2m+2+ |V2y/|2x2’"+4, (22)

W1y =l + | [ 192w 23

”WHZG"B =lwllr, + / / |o¥y|* for any bounded subset B c QV, k =0, ..., 3,
w, w B -
2.4)

Wiy =iy + [ [ 2o ks as)

We will also call G’fv 1OC(QN ) the space such that ||u/||Gka < C(B) for all compact sub-
sets B. Define the weak formulation of (1.26) to be:

//sz/ V ¢+a //W¢x2m //VW V¢X2m+2 //Vzl,l/ \vj ¢x2m+4

— €G,, ¢) 1 forallp € CX(QY), where y € HA(QY).
(2.6)

@ Springer



54 S. lyer

Above, V2 is the Hessian matrix, and the inner product between two matrices is
given by A : B = trace(AB). We will need one more norm:

k
I, G)llgz-r 2= Y NOLF, = G}l @7
J=0

Relevant spaces are defined here:

Definition 2.1 H2(Q") is defined to be the closure of Ci°(Q") under the norm
Il - Il HE(QV) for k > 3 consists of the subspace of H2(Q") whose H (QY) norm is

finite. Note that va (€M) does not contain all of the third derivatives of y; it is miss-
ing 631//, which is the reason for the norm, || - [l .

Remark 2.2 There is a distinction between H2(Q"), and H* (Q") in that:
72(V) = 02 (@) 178 But for & > 3, H3(QV)=<Cr @) 1#E . 2.8)
Due to the weights, there is no “H = W’ theorem generically for va Q).

Lemma 2.3 Fory € va(QN ), the following boundary conditions are satisfied:

Vly—on = Wyly=ony = Wlet = ¥ilimy = 0. (2.9)
Proof 1f y € H2(QV), obtain a sequence ¢ such that[|¢™ — || — 0. The claim
now follows by the standard boundedness properties of the trace operator. O

Lemma 2.4 HVZV(QN ) as defined in Definition 2.1 is a Banach space.
Proof Consider the auxiliary space:

Q") = {y : Vy, V?y exist in the weak sense, and Il @) < ©}.
(2.10)
Through standard arguments, H2 (QN ) is a Banach space. Suppose {y™} is a
Cauchy sequence in H2(QV). Then {u/(”)} is Cauchy in H2 ,(QY), and so there exists
a limit point y such that lly — w™|| 0 e O As 1//(”) € H? 2(QY), we may find a
sequence {¢"}, -, such that ||¢p™ — u/(")ll . 2720, where (i)(") € C2(QY). In par-
ticular, define, for each n, by selecting m lar%e enough: ||¢®™ — w®@|| 2 < 27" Thus,

Ow

lp™ — | Hz e 0, proving that y € C° "%, This establishes the desired result.
O

Lemma 2.5 Endowed with the inner product,

(W, @) 1= //u/(pxz’" + Vi - Vo™ + Vi 1 V™™, (2.11)
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va is a Hilbert Space. The inner product in (2.11) induces the norm defined in (2.2).

Proof One easily verifies the standard axioms of an inner-product for (2.11). Non-
degeneracy of (2.11) is obtained via the boundary conditions in (1.27). Complete-
ness is then obtained via Lemma 2.4. O

Definition 2.6 The a-Stokes operator is defined through:
S;w =F,—eG, fory e Ho(QY), F,—eG, e H'(QY), (2.12)
and is equivalent to (2.6) holding.
It is our aim to study the invertibility of S,,.

Lemma 2.7 Given F, - eG, € H™Y(QN), there exists a unique weak solution
v E Hi(QN ) satisfying (2.6). Such a weak solution satisfies the energy inequality:

1 1
Wil S —IIFy = eGullfer = ISy Il (2.13)

Proof Define:

Blwy, ¢] :=//V§u/ : V§¢+a(//u/¢x2’”
+//va¢x2m+2+//vzw : V2¢x2m+4>.

It is immediate to see that B is bilinear, bounded, and coercive on HVZV(QN ). Next,
F,—¢€G, act as bounded linear functionals on HVZV(QN ) through the pairing:
(Fy = €6 d)y2pp 1= (Fy = €G, d)y1 . This follows from: [(F — €G, d) 1 1|
< I1Fy — €Gyll g1 Hd)”Hi' The existence of y € va(QN), a solution to (2.6) is then a
standard application of the Lax—Milgram lemma to the Hilbert space H?V(QN ). The
energy identity above follows from density of Cg"(QN )in HVZV(QN ), which enables us to
replace ¢ with y in (2.6). O

(2.14)

The above lemma then says that ;' : H~'(QY) — H2(Q") is well-defined. Our
intention now is to upgrade regularity.

Lemma 2.8 Given F, — ¢G, € H™'(Q), the unique weak solution in H:(Q") guaran-
teed by Lemma 2.7 is in HS’V(QN ) and satisfies:

1 1
Wiz S —IIFy = Gl = ~ ISyl 2.15)
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56 S. lyer

Proof As our weak solutions are only in Hi(QN ), we must formally use difference
quotients within the weak formulation (2.6) to upgrade to HSV(QN ). However, we
will generate the va estimate via differentiating (1.26), with the understanding that
everything that is done can be formalized through the use of difference quotients in
the standard manner. As such, we take d, of the system (1.26), which gives:

Ay, + aA(y,) + [0, aAly = 0,(F, — €G)), (2.16)

where

[0, cAly = a [2mx2’"—11p - 2m+ 2)x2m+1u/yy — (2m + 2)0, (w x>
+ Qm A+ Py 4 2m+ 40, (") (2.17)
+ (Q2m + 4)0,, (")

Let y, be as above in (2.1). Define the quantities:

h=1=x, py® =k ;(1<%> which implies |x*0% p,,(¥)| < 2. (2.18)

We now test the above equation, (2.16), against the multiplier p;,y,. Doing so first
gives from the Bilaplacian:

//Aﬁwx-prx=//pM[elwmI2+€2Iwm|2+wayylz]
+CO//p;é[elll/xylz-i_ezlu/xxlz] +Cl//aipM |Wx|27

(2.19)
for constants ¢, ¢;. Next, we have the terms coming from A:
/ / aA(y,) - Py
> a / / [fozm + nyxzmﬂ + W)?xx2m+4 + llezyyxzm+4 (2.20)
g 2yl P oy = Nyl

Through a direct integration by parts, the commutator contains lower order terms:

1
' / / (0 aAly o] S Wl S TIF, ~ G @2
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For detailed proofs of calculations (2.20) and (2.21), we refer the reader to (3.93)-
(3.100). Finally, on the right-hand side of (2.16), we have:

|<ax(Fy - €Gx)7 prM>H’2,H2| < ||Fy - €Gx”H’1 ”pMWXX”Hl' (2.22)

We can send M — oo so that the weight p,, 1 y,, resulting in

m 1
/ / AV P s LiE G 2.23)

For the region 1 <x <20, and 0 <y < N, we apply the standard H*(Q") estimate
for solutions, u*, v* Stokes’ equation near corners (see [1], Theorems 1 and 2, and
Figure 2, P. 562 also in [1] with “C/C” boundary conditions). Formally, fix another
cut-off function, y,(x,y) localized near the corner (1, 0) [the identical argument can
be given for the other corner, (1, N)]. First, by calculation, we have:

A (ow) = ndly + 142, 11y, (2.24)

where the expression for the commutator is given explicitly:

[Ac, 121w = 40,1200 + 405 120,y + 60 1,07y + 2€0;0; 1ow + 2€0° 1,07y
+ 466)(6}2,)(26)(1// + 2605}(2631;/ + 4€0x)(26X0)2,y/ + 4€0§0y)(20yu/
+4€0,7,0°0,y + 8€0,, 1,0,y + 66707 1,07y + €20}
+ 4626)2)(26)(1// + 4620X)(2()il//.
(2.25)

The salient feature of (2.25) will be:
(4. 1l = 0(1,0°w), (2.26)

where this is short-hand notation for containing up to three y-derivatives, and local-
ized by y, (or any derivative of jy, which is also localized). Localizing (1.26) using

X2

2wl S a(Fy = €GOl + 10GR0° Wl S Ia(Fy = eG )l

(2.27)

Combining (2.27) and (2.23) gives the desired result. O
Lemma 2.9 Fix any bounded set B C Q. Then we have:
lwi?>, < CB LiF —eG 2

W||03_B SCB)IFy —e el (2.28)

where the constant C(B) depends on B.
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58 S. lyer

Proof This argument proceeds identically to the calculation from the previous
lemma which resulted in (2.27) by simply replacing y, with cut-off functions local-
ized to each interval x € [M, M + 1]. The dependence on B in the constant in (2.28)
arises from the weights x>, x*"*+2, x>"*+4 appearing in Eq. (1.26) through A(w). O

The above lemmas roughly show that S;l gains four derivatives. By repeating
this procedure for higher-order x-derivatives, we can upgrade to higher-regularity.

Lemma 2.10 Given (F,G) € H; | the unique weak solution guaranteed by
Lemma 2.7 satisfies:

1
w17 S ~IE Ol (2.29)

For (F,G) € Hy I, we can upgrade weak solutions to strong solutions.

Lemma 2.11 Given (F,G) € H' the unique weak solution guaranteed by
Lemma 2.7 is a strong solution of (1.26).

Proof An integration by parts of the weak formulation (2.6), justified according to
the previous lemma, is equivalent to Eq. (1.26) being satisfied pointwise on Q". The
boundary conditions at x = 1,y = 0,y = N are satisfied by Lemma 2.3. The bound-
ary condition at x — oo comes from the norms, (2.2), which when applying with
k =5, imply that up to four derivatives of y vanish rapidly at x — oo. O

3 Compact Perturbations, S W+T[¥]

For this step, we invite the reader to refer back to the specification of T[], given in
(1.30), and the system that we will focus on, given in (1.34). Note that Tly] contains
a loss of three derivatives for y. Note also the presence of the term e2*"7. We will
now need some compactness lemmas.

Lemma 3.1 Fix two weights, w, = x™, and w, = x", where m, > m; > 0. Then, one
has the following compact embedding:

Hl

loc

@ n sz(QN) oo L2 | M. (3.1)

Proof Consider a family of functions {f"} defined on Q" such that:

sup//fnzwg < 00, 3.2)

and such that f, € H} (Q"), uniformly in n. By taking Sobolev extensions across
0QV, and subsequently cutting off in the y and negative x directions, we can assume
{f.} are defined on R?, compactly supported in the y direction and negative x direc-
tion. Fix any 6’ > 0. Since m, > m,, there exists a compact set K = K(8') such that:
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Global Steady Prandtl Expansion over a Moving Boundary Il 59

5/
sup [Ifull.z, ey < - (3.3)

On K, by Rellich compactness, there exists a subsequence (depending on &) such
that

. &'
1 - < —.
im sup W, = In 2 < 55 Frmaom (3.4)
Then,
5/
li - < —.
im sup W, = oMl ) < 5 (3.5)
Combining the above two estimates,
lim sup ”fnj —fnk”L;‘,1 <4 (3.6)

Jok—o0
Taking successively 6’ =27 and applying a diagonalization argument give the
result. O

Lemma 3.2 Let the weight, x*", in the expression for A(y), Eq. (1.29), be selected
for any m > 0. Then the map S;'T is well-defined and compact H*(QV) — H*(QV).

Proof According to (2.28), this follows from the compactness of G°  (QN) <

w,l
< H?*(QVN), which in turn follows from (3.1). The lemma is proven. * O

We are now ready to study system (1.34). The first task is to obtain an energy
estimate to the inhomogeneous problem.

Lemma 3.3 Suppose w € H>(QN) is a solution to (1.34), where (F,G) € H;', and
liz, ||, < 1. Then y obeys the following energy estimate:

1 1
iy I + allyl7, S O@)IVevxz vz, + / / FutelGlvl.  (3.7)
Proof Supposing there exists such a y, we would have T[y] € H~(Q"), and so by
(2.15), we know v € va (QV). By bootstrapping this regularity, we obtain that:

y € H (@), (3.8)

We would like to apply the multiplier y to Eq. (1.34) in order to repeat the energy
estimate from Proposition 3.2 in [4]. Select test functions, ¢™ € Cg"(QN ), which
satisfy:
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60 S. lyer

6" =yl = 0. (3.9)

This is possible according to the density of C° Q) in va in Definition 2.1. Multi-
plying (1.34) by ¢™, then gives on the left-hand side:

/ / Ly +Ty) - 9" +a / / A", (3.10)

First, we shall use (1.31) to write:

[ [ @vemwnen = [ [@vanpnen - [ [ o oo
- / / &2y + Ty [y D™ + / / € ()"

3.11)
According to (3.9), we pass to limits in the following terms:

[ [@venwner= [ [ v vigns [ [ g
n—co 2. 12

We have used:

[ [ aisn - 1gow| = [ [@n-onm0@ -

<N lwl Ty 1l 2 16" = wll g
< s llp™ =yl g —— 0, (3.13)

according to (3.8) and the definition in Eq. (1.31). The integration on the right-hand
side of (3.12) produces the lower bound:

1 1
2 g2, = O@) IV evexz, vz |%,. (3.14)

lim / / (&y + Toly D™

We may pass to the limit in the final term of (3.11) due to the calculation:

’ / / Vi, (¢ = y,)

< ll el 2167 = sl

< el Nl 1™ — Il 2 —— 0
- 2 ALy L T (3.15)
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Upon passing to the limit, we integrate by parts:

n n—oo n
- / / &5 (Ju, g / / 3% (Du Yot = —

From here, we estimate:

e

It remains to treat (3.10), for which we use the compact support of ¢ to justify the
integration by parts:

_+y
bt (3.16)

< 31N, Bl v |12, < €Oy 23R, (3.17)

//aA(W)¢(n) — / /(Wd)(n)xzm + va¢(n)x2m+2 + VZW : V2¢(n)x2’11+4).

(3.18)
Passing to the limit, according to (3.9):

lim //aA(W)d)(n) _ a//(WZ 2m + val2x2m+2 + |V2W|2X2m+4). (319)

n—o0

On the right-hand side, we have:

[frmef [ [ [ e
/ / —eG " = / / G- p"— / / eGv. (3.21)

Consolidating the previous estimates gives the desired estimate, (3.7). O

The task now is to estimate the right-hand side of (3.7) in terms of the left-
hand side using the smallness of ©O(6). We refer the reader to Proposition 3.4 in
[4], whose proof we follow closely. We will point out the subtle differences.

Lemma 3.4 Suppose w € H>(QN) is a solution to (1.34), where (F,G) € H;', and

llit, 9]|, < 1. Suppose the weight w = x*" from Eq. (1.29) is selected such that m is
sufficiently large relative to universal constants. Then y obeys:

HVEan b, S ol + el + [ (Pt €lGI] + €16, .
(3.22)
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Proof We apply the multiplier V/xx}(ng, to (1.34). Here, y is a normalized cut-off
function equal to 1 on [1, 2] and 0 on [3, o0), and

k
a a
X)) 1= ;(<Zx> so that 0)’;;@(1 = E;((k). (3.23)

The necessity of such a cut-off function here is due to the terms arising from A(y).
The presence of this cut-off function enables us to justify all integrations by parts in
the x-direction. For our fixed « > 0, we will eventually send L — oo. Applying the
multiplier y,x ;(Lz,a to (1.34), gives on the left-hand side:

/ / (T 1+ &y )yox,, +a / / AW WXL,

:i//k%md+£w+ﬁ”@w%nmmﬁ, (3.24)

+a / / AWWELL o

We will first focus on the first two integrands above. Let us start with the profile
terms from Ty[y]. We will transfer all of the terms to velocity formulation.

2 _ 2
//@Su-vx;(m —//Suuxx)(L’a

- 2
= / /[uRux + Ug Ut + Velty + Up VIUX )]

R / / u)zcx'}'/z,a - / /[MRXM + VRUy + uRyv]ux'x/YZ’a .

(3.25)

We will treat the three terms on the right-hand side above, using (1.14) and (1.20)
starting with:

2 P E 2
//quuxux)(L’a=//{qu+qu}uxux)(L’a

Lop !
S lyxZug Ml o lug Ml 2 vy 6l 2

E 3
+ [lup X2 |l

u 1
_/’(L,a ||ux'x2/¥L,a”L2
X 12

< OBl + OGS luxz 7, N2 + Ellull?
< Ol I + OG)l2? 71,41 + &l

2 : 2 L @ 2
S (9(5)||uy”L2 + O(é)llMxXZ XL,a”LZ + _”W”].Iz

L (3.26)
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Above, we have used the Hardy inequality:

u a
;)(L,a S “ax(”)(L,a)“LZ < ”“x)(L,a“LZ + Z”W(L(XHU
L (3.27)
a
S Mtz alle + F 1l
Next, by (1.12), (1.22), we have:
) 1 1
VRUWVIX X} o | S VR [l oo gy 2 11vyx2 2 ol 2
(3.28)

1
< OOyl 211vyx2 yp o]l 2-

Next, by (1.16), (1.18), (1.20) we have:

2 P E 2
//uRyvuxx;(L,az//{uRy+\/EuRy}vvyxxLya

P ] 2
S ”y”Ry”Lm ”Vy'x2 IL,(I“LZ

Ve=
S_;IL,a

g 2 1
+ Velluby x| 1,62 2yl 2 p

< P 3 2
< Myup Il 10,7 g o1,
g 3 1
+ Vellul 22 o 10X 1y gl VeV, gl 2
[04 3 1
+ 7 Vellugy ¥ s v 2l 1V evzy i
1 2 2 a 2
< OB ol + VEO@IVer, 2141l + OGO Tyl
(3.29)

Summarizing the previous four terms:

2 1 2 _ @ 2
//aySu : VXXL’G Z ”VylellL,a“Lz - Z“W”Hi

— OB luyll?, — OG)VellVev, 1, ol

(3.30)

We will now move to the profile terms from S,. First,

/ / —€d,S, - vx;(ia = / / €s, - [vxx)(lia + V)(Lzya + vxzfa)(L’a)(La .(3.31)
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Referring to definition (1.5), consider the term ugv, in S,, which is the most delicate

profile term:
/ / euRv)zcx)(ia + / / EURV,V [;{L,a + ZX%)(L,a)(La] . (3.32)

The first term above in (3.32) gives positivity:

//euRv X)(LQN//EV x)(La (3.33)

We will treat the second term on the right-hand side of (3.32):

/ / T / / [MRX;(L“HMRL;(LMW], (3.34)
//SMRVVX )(La)(La_ // [MRx L)(La)(La

2
o ’ o ”
+ URT XLaXLa + MRXE),/L,Q){L!“] . (3.35)

The first term on the right-hand side of (3.34) yields:

2 2
'//GV quIL,a

We now estimate:

u
‘//e_sz PR //ev a %||y/||§1§. (3.37)

This same estimate can be performed for all the terms in (3.35). Consolidating these
bounds:

L a
S VellraVevro v 12 I + TIvlE. (336)

1
[ [ ett, s a0+ VelmaVeran Rl + vl 638)

It remains now to treat the remaining three terms in S,. The second, third, and fourth
terms from S, are estimated immediately:
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2 3 1 a 2
c / / Vo512 < Ve Vel IVEr sl + Sl
(3.39)
2 1 1 a 2
el [ [ vt < Veselielo g Ve 2ol + S,
(3.40)
2 P 1 L
el [ [ rmmania] < Vvt s Vet e
(3.41)

E 3 : 2 L @ 2
+ Vellvpyx s I Vevers 2 I + Tl

We now turn back to (3.31), addressing the second term in the bracket for the final
three profile terms from S,

/ /[VRXM + VgVy + Vg, V] - evxia. (3.42)

First, through the Hardy inequality and (1.10), (1.19):

‘//evkxuv;(m

< Vellxivgll || 2
< e
< e

%ILa

1 2 1 2 o 1 2
||uxx4XL,a”L2 + ”\/ZV)(‘X“XL,O{”LZ + z”{u’ \/va“k/]/"a}”Lz]

o
IIWIIHQ],

1 2 1 2
ek 20l + Vv 2l + 7

(3.43)

so long as w = x™ is selected larger than xi, which is true by the assumption of this
lemma. Next, through an integration by parts and (1.12), (1.22):

2
//[VRV +vav]€v;(La = //vRyv (:')(La < ellvRyy e vy 2pall;

+ VelVE R e 1Vevxs 2,412, + Tl
(3.44)
The final task for the S, profile contributions is the third term from (3.31):

’//E[VRXM+VRV +vRyV] Vx xLaxLa = ”W“Hz’ (345)
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so long as w = x™ is selected larger than x, which is true by assumption of this
lemma. Let us consolidate all of the calculations from S,:

1 o
//_eaxsv ! VX)(E"O[ 2 / / evix;éa - \/g”lL,a{\/zvx: Vy}x2 ”iz - Z”W”?{z

(3.46)
It now remains to come to those terms contributed by Agw into (3.24). Again, we
will write these terms in the velocity form. First,

2
u
2 y|.2 a
‘//—Myyuxx)(w - ‘ _,// 2 [}(L’a +2leL,aZLa]

S lluyll7,. (3:47)

Next,

2 u)zc 2 a '
—€UUXY] G? Xiat sz XiaXla

(3.48)
a
S elluz oI}, + eIl
We now move to the terms from 4,v, starting with:
o
‘//62\’”)(”7(1%,0; = ’//62"” [vxx;(ia + v;(Lz,a + ZVXZJ(L,L,)(LU[]
(3.49)
a
< elVevzialf + T vl
Finally, we have:
2 | _ 2
’ / / =€V VXX | = ‘ / / EVaXIL
a
= ‘ //evi [)(Za +2x2)(L,a)(L,a] (3.50)

2 a 2
S elvyzeallys + T 1wl

By combining calculations (3.30), (3.46), (3.47)—(3.50), and absorbing relevant
terms to the left-hand side below, we have:
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1 (04
Ve v x 7 S I, + Fliwl,
+a//A(w)wxx;(ia+//eE”\"/uyuXx;(ia
2 2
+//(Fyvx)(m —eGoxy ) 3.51)

Via direct integration by parts, which is justified due to the presence of the cut-off
function in x, we compute:

a / / AWWXL

Let us compute each term in A(y) to verify (3.52), referring to the definition in

(1.29), starting with:
‘— %//wzax[xm“xia]

‘ / / aq/xz'"vx)(za

3 alll//lli]‘zv~ (3.52)

@ a
- ’ -4 / / " [szm 1+ 22 xL,,,xLa] (3.53)
< allyllzp. (3.54)
For the second term in (3.53), we have used: |%X)(L,a| < 1. Next, let us turn to:
a/ / (—l//yyxzm“ + II/_\’yyyxzmH)vx)(z,a)
=« / /(uyvxzm”)(za — augu X" p7 )
(3.55)

_ 2m+3 2 2 2m+5 .2
= a//[uuxx Xia™t auy()x(x )(L,a]
<a / / W 4 28 S ally.

Next,

a / / 0X(wxx2m+2)vx)(za =a / / vx2m+26x(vx)(ia)

a
=q / / yx 2 [vxx )(Iia +v )(L2,a + 2vxz XLa )(La

<a / / 22 < a2, 556
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a//ax(lllyyxxzm+4)vx/¥z’a = a/'/ax(lllxy'xzm*—z‘)vyxxzya
=q / / dx(uxxzm”)uxx)(zﬂ

Sa / / ™ Salwlly,. (357

Next,

The final term in A(y) is:

a / / 0w vxy] = / / w0 v ]
= a/ / vxx2m+4[vxxx)(zqa +2v,0,(x 11 4) + V0, (X 11 )]

S allyll,.
(3.58)

This concludes all the terms in A(y), according to (1.29). Estimating the next term
in (3.51) yields:

2y (N — — 1
< e N, Bl Ny 2 Nl 2 g gl 2

n

n _ g 1 — ;
< T et g 12 + T2, (3.59)

Finally, we come to the right-hand side:

//[Fy—er]'Vle,a =//(Fuxx;(L,a+eG0X[vx;(L,a])
< [ [ieiier| [ [ e

s//(|F||ux|x+e|c||vx|x+e|G||v|>.

a
vxxXL,a + VXL,a + Vx(z>}([:a:|

(3.60)

Inserting the previous few calculations into estimate (3.51) gives:

1 2 2 a 2 2
II{\/va,vy}xzxL,alle S Nuylly, + ZIII//IIH; +allyll,

+//<|F||ux|x+e|G|nvx|x+ viD.
3.61)
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We now send L — oo, and appeal to Monotone Convergence Theorem, as y; , T 1to
establish the desired result. O

Having understood the inhomogeneous problem:

Lemma 3.5 For (F,G) € H;', and ||ii,v||, < 1, there exists a unique weak solution
w € HX(QV) 10 the system (1.34).

Proof We apply S;l to both sides of (1.34), which is valid as the right-hand side and
therefore the left-hand side is assumed to be in at least H~'(Q"), thereby yielding:
y+S8, Ty =8, (F, - €G,). (3.62)

We will study Eq. (3.62) as an equality in the space H*(QV). According to the
Fredholm alternative, which is available according to Lemma 3.2, there either
exists a unique solution y € H2(QN) to the system (3.62), or a non-trivial solution
v € H*(QV) to:

w+S'Ty =0 < S,p=-Ty. (3.63)
Therefore, coupling (3.22) with (3.7), taking F' = G = 0, we have:

2 2 1 1
IVeuau 2, + allwll?, + [1Vevx?, vz |12, <0, (3.64)

w

implying y, u,v = 0. Thus, by the Fredholm alternative, there exists a unique solu-
tion y € H*(QV) to (3.62). Rearranging (3.62):

w =S.'(F, —¢eG, - Ty), (3.65)

where F, —eG, - Ty € H'(QV), and so an application of (2.13) shows that
v E va(QN ). This concludes the proof. a

Lemma 3.6 Let y be the unique H?V(QN ) weak solution from Lemma 3.5. Then for
(F.G) e H;',y € H)(Q).

Proof Ty € H-'(QY), so S,y = =Ty + F, — G, € H"/(Q"), which implies that
w € H3(QV) according to (2.15). Iterating this regularity then gives y € H>(QV).
|

We now introduce more notations, which are more suitable for the velocities:

Lyluvl=(f.9) = S,w+Tly:v] =], —eg,. (3.66)
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Summarizing the established results, we have:

Corollary 3.7 For f,g S H;'(QN), a>0, and ||12,\7||Z(QN) <1, the map L,;u,v]is
invertible, where

Ly : (f.g) € Hy'(QY) > [u.v] € HYQY). (3.67)
Moreover, the boundary conditions (1.27) are satisfied by [u,v] = L;lv[)?, gl
It is now our intention to obtain second- and third-order energy and positivity

estimates for our new system (1.34). For this, we will need to understand several
calculations. First, we introduce some norms:

lwll}, == IIWIIHZ, (3.68)

Il s = [ ] (05w PG P+ |Voky P gl 222
J

+ |V20kw|2 2k 2m+2k+4) fork > 1.

(3.69)

The essential difference between these J¥-norms and the va norms introduced in
(2.2) are the growing weights of x which each application of d,, which mimics the
structure of the energy norms, X;.

Lemma 3.8

/ / A@ky) - Sy 4] ot 2 W e — ZIIWII,,+2 (3.70)

Proof Referring to (1.29), the first term is:

/ / |05y P 17 i (3.71)

The next terms, via an integration by parts in y:

k. 2me2 Ak, 2k 2%k k12 2ma2k42 2k 2
//_ax‘//yyx 0w pk+l)(La //|6x1//y|x Pev1XLa

(3.72)
k dm+d Ak 2k 2%k ky |2y 2mH2ked
//ax‘/’yyyyxm 0, px pk+1)fLa—//|a Wyl pk+1)(La

(3.73)
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Next,

/ / a)‘[(az’c(‘l’)yyxxzmﬂ]'ak‘/’x%ﬁza/’kﬂ

:/ / Oy 00w ¥ . )

k+1 2 2m+2k+4 , 2 k 2 2m+2k+2 2(k—1)
//If)*u/vl T Pt — //If?,cwyl)c’”+ p;

k—1
k+1 2 2 +2k+4 2
/ / |0, P24 2 ok = D Il (3.74)

i=0

Above, we have used the calculation:

_ 2a
2k ,,2 — 2k-1,2 2k 2k 2k
O (P ] = 27 0] S+ T X 0P

+ 2L 200 Pl (3.75)

For the second term on the right-hand side of (3.75), we estimate: = ZXXLa S 1. For
the third term on the right-hand side, we use that the support of p/  is localized in
x. We also use that: support(p,) C {p,_; = 1}. Next, we integrate by parts twice in x
to obtain:

/ / 0, [0y X" - O™ ] 1k
— / / afﬂWszMam[aklI/XZk)(za/’k+1]
— // |0)]§+2W|2x2m+2k+4/¥L2,apif-1
+ / / ai<+2wx2m+4a)/:+lwax[x2k)(zapkH]

+ / / R A M R | (3.76)

The final two terms on the right-hand side of (3.77) are estimated through further
integrations by parts:

k+2 2m+4 Jk+1 2k ,,2

+//ai€+2wx2m+4afwa [XZkXI%ap/H_l]

S w2 (3.77)

@ Springer



72 S. lyer

Finally,
- / / 0,[(F ), 2] - akV’XZk)(Lza/’kH
//ak+lwx2m+20 [akWXZklzaPkH]
/ / | ak+1 | 22242k ){L i pk+1
(3.78)
+ / / I w200 [y o]
> / / |a§+1‘/’|2x2m+2+2k11iapiﬁ1 _ ||ll/||1k+1

Piecing all of the above estimates together yields the desired bound. O
Lemma 3.9

‘ / / AQ@w) - oy i S ZIIWIIM (3.79)

Proof Again, referring to definition (1.29), we will proceed term by term, starting
with the following, for which we integrate by parts once:

k 2m k+1 2k+1 2k+1
‘//axw AR Sl

1 m
=-3 / / A RCHE R W (3.81)

(3.80)

Let us expand the product rule above:

2m+2k 2 2k+1 + Cx2m+2k+l 2k+1

om+2k+1 2k+1
ax[x s )(Lapk " ] =Cx }(Lapk+1 L)(La)(LapkH (3 82)
2m+2k+1 ’ K22k 2k :
+a )(L,a/’k+1pk+1 T P
Thus, the term (3.80) can be controlled via:

k
G301 s [ [ 1otk < 3 vl (3.83)

i=0
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The second term in (1.29) is treated via:

/ / —0X(0f+lwx2m+2) . ai(HszkH)(La/’iﬁl
k+2 2m+2 k+ 1 2m+ 1 k+1 2k+1 2k+1
/ / (=0, wx Co, I-0," wx Lapk+1

= / / |af+lW|ZaX[x2)71+2k+3 )(ZapkkJrl] Cldf+llll|2x2m+2k+2/¥La zlr;l ) (3 84)

k
S, // |aﬁ+lwl2x2m+2k+2pi1j—1 S ZO ||W||J[+2 (385)

We have expanded the product in the first term on the right-hand side of (3.84):

2m+2k+3 2 2k+1 2m+2k+2 2 2k+1 2m+2k+3 2k+1
Ol Al 1= Cx AP +CX (L>mmpk+1

D243 2 L 2H1 2k
+Cx XL aXit1 Pies1Ps

dmA2k+2 2k
Sx” Pry1
(3.86)

Next, we have:

k 2m+2 k+1 2k+1 2k+1 __ k 2 2m+2k+3 2 2k+1
//—fwyyxm oty //Iaxwyl O X Py 1

(3.87)
We will expand the product rule above:
ax[ 2m+2k+3 xzapkk+l]
a
— 22k xza pi/fl—l n C— (2mH2k+3 Yi ){La pi/jjl (3.88)
4 Cx2mr2kt3 )(za /’k+1 /’k < y2kA2m+2 pzljr N

Inserting this above yields: |(3.87)| < Zl o I3
parts in y, and one in x:

w2 Next, after two integrations by

x Omad  AkHL 2kl 2kt K128 [2me2k45 2kt
//ax‘/’yyyyx 0 wxTT )(La //'ax‘//yyl 0,[x Prx1 )(La]

(3.89)
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Expanding the product rule above yields:

(2mA2kES k]
0,lx Pit1 )(La]

_ ~2mA2k+d 2kt 2mA2k+5 2k
=& Pr+1 ){La + 7™ /’k+1/’k+1ha (3.90)

2m+2k+5 2k+1 < 2m+2k+4 2k
+Cx Pt Kkl g S Prri-

Inserting above yields: [(3.89)| < Z -0 llw]l%... The next term from A(y) in defini-

tion (1.29) is:

Jit2*

/ / a,[( aﬁw)mxzmw] . 0f+1wx2k+l /’il:l 22
_//a)lc<+lll/yx2m+4 . ax[a)]:'—lllfv 2k+1pii+]—1}(La]
_ / / a)lcc+lu/yx2m+4 . aic+2wv 2k+1pif—-il—l)(1‘a
- / / |a§+1‘I/y|2x2m+40x[x2k+ll7;%]:1)&a] 3.91)
— / / |a)/§+l%rlzax[x2m+2k+5pi{:—1)(La]

k+1 2 2m+4 2k+1 2k+1
_//lax I//yl x ax[x pk+l ’YL(X]

k+1 2 2m+2k+4 2k
s [ [ o, <Z||w||,,+2

The final term from A(y) in definition (1.29) is:

/ / aﬂ(a§+2wx2m+4),af+1wx2k+1 pilﬁlha
— _//aic+zwx2m+4 . ‘)xx[afﬂlllxz“lpiﬁlx“]
— _ / / a)l:+2wx2m+4 . C))Icc+3wx2k+1 pi]:l%‘a
_//laf+2wl2x2m+4.ax 2k+1pzi41_1)(La]

k+1 2m+2k+5 2k+1
//I0 VAR P XL
k

2
S Dl

i=0

(3.92)

@ Springer



Global Steady Prandtl Expansion over a Moving Boundary Il 75

This concludes the proof of the desired estimate, (3.79). a

Lemma 3.10

| [ [k aw - otuta? g2,

k—1
S vl (3.93)
i=0

Proof To keep notations simple, we will prove the k = 1 case, with the k > 2 cases
following identically. We will proceed term by term from the commutator expres-
sion in (2.17). First,

- 1
//szm 1.%x2){iap§ — _E//|W|20x[x2m+1)(ia/’§]

(3.94)
s//wﬂxmmy
Next,
/ / —w Xyl ] = / / A A
(3.95)
s//ﬁﬂmsw%.
Next,

/ / —0,(p ") -y P xp 5 S / / w2 S lwls. (3.96)

We will now move to the higher-order terms, starting with:

2m+3 2.2 2 Imts 2 2
/ / Wy X g XraP2 = / / Vi ALal2

1
:_E//Iwyylzax[xz"’”xiaﬂilﬁ||W||§z-

(3.97)
Next, again integrating by parts several times:

/ / a"[”’yyxx2m+3]"/’xx2}(L2,aP§

= //W; [x2m+36x[xleiap§] _ ax[x27n+5)([iap§]] S ”W”jz (398)
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The final term from A(y), which after integrating by parts several times in the same

way as above,
2m+3 2.2 2 2
//%[WMX 1w )(L,apz5//“"’”ﬂ' (3.99)

This concludes the proof of (3.93). O

Lemma 3.11

k
' / / (0%, ATy - Oy 2 Bl <3l e (3.100)
i=0

Proof This estimate proceeds in the same manner as those from (3.93), with the
adjustment that the extra derivative in the multiplier from (3.100) is accounted for
by the increment in order on the right-hand sides of (3.100) versus (3.93). Indeed,
let us take the highest order term from the commutator, [d,, A]y:

‘ / / O W X)) o 7 3| S / / W 20 7 03 + W11,
(3.101)
The first term on the right-hand side above can be controlled by ||1//||33, as can be
seen from a comparison to (3.69) with k = 1. The remaining terms work identically.
O

Using the above calculations, we may repeat the energy and positivity esti-
mates, for k > 1.

Lemma 3.12 ((k + 1)’th order Auxiliary Energy Estimate) Let k = 1, 2. Then,

k k12 2
”dxu_\’ : (pk+1x) ”L2 + a”wl|]k+z
k-1 - i
2 k ket~ 3012
Sa Y Ml + OGNV ev, v 1 2 p 212+ W+ D Wiy,
=0 i=1

(3.102)
Proof We apply the operator ajg to the system (1.34):
A5y + 0TIy ] + aA(dy) + aloX, Aly = 05{F, - ¢G,}.  (3.103)
We subsequently apply the multiplier d*yx*p% 7 -
/ / [A. 05y + ATy ] + aA@w) + aloy, Alw] - dowx™pis 27,
(3.104)

B / /[af{Fy —¢eG,}]- ()I;I;I)Ckailj_]){ia-
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The desired estimate now follows using similar calculations as in Lemma 3.3. O

Lemma 3.13 ((k + 1)’th order Auxiliary Positivity Estimate)

k
k+ =
104 (eve v 1402 I, 10, - (I, + Z w2 + Wi+ D) Wi

=1
(3.105)

Proof We apply the multiplier 9+ !y x?+1 p2t+! X7, to the system (3.103):

/ / (405w + O\ TIw] + aA@y) + aldf, Alw] - oy gl o7

(3.106)
=/ / [0{(Fy = eG)1- 0 w0

The desired estimate now follows using similar calculations as in Lemma 3.4. O

4 Nonlinear Existence of Auxiliary Systems

For this section, it is necessary to be more precise with notation; we will index solu-
tions by (a, N) and also specify domains over which norms are being taken. We shall
also transition our right-hand sides from being generic (F, G) to being the particular
right-hand sides of interest, (f, g) as defined in (1.36). Our intention now is to study
the map, M*:
Ma [ua,N ‘—}a,N] [ua .N 0! N]
& Lygun[u™N v = F @ N, vN) — eg (@M, ) 4.1

N _aN -1 (F(saN —aN —aN —aN
= ["ta7 7va, ]=l’a";m.N{.]I'_‘y("ta7 7va, )_egx(ua’ ’Va’ )}3

which corresponds to the system written in vorticity form:

A2y + aA(p ™) + TV 7)

7 4.2
=f:v(ﬁul,N, ‘—/a,N) _ GgX(flu'N, ‘—)a,N) on QN, ( )

A fixed point of (4.2) corresponds to the desired solution of (1.37).

Lemma 4.1 Suppose ||u™", vV || ;qn) < L. Fix any open set B C Q. Let a > 0 and
N >> 1. Solutions w*V, or equivalently [u®N,v*N|, to the system (4.2) satisfy the
following estimates, independent of N, where w(N;) is based on universal constants:

N, N N aN
eCBw s + Nu® vl 2

4.3
S 6100+ ”Ma,N Z4y— w(N)”—aN —aN” ( )

a,N
llx, nx,nxyv) T €2 2@y
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The following energy and positivity estimates hold:

N2 N N (12
a”l//a “Hﬁ(.QN) + “ull ’va ||X]ﬁX20X3(QN) s wl + WZ + W3' (44)

Finally, one has:

N 12 N, N2 N N (12
a“‘l/a ”HA'(QN)J’_G OC(B)”Wa ||H5(B)+”ua ’Va ”Z(.QN)

4.5)

Loy- 2—w(N) 7N saN (4
S i T 4 e M| gl e 17

All constants appearing in the above estimates are independent of (a, N).

Proof of Estimate (4.3) This follows by repeating the proofs of elliptic regularity in
Subsection 2.1, namely Lemmas 2.11 and 2.13 in [4], to the new system, (4.2). At
this point, one repeats the estimates in Subsection 2.2 of [4], which hold independ-
ent of any equation. O

Proof of Estimate (4.4) This follows from Lemmas 3.12-3.13, and subsequently
comparing || - ||« with || - ||H£. O

Proof of Estimate (4.5) This follows by repeating the proof of Lemma 4.1 of [4]. O

Motivated by (4.5), we define the notation:

a,N a,N”2 + ”ua,N’ Va,NHZ

lu H(QN) Z(QN)" 4.6)

N -
V7 ”7-’(QN) =ally

Lemma 4.2 (Properties of M%) Fix any a > 0 and any N > 0, and y, x > 0 arbitrar-
ily small.

() M* : B,(1) c Z(Q") » B,(1) C Z(QY), where B,(1) is the unit ball in Z(QN);
(2) M* is continuous and compact as an operator on B;(1);

(3) There exists a fixed point, [u®N,v*N] = M [u*N ,v*N] in B,(1); “.7)

1
4) The fixed point satisfies, ||u®N vV ||cov S €3777%, independent of a, N.
14 Z(QN) 74

Proof The outline of this proof is as follows. The map M is shown to be well-
defined in the appropriate domains and codomains, according to (1) above. Conti-
nuity of M is investigated by considering differences, and compactness of M“ is
obtained using our compactness lemmas above. One then applies a fixed point argu-
ment to prove (3) and (4).

(1) Suppose [, 7] € Z(QV). This implies that (f,g) € H;', so by (3.67), the map

M*is well-defined on Z(Q"). Lemma 2.7 and the definition of H2(Q"). Definition 2.1
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. R~ . . .
ensures that[u”, v*] are contained in C¢7, " Supposing the pre-images are contained

in the unit ball of Z(Q"), ||a*", ¥*¥|| ;) < 1, one has estimate (4.5), which implies
that M(&, 9) € B,(1).
(2) To check continuity of the map M* on B,(1), suppose:
Mo N = [N v fori = 1,2, (4.8)

where

@™, 5", < 1. 4.9)

Define the notation for the differences,

s 22 ~aN _ ~aN —aN _ -aN —aN _ -aN
[W.it. 9] = [wy™ =g ag™ —ap, v — v, (4.10)
A A A a,N a,N aN aN _aN a,N
[, 2,91 = [y —wy™ g™ =Y =y @.11)

By consulting (4.2), one then obtains the following system satisfied by the
differences:

B9 + aAW) + TG = 05" 1" 5™ = e ag ™, o)
N 4.12)

N _aN
) +eg (@i, vi).

—a,

—a,N
—eg, (i, , v,

We may then repeat the estimates which resulted in (4.3)—(4.5) to obtain:

A A2 1 a2 a
”u’v”Z(gN) s ;“M,V

. (4.13)

The only non-trivial calculation when repeating the estimates which resulted in
(4.3)-(4.5) is the following:

Vo Uy, TV Uy,
_ —aN_ aN -a,N_ a,N —-a,N u,N_—a,N a,N
=V Uy TV Uy VU 1 Uy (4.14)
_ —aNn a2 aN
= vy iy + Vi
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A straightforward calculation gives:

Ty aN aN —N N N
//€2+y[vg ugy -9 e //€2+7[v +vu ]
€2 A LRV A
// Iy “N //ezﬂvu‘f’;vu.

(4.15)

For the first term in the right-hand side above, we estimate

e

This then gets absorbed into the left-hand side of (4.13). For the second term on the
right-hand side above, we estimate:

/]

S €2 1| 2

~

I—aN —a,N
9

Z(QV) | V, ”Z(QN)

S e

<e VIvazIILmllu X'”IILzIIITtx_m_zlle

2 4y—w(N.) 2 N ~
S et ’)||V||Z(QN)||MT Il 22 vy ll 2|z vy

2 4y—w(N.) 2 1 N N
S ertrl l>||v||z(m);||u7 lr@ollillzon  (4.16)

1

2 y—w(N) 2 A
< extr ‘)”V”Z(QN);HMHZ(QN)

~

2 N;
< PG ”nuuz(m) ||v||z(m),

where we have used (4.9) coupled with (4.5) to conclude that: ||u “F(QN) < 6‘4 T
The weight, x™, arises from the definition (1.29), and consequently in (2.2). The ﬁrst
term on the right-hand side of (4.16) is absorbed into the left-hand side of (4.13),
whereas the second term contributes to the right-hand side of (4.13). All of the
remaining calculations which produced (4.5) can be repeated in a similar fashion.
Estimate (4.13) then implies the continuity of M* on B,(1). The modulus of conti-
nuity of M* is L which prevents M* from being a contraction map. Nevertheless,
continuity is retamed for all a > 0.

We now turn to compactness. According to Lemma 3.2, (4.5) shows that
M*(B,(1)) is compactly embedded in B,(1) so long as m is sufficiently large.

(3) and (4) Consider the family of solutions:

[N vV = ame [N VN for0 < A< 1 @.17)
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By (4.1) and linearity of L;l, this occurs if and only if

(5™ V3] = L RS v ™) — edg g™ vi ). (4.18)

By repeating the estimates which culminated in (4.5), one sees the uniform in A
bound:

N _aN L
sV VN2 ) S €77 (4.19)

Thus, Schaefer’s fixed point theorem applied to the convex subset B,(1) C Z(QY)
produces a fixed point, [u®",v*¥] € B,(1). The estimate it obeys follows from
(4.5). O

5 Nonlinear Existence

We now need to pass to the limit as @ — 0 and as N — oo. The fixed point of the
system (4.2), from Lemma 4.2 satisfies the following integral identity for any
peCy (Q):

// Vil[/N’a . Vz(p + a[// WN,a¢x2m + // VWN,(I . v¢x2m+2
QN QN QN
+ / / V2 Na . V2¢x2m+4] + / / (_Su . d)\' + €SV . ¢x)
Qv i
/ / Run . —eR" . ¢x]
QN

-+y uNa N Na, N, N.a, N, N.a. N,
//QN u U — v ”uy “,+eu v, +ev “vy “c[)x].
6D
First, we shall pass to the limit as « — 0, fixing an N. To do so, we first use (4.7) to
obtain a weak subsequential limit point:

a—0

uV " N weakly in (X; N X, N X;)(QY). (5.2)

It is now our task to pass to the limit in the equation, (5.1), along the subsequence
a — 0. Given a test-function, denote by U, to be the support of ¢. As U, is bounded,
we have Poincare inequalities available:
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[// l[/N’ad).xzm'i'// VWN,(X . V¢x2m+2+// V2II/N,(X : V2¢x2m+4]
QN QN QN

< C(¢)(1[||!I/N’a||L2(U¢) + ||VWN’G||L2(U¢) + ||V2WN"1||L2(U¢)]

[04

a—0
< C@al Vi Vo g, < C@allu™, vVl zgn — 0.

(5.3)
For all of the linear terms, we use the weak convergence in (X; N X, N X;)(QY):

lm(l){// [V2y N« V2¢] —// [Su(uN’a,vN’“)d)y+€Sv(uN"’,vN”’)d)x]}
a— Qv v
= / / [V Vig] - / / [S, ¥ V)b, + €S, V)]
QN QN -

Finally, we turn to the nonlinear terms for which we integrate by parts:

/'/QN (MN,aui\’,ad)y + VN,augl,ad)y) — //QN ( _ |uN,a|2¢xy _ MN'aVN’a(,byy),

(5.5)

/’/QN (MN’uVXN’a(l)X + vN,avi\.],ad)x) — /[)N ( _ |VN,a|2¢xy _ uN,aVN,a¢xx).(5.6)

Fixing a compactly supported ¢, we can localize the integrations above to Uy. On
this set, the weak convergence of MN,aX‘ nX;NnXs ,~ implies strong convergence in L2
Thus,

54

‘ / [luN,a|2 _ uN,auN + uN,auN _ |MN|2]¢xy
Us

5.7
N, N N, N N, N
S U™ —u ||L2(U¢)”u a||L2(U¢) + [lu ”LZ(Ud,)”” “—u ||L2(U¢)-

The right-hand side converges to zero. The same bound works for all of the other
nonlinear terms. Thus, the weak limit [V, V] or equivalently w" satisfies the weak
formulation:

// ng/N : ngJ - // [Su(uN,vN)¢y - eSV(uN,vN)q’)_\.] + / / €3 [R"’”d)y - eR“‘"d)x]
oV QN oN

- / / e[ =i, — Vi + eV, + eV, (5.8)
QN ’ o :

The weak limit [, vV ] must satisfy the bound:
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l_ —
[, VN||(Xlnxan3)(QN) S Clug, v)et ™", (5.9)

independent of N. We may now repeat this exact procedure with the subsequential
N limit: denote by [, v] and y the subsequential (X; N X, N X;3)(Q)-weak limit as
N — oo, guaranteed by (5.9). One then passes to the limit in Eq. (5.8) to obtain:

/ / Vew Vb - / / (8.6 v), = €8, + / / e3[R, — R,
Q Q Q

= / / et [ — uu, b, —vu, ¢, + euv, b, + evvy¢x], (5.10)
o )

with the limit satisfying:

]_ g—
lloe, Vil ix, ax,nxp @) S €7 vk (5.11)
We now state the main existence result.
Theorem 5.1 For €, 6 sufficiently small, k > 0 small, and 0 <y < }1, there exists a
solution to the system (1.1)—(1.3), (1.4), (1.5) satisfying:
]_ g—
”u,V”Z(Q) S Clug, vgle* . (5.12)

Proof Estimate (5.11) implies enough regularity to integrate by parts identity (5.1)
to:

/ / [42w + 0,5, — €0,S, — 0,/ + €d,g|d =0, (5.13)
Q

which then implies that the PDE is satisfied pointwise in Q. The boundary condi-
tions (1.4) are satisfied by elements in (X; N X, N X3)(Q). From here, one applies
the available embedding theorems for the norm Z which gives the estimate (5.12). A
nearly identical proof to Lemma 2.11 in [29] then yields:

-M
sup ||u, vl + |t V|| 2 Se .
- L H2(x<2000) (5.14)

One now bootstraps the estimate in Lemma 2.13, [4] in the identical manner. This
gives estimate (5.12). We have verified that [u, v] € Z(Q) satisfies (1.1)—(1.3), (1.4),
(1.5). O
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6 Uniqueness

In this final section, we prove uniqueness of the solution [¢, v] from Theo-
rem 5.1. Suppose there existed two solutions, [u;, v,] and [u,, v,] to the system in
(1.1)—(1.3), (1.4), (1.5). Define:

~

ft=u1—u2, f):VI_Vz, P=P1_P2' (6.1)

Then the new unknowns satisfy:

— A+ S0+ P, =F = e [uu,, — uyu,, + Vilty, — Valp, ], (6.2)

N

- A0+ S,(@@, ) + ?y =g 1= e uyvy, —upvy vy, —vpvy ], (6.3)

together with the divergence-free condition, &, + », = 0, and also satisfy the bound-
ary conditions:

{it, D} (y=oy = (&P} =1y = 0. (6.4)
Going to vorticity,
o, [—Acit+ S, (@, 9)] — €0, [-Av + S,(@, V)] = e {dy[ululx

(6.5)
— Uty + ViU, — vzuzy] — €0, [u;vy, — uyv,, + ViV, — vzvzy]}.

We shall repeat the basic energy and positivity estimates using a slightly weaker
weight. It is convenient to work with the weak formulation, which is given in (5.10).
Then, &, ¥ satisfy the following:

/ / Vi Vit / / (€8,(0,9) - b, = S,(0,) - ) = / / [~ 76, + ¢t

(6.6)
for all ¢ € C(£2). We make the notational convention that

/11,

Lemma 6.1 There exists a 0 < b < 1, sufficiently close to 0, depending only on uni-
versal constants, such that for 6, € sufficiently small and € << 6 << b, the solutions
[z, V] € Z to the system (6.2)—(6.3) with boundary conditions (6.4) satisfy the follow-
ing estimate:

_p_ L ~ A 1_
bll{a, e }x 2|2, + b2, S OB Ve b, 302 1% + Wy gy, (6.8)

where

Wi, i= / / (Fix™ + egda2 — 2begipx071), (6.9)
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Wip, = / / x4 egh x' 7)), (6.10)

Wis =Wigp + Wips 6.11)

Proof The estimate will follow upon applying the multiplier y - x~2” to the system in
(6.5). To work rigorously, we will apply approximate multipliers, and work with the
weak formulation given in (6.6). Fix [@", 9, ] € CX(Q), such that:

X,
[a™, 91— [&, D1, (6.12)

where X, is defined in (1.40) of [4]. Within the notation of (6.6), ¢ = ¥™x~2>. The
existence of the sequence specified in (6.12) is guaranteed by [#, ¥] € Z(Q2). That ¢
is compactly supported in (x, y) follows from the representations:

y X
0 0

Let us first treat the second-order terms:

//Vg V2¢ //V2 ) —Zb)
/ / Wyy A (n) + 2€nyax (W(n) ) + szli,xxaxx<li/(n)x72h> )

(6.14)
The first two terms from (6.14) above are:

/ / Py W07 + 260, o 0x ™ + 26, V0 x )

/ / (@, 807x + 2e, 20x™ — 2e, 29, x7%").

We shall take the limit as # — oo above. According to the definition (1.40), the con-

vergence in (6.12) implies:
o fo e

/ Juu o
+‘/ / (0" = )0 x| —

Expanding the third term from (6.14),

(6.15)

(6.16)
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/ / 0, (W) = / / 0, - [P0x 42019 172 4 o, x ).

(6.17)
By referring to the definition of X, in (1.40) and (6.12), we may pass to the limit:

Eq. (6.15)—— / / [0 + 2e2? ) — / / e o x"2
=//<[ +2ei’1x7 + b(2b + 1)ed’x™>" 2b>+eb”11im/ iPx 2
—00 =M

X:

- / / ([ + 2602107 + b(2b + Deir’x™" zb), (6.18)

and:

Eq. (6.17) — / / (ezﬁix_ﬂ’ — 4be® x4 2b(2b + 1)629)(1,7{2—%).

(6.19)
Integrating by parts the final two terms above in (6.19), and referring to estimate
(1.46),

—4b//€ Dy P10 //2b62v20 x 7% _2p hm e2p2x~172b
—>00 X=M
= —2b(1 + 2b) / / €292 x272b,
(6.20)

and similarly, to treat the final term in (6.19), we appeal to the estimates in (1.46):

/ / X a2 / / P e / / e* o x—7%

+ lim / L

M-

/ / 20222 / (2b + 3)2(2b +2) 2242

+ lim 26542 e e

M-

/ / 20222 / (2b + 3)2(219 +2) 22,
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Therefore, summarizing the highest order calculation:

//VZA Vz(l//(") 217) > //[AZ —2b+2€ﬁ)2€+€2‘f>)2c]x—2b
//[6 P+ eu —2—2b + €2l//2.x_4 2b
//A2 ~2b _ //e 92x'2b //eux . (6.22)

To go from (6.21) to (6.22), we have used the Hardy inequality in the x-direction.
We will now address the profile terms arising from S, (&, ¥) in the weak formulation
(6.6), whose definition has been given in (1.5):

6.21)

- / /[uRﬁx + Upyll + U,V + vgil,] - 0yp

/ / [ugit, + g, it + gD + vgit,] - 0, Wx2 (6.23)

_ N N Sy 1. 2
= / /[uRux + gl + ug,V + vpit, ] - 4Vx

We will first pass to the limit in (6.23), using the definition of X, in (1.40), which
gives:

(6.23)— / /[uRax + g fi + ug, D + vgi,] - ix?. (6.24)

We proceed to treat each term in (6.24), starting with:

// x 2 = //it = (upx™ 2y + lim wPx%
M- =M
- / / W (upx ™20 — 2bupx=?71)
—||qux||Lm'//A2 —2b- '+2bm1nuR//A2 —2b-1
72y 2b-1
zb / / ; (6.25)
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according to estimates (1.14), (1.19), so long as 6 is taken small relative to b. For the
M-limit above, we have used estimate (1.46), which is valid so long as b > 0. For the
second term in (6.24), we again appeal to estimates (1.14), (1.20):

‘ / ug fdzx_%

For the third term, we shall split up = u,

232, 5 0@ x|

< Nl 7312, <

P4 e u r T u . First, we apply estimate

R
(1.16):
A - L pa- no_ P o1
‘//u;" Dax2| < Iy?x 2u§’f’ e Lyt Zxab
’ ’ 21y 2 (6.26)
A =D PRt
< OO Nayx ™2 119yx2 "l o
Next, according to estimate (1.18),
ano— 1 S o1
’/ / ub9ax) < €3 [l o2 O |l O || S
’ y L? (6.27)

—b 2=b 1 ~ Ap2
2019227l 2 S €2 OGPy 227"l

Finally, the Eulerian contribution is handled by an application of (1.20):

An_ —2b 3 7} Y
’//\/—ME a9 | < Ve lugyx® ey EN
xa LN e iz
~ L_p ~ L1y
< Vellaxs ™|l 2 l1Vep x| .. (6.28)

The fourth term from (6.23), upon using estimate (1.14) and (1.20), reads:

y
~Aoa —2b| _ Ry .o _2p
‘//vRuyux —‘//Zux

-
17
Summarizing these calculations,

(6.29)
< O()|li =72

s ”qu‘x”L‘””ux 2 2~ 2

(6.24)] 2 bllax>7"|12, - 0<6>||ax‘rb||§z — 0@l x12,
— OB {ev,p, ) (6.30)
> bllix 3|2, - 0<6>||{\/va, v x|,
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We have absorbed the ﬁy terms into (6.21), and taken 6 sufficiently small relative to
b. We shall now address the profile terms from S,

//eSv(ﬁ,f/)-d3X=//G[MR‘A’X+VRx’:‘+VR‘A’y+"Ry‘A’]

X [9(")x'2b - 2b1i/(”)x'2b'1]. 631)

We may take n — oo above due to the definition of X; from (1.40) and (6.12):

6.3)— / / €[ugh, + ve it + vd, + ve, 9| - [Px7 = 269" (6.32)

We will now proceed to treat each term in (6.32). The first profile term, uyv, is the

most delicate:
/ / eugh, [Px~2" = 2byx~2071. (6.33)

First,

oo % 2b €UR 52 ~2b
//euvavx // e’ (ux )+1V111m = VX
[ o] o

The M-limit above vanishes due to (1.46). Staying with the term (6.33):

—2b / / eugh a2l = 2b / / €0 (uppx~271)
Z//zb€MRx91f/X_2b_l +//2b€uR\‘/2x 2b-1
- / / 2b(2b + Deugfrdx=22 (6.35)
= / / 2beup, x~" + / / 2beupd?x!
+ / / b(2b + Dejrup x 272

- / / b(2b + 1)(2b + 2)eupfr’x 2073, (6.36)

(6.34)

@ Springer



90 S. lyer

Combining the positive terms in (6.36) and (6.34), the total positive contribution is
[ [ 3beugd*x=20=1. For the final term in (6.36), we will now give the estimate:

A2 —2b-3 —0, 202
//“ vrx // Voot
_ Jox2b-2 4 URx g 202
_// 2+ 2 RV // 2b+2
— 2 ~ —b—' A —h—
[ i3, + 5 s g ]
4 R ”qux||L°° Supl“Rl // ,\2 —2bh— 3
2b+2 inf|ug| (6.37)

By collecting terms and rearranging, we obtain:

1 llugexll o sup |ugl o pd 2 Lt
R o ||2 302, < el I
2 2b+2 influgl ~ (2b+2)
(6.38)
This then implies:
b— 1 7A —b—
IIMwa 217 I| ZIILZ (6.39)

2= 1200 (2b +2)2

Inserting this into (6.36), one arrives at:

‘//b(2b+ D)(2b + 2)eupipr?x2073

1 4b(2b + 1)(2b+2)//€u 2,12
S1c o) (2b +2)? k

5b o 12
S//?MREVX N (640)

so long as b is sufficiently close to 0, by the following calculation:

Qb+ 1DRb+2) 1
b0 @b+22 2 (6.41)

Thus, taking b sufficiently small, and recalling the positive contributions from (6.36)
and (6.34), we have:
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3b//€u Prx2b1 Sb//euRf/Zx_zb 1= //eu P2t . (6.42)

The remaining terms from (6.34) and (6.36) are then estimated in terms of (6.42)
using the smallness of O(6). Summarizing, we have established control over:

//euRf/X. [f/x‘z”—Zbli/x_z”_l] Z//befzzx_l_z” (6.43)

for a constant independent of small 6 and b. We will now move to the second term
from (6.31), for which we recall estimates (1.10) and (1.19):

~ ~v—2b A —2b 1
’//evau- [vx ]‘ \/_”VRx‘lelL‘” ,
L
1
A a— A 1-b
< Vel ||Lz||\/2vxx4 Il
(6.44)

For the third term from (6.31), we use Young’s inequality and estimates (1.12),

(1.22):
'//evRv 2by/x_2b_l]

3-b A —b=112 N —b=32 12
< vl 19,6572+ V™32, + IVepa %] (6.45)
__b ~—b—12 ~ o —b—3 2
< O0) I, I, + IVerx™ 22 + 1Vepa 3 I

For the final term from (6.31), we use Young’s inequality and estimates (1.12),

(1.22):
‘//GVR} A wax_Zb_l]

\ (6.46)
S ||vRyx||Lw[||\f P + bl ey .
Summarizing these last few terms, we obtain:
1(6.32)| >//bevx—' 2b+(9(5)[||{u Verixi |2, + [Ipxi” ||i2].
(6.47)
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The final task is to turn to the right-hand side. Reading from (6.6), and (6.2)—(6.3):

//(f by +eg- ) = //(f AW 4 ep - [PWx2 li/(n)axx—Zb])
n—>00 (6.48)
— / / (- a"x 4 eg - [ + o),

where we have passed to the limit using again the definition of X, from (1.40). Com-
bining (6.21), (6.30), (6.47), and (6.48), one obtains the desired result, estimate
(6.9). O

We now repeat the positivity estimate, with a correspondingly weaker weight in
order to close the above energy estimate. We refer the reader to Proposition 3.4 in [4]
for a comparison.

Lemma 6.2 Fix any 0 < b < 1. Let 6, € be sufficiently small relative to universal con-
stants, and € << 6. Then for i, V] € Z solutions to (6.2)—(6.3) with boundary condi-
tions (6.4) satisfy the following estimate:

N A Voiob)2 ~ b2 PP T
Iy Ved, o212, S N 12, + 1{V/eb, a)x 212, + Wy pye (6.49)

Proof The estimate will follow upon applying the multiplier x!2* to the system
(6.5). In order to proceed formally, we must start with the weak formulation given in
(6.6), and select the test function:

X
¢ =9x7 [, 90— [a, 9], (6.50)

where X| is defined in (1.40). Turning to the weak formulation in (6.6), we will first
expand the second-order terms:

2~ o J2 4 — 2~ . g24(n), 1-2b
//Velp.Ved)—//Vel//.Vev(x

= / / (3,902 2,0, (H74120) + €291,0,, (1741 )

_ o s(n), 1-2b 5 3 (), 1-2b 24 5(n) 1-2b
= / / ( N S 2€vyax(vy X ) +e€ vxaxx(v X ))

(6.51)
We first arrive at the first two terms on the right-hand side of (6.51):
/ / (= 0% — 2e, Dx172 — 2€0, 9x)
(6.52)

= / / (=80 1a,x' "] = 2eal0, [, x' 7] — 2em, D1"x7").
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Referring to the definition of X, in (1.40), according to (6.50), we may pass to the
limit as n — oo, and appeal to the estimates in (1.46) and (1.47), to obtain:

(6.52)—— / / X 2b]—2€itxdx[ﬁxxl_2b]—2€ﬁx\7yx_2b)
// [ —Zb)” X (14 2b)eiin
: (6.53)
+ lim / [ A2 1-2b 61;\!2)61 —2b
M- =M
—2b
- // - —2 D22 11 +2b)eilx

Again referring to the definition in (1.40), the third term from (6.51) is treated by:

//ez‘A)xaxx(‘A}(n)xl—%):_//GZ‘A)XXaX(‘A}(n)xl—%)
e //e v Ox(ﬁxl_Zb)
6.54
= / / —e*P, T — / / e, (1 = 2b)x~2. 654

Integrating by parts the first term on the right-hand side of (6.54), and appealing to
estimate (1.47):

- 2
//—e by vx // 21 2b|A 2x7?b — lim £ p2yl-2
M- =M 2 x
_ 21-2b . 0 %
_//e 5 [P ]“x™7. (6.55)

Integrating by parts the second term on the right-hand side of (6.54), and again
appealing to estimates (1.46)—(1.48) for the M-limit below:
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- / / e*n v(1 —2b)x~*
= / / e*(1 = 2b)0, 0, [Px 2] + Jim / e*(1 = 2b)p px~2
/ / (1 = 2b)Pa~ / / €22b(1 — 2b)p o2
/ / (1 =207 x ™ + / / e?b(1 — 2b)?9,x7 27! (6.56)

— lim 2b(l — 2b)pPx2!

M—o0

/ / 2(1 —21;)92 —2b / / €2b(1 — 2b)(2b + 1)P*x~2b72,

Combining the above estimates:

(6.54) = / / [ (1 =2b)e* P2 b(2b+1)(1—2b)e292x‘2b_2]. (6.57)

Hence, summarizing (6.52)—(6.57):
5//[6\/ +eu +u2]x

1im//v§y7 ’//sz/ V2(ix'72)
(6.58)

We will now turn to the profile terms from S,, which upon consultation with (6.6),
the definition in (1.40), and (6.50), read:

// [uRu + gl + up,V + Vil ] u(") 1=2b
l‘l—)m ~ _
[uRu + g il + up D + Vil ] /I

We now turn our attention to (6.59). The first term yields the desired positivity:

//uux‘ 26 > min u, //A“z” (6.60)

Next, by (1.14), (1.20):

~n 12D
'//MRXMMX.X

(6.59)

~ L1p ~ —L_p
< Nugexll o 127 | 2 ™27 2

< Ol .. ©6.61)
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Next, we shall split up = u + uf
below and (1.20) for (6.63) below

‘//upﬁitxlzb
‘//\/—uEﬁﬁxlzb

z» and use estimate (1.16) and (1.18) for (6.62)

< Nyt Il 19, it [ (6.62)

E 2 ao—iop A Lp
< Nl Nl 1Verx™ 2 llx> Nl
-1p 1opp2
<\/_[||\/—vx2 12, + x| ] (6.63)

For the fourth term from (6.59), by estimates (1.12) and (1.22):

A oa 120
’//vRuyuxx

Summarizing the last four calculations:

1 ~ —b ~ Lp
S vgx ll e ity x™" Ml 2 127l 2

< OGN 2 e | o (6.64)

_1_ ~ A L
1(6.59) >//A2 12— o), + I, + Iyen IR

(6.65)
The final three terms appearing on the right-hand side above all appear on the right-
hand side of estimate (6.49). Turning now to the profile terms, from S, for which we
read (6.6) with ¢ = P™x!~2? appeal to (1.40) and (6.50), giving ultimately:

/ / € [ugh, + Vel + vgh, + vg,d] - 0, [x' ]

e (6.66)
// [uRv + Vrell + Vb, +vRyv] a,[Px'=2].

We will treat each term in (6.66). For the first term from (6.66):

/ / eugd, (D' + (1 — 2b)Px")
/ / (eughx' " + b(1 = 2b)uged®x~'72") — / / 1_2% eup Va2
Z//efzle 21’+b'//€\/2x_l —2b, (6.67)
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Above we have used (1.14) and (1.20). For the second term, we integrate by parts:

//evaitdx[f/xl_Zb] ://—edx(vaA X!~ 2b+l‘}1m Vi libx! 2
— 00 —
x=M
_ o 1-2b an 1-2b
_//(—evaxuvx — evp Vit x ™)

3 3 ~ —L_pi2
< \/Zuvaxz,vRﬂxuuw[nux P,

1_
[l P12, + [ly/ebx Lz] (6.68)

The above M-limit vanishes according to estimates (1.46), and we have used esti-
mates (1.10) and (1.19). For the third term, we recall estimates (1.12), (1.22):

//(eva/yf/xxl_Zb + coevazyf/x_Zb)
(6.69)

1 A iob)2 N T o —i—b2
< Vellvpst llm (19,657 12, + IVer 2, + e 2.

For the fourth term, we integrate by parts and appeal to (1.46), (1.10)—(1.12), and
(1.19):

//evR}v 0, [Px'720] = //66 [vva] Pl 4 11m / EViy P2x1-2b
—)00 sz
://(—eva},172xl_2b—evRyf/xfle_Zb)

2 N i-bp2 A o—1oby2
= Ry”™> VRx; L X 2 2|
< [vryXs VXl [||\/gvx2 Il7. +||\/va 2 ||L]
(6.70)

Summarizing these four terms,

[(6.66)] Z//evle 2h+b//€vzx_1 -2
(6.71)

1 1
—0(5)[||ax—r a2, + ||y edn i \/Eaxxr”n;].

On the right-hand side, appealing again to (6.50), and the definitions of 7, g in (6.2)—
(6.3), one obtains:
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/ / <_fa;">x‘—2b+g[9§”>x‘—2b+(1—2b)9<">x—2h]>

(6.72)
— / / <fﬁxx'_2b +2[0x'7 + (1 =20y )
Placing the above estimates together yields the estimate (6.49). a

We will now introduce some notations involving the weaker weight of x~*. The
reader should recall the definitions of the cutoff functions introduced in (1.38)—(1.39).
The energy norms are defined as follows:

2 . ) 1ob)2
e, VIR, o= Nl + IV eve v bl (6.73)
2 1-by2 5 2pmn
s vlly,, 2= ity - p2x" N7 + 1V eveo v} - 2322 I, (6.74)
2 2.2-bp2 3 3
s VIR, 2= ity - 23872 + Vv v} - 2302 PN (6.75)

Definition 6.3 The norms Y, ,, Y, are strengthenings of X, ,, X3 , near the boundary,
x = 1, and defined through:

2 . 1-b)2 3b2
VI, 2= g P12, + HVeve v b 2 + g o, (6.76)

2 . 2-b |2 I p2
e, VIS, 2= Mty - G2 I + IV Vi ey - G2 (6.77)
Definition 6.4 The norm Z, is defined through:
. N N
”u’V”zh = ”u’V”x]_hannXM +€ 2”’4,"”)/27,) +e€ 3||M’V||Y3_b
1 1 3 5
+ N uxa?, \/vai_bIILm + €5 sup || \/;vxxi_b, uxxi_bIILm
x>20

1
. !
N Lp N. A-b 2 :
+evo sup |lux277| 2 + €7 / X Vevllredx| .
o g 2 Verall; (6.78)

Next, we record the second- and third-order versions of the energy and positiv-
ity estimates, which mimic Propositions 3.8, 3.13, 3.16 and 3.18 in [4]. We will
omit most details, and record only those differences which arise.
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Lemma 6.5 (Second-Order Energy Estimate) Fix any 0 < b < 1. Let 6, € be suffi-
ciently small relative to universal constants, and € << 6. Then for [it,V] € Z solu-
tions to (6.2)—(6.3):

ity p2x' 112, S OGI{VED By }pz 2, + Il PII%,, + Wi+ War
(6.79)
where [recall the definition of p, from (1.39)]:

Wogp i= / / Fut p2x* 2 + / / €8, b pax* 2, (6.80)
Wap, = / / Sl + / / €20, (6.81)

Wy i=Wog,+Wapy. (6.82)

Proof Differentiating the weak formulation gives:

/ / V2, 1 Vi — / / 0,S,(1,9) - ¢+ / / €0.S,(it, D) - b,

n (6.83)
= / / ex™[—of ¢, +e€0,29,].
For the second-order energy estimate, we select ¢ = p30™ x>, where:
Xl
[2™, 9" e €3y, [, 91— [a,9]. (6.84)

Let us turn to the highest order terms:

//vggf : V§¢=//V§9 D V2N

//(vazA(n) 2-2b +2€vxyax[‘;(n)p2x2 2y +€29anm[p §m 22D 7
= //(ux}pZM(n) 2-2b +2€va‘)x["(") 2—2b] +€ . xx[pz (n) 2— 2h])

//( 9 [uxy 2 2h]u(n) 2€V "(Vl)pzxZ 2b _ 2 (- X[pz (n) o 2[,])
(6.85)

One now checks according to the definition (1.40), that (6.84) suffices to pass to the
limit in the above identity, which upon integrating by parts in x yields:
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(6.85)—— / / (=0, [y p3x° 10ty — 29,0, p327 72 — 29,0, [p302°72))

//u +€u + 292 ]p222b+J,

where |J] = | [ (coe*P20,,(p3x* ) + ¢, 2020} (p3x* )| < lu, v||2 . From here,
repeating the calculations in Proposition 3.8 of [4] gives the des1red result, where
the required integrations by parts are justified upon using that b > 0, combined with
the estimates in (1.46)—(1.48). These justifications are analogous to those in
Lemma 6.1, and so we omit the details. O

Lemma 6.6 (Second-Order Positivity Estimate) Fix any 0 < b < 1. Let 6, € be suf-
ficiently small relative to universal constants, and € << 6. Then for [i1,V] € Z solu-
tions to (6.2)—(6.3):

-—b 1-by2 A~ a2
VD D032, S Ny po I + 8,913 + Wy, + Waye (686)

Proof We start again with the weak formulation in (6.83). Fix a large 0 < L < oo.

We then make the selection: ¢ = 9 - p3x2=2", where the weight x, is defined via:

xp i= (ay % ¢,) 2 (557 ) Define the domain: Q, :={x:3<x<50L+ 100}, so

that 9, - p3x2~ = 0'on Q. The sequence §™ is selected according to:
H'@)
[0, 9] € Cp(@y), [, 91— i, 9, (6.87)

The existence of such a sequence is guaranteed due to the standard Sobolev space
theory, because we are now in the un-weighted setting. It is now straightforward to
repeat all estimates in Proposition 3.13 of [4] using the test function ¢. Upon doing
s0, we pass to the limit first as n — oo, and then as L — oo to obtain the desired esti-
mate. O

Lemma 6.7 (Third-Order Energy Estimate) Fix any 0 < b < 1. Let 6, € be sufficiently
small relative to universal constants, and € << 6. Then for [i1,V] € Z solutions to
(6.2)—(6.3):

P30 112, S OBV €D s W}p3xz "3,

~ A2
+ 19113, oy, + Z Wiy, + Wy g (6.88)
i=1

where

W3Eb = //fx,\ xxp4 . 2h //eg,\x,\xxpg - 2b’ (689)
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Wips :://fﬁﬁmp§x5_2b+//egﬂf}mcpgxs_%, (6.90)

Wy =W, +Wsp (6.91)

Proof The first step is to differentiate the weak formulation (6.83) yet again, which
formally takes place using difference quotients, yielding:

/ / Vi, @ Vi — / / 0,.8,(@1,9) - p,+ / / €0,,8,(f1, D) - ¢,

. (6.92)
= / / e[ =0/, + €0, 20,].
Fix any L large, finite. The selection of test function is now ¢ := f)if” p;‘xi_zb, where
the sequence:
H'(Qp)
[A®, 9] € €, Q). A%, 90— [i1,,. D). (6.93)

From here, repeating the estimates given in Proposition 3.16 of [4], and sending
n — oo and then L — oo gives the desired result. O

Lemma 6.8 (Third-Order Positivity Estimate) Fix any 0 < b < 1. Let 6, ¢ be suffi-
ciently small relative to universal constants, and € << 6. Then for [i1,V] € Z solu-
tions to (6.2)—(6.3):

3
3 s
~ a 2 .2-b2 ~ 2 2-by2 PPNTY
V€D Py 1032 M2, S Wity 3PN + 1N,y + D Wi (6.94)
T i=1

Proof Again, fix any L large, finite. The selection of the test function is now

¢ = 9;’;) pgxi_ﬂ’ , where the sequence [#™, 7] s selected according to:

H'(Qy)
[2?,9"] € CF,(Qy), [, 9] — [i1,,. D,,]. (6.95)

xx U xx

From here, repeating the estimates in Proposition 3.18 of [4], and sending n — oo
and then L — oo gives the desired result. O

Piecing together the above set of estimates,

Proposition 6.9 Ler 6,¢ be sufficiently small relative to universal constants, and
€ << 6 << b. Then forlii, V] € Z solutions to (6.2)—(6.3):

A a2
Iz, vIIXl.anZ.an3,b SWip+ Wy + W, (6.96)

where W, , have been defined in (6.11), (6.82), (6.91).
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By repeating the analysis in Section 2 of [4], one has:

Lemma 6.10 Ler 6,¢ be sufficiently small relative to universal constants, and
€ << 6 << b. Then forlii, V] € Z solutions to (6.2)—(6.3):

[ A [ A [ e 6.97)
Due to (6.96), we will now turn to estimating W, ,
Lemma6.11 Let W, ,, W, ,, W, be as in (3.10), (3.79) and (3.216) in [4]. Then:
W1+ Way+ Wi, | S CBYET N2, 911 (6.98)
where C(b) 1 coas b | 0.

Proof We will work with the expression:

F= e [uDuld — u@u® 4y Ol - v<2)u§2)]
. 6.99
= | + u®i + oud +vP8 ( .
- | " X y Y|’
g = e UM _ @@ 40y V(2>v<2>]
y y
. (6.100)
= e i) +uPp, + 9l + v(z)ﬁy].

Concerning W, ,, let us bring particular attention to the following term from

S L i x?:
/ / e [oul) +v@n ] - |alx

TP ) 1 Ao—1p
< e e Pl 2>

n 1 1
+ e x| e i x P o Nl 27

2 o t-b 1 P
< eI e Pl g~

2.1 A b A Lop
+ [V )lelelluyx 72 1227 || 2

< C(b)€5+}/—"J(N[)||M(i), v(i)“Z”fl’ ‘A}”Z' (6.101)
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The above term requires the weight of x~2%, 5 > 0, in order to apply the Hardy ine-
quality. Indeed, this was not required for the existence proof (see calculation (4.5)
in [4]), because the structure of vu, - u enabled us to integrate by parts, unlike in
the present situation. The remaining terms in W, ,, and all terms in W, ,, W; , are
treated nearly identically to Lemma 4.1 of [4], and so we omit repeating those calcu-
lations. O

Corollary 6.12 Fix 0 < b < 1 sufficiently small, relative to universal constants. Sup-
pose €, 6 are sufficiently small, such that e << 6 << b. Then i1,V = 0.

Proof Combining estimate (6.98) and (6.97) with estimate (5.12) yields:

9112, S e M i, . (6.102)

For e sufficiently small, this then implies ||&, P[], = 0. Upon consultation with the
norm Z,, and (6.4), this implies that iz, ? = 0. O

Remark 6.13 We have controlled the second- and third-order energy norms, (6.74)—
(6.75) in order to treat the term f f vu(l) |1]x~2b, which appears in (6.101). This term
forces us to control ||vxz || 1. One cannot get around placing this term in L* (for
instance by integrating by parts from u{") because this produces suboptimal decay
rates, according to (2.92)—(2.93) in [4].

This then immediately establishes Theorem 1.3.
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