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Abstract
Sewage water from an urban township in India has been used as a growth media for cultivation of a green alga Chlorella 
ellipsoidea in relation to phycoremediation and integrated approach for production of antioxidant and value added products. 
The concentration level of nitrate, phosphate, ammonia and total dissolved solid got significantly reduced in the sewage 
water media at post-stationary phase. An increased level of dissolved oxygen was observed on 30th day of incubation. The 
alga was efficient in the uptake of nutrients from sewage water. Most notably, complete removal of total dissolved solid was 
observed. Phaeopigment and physiological stress indices were virtually unaltered in most cases indicating facile adaptabil-
ity. The stationary phase of the algal species was stable for 40 days as against only 22 days in BG11(N+) medium. Dry cell 
weight of the sewage water grown alga has been found to be about five times higher than that grown in BG11(N+) medium. 
The biomass accrued from sewage water as growth medium showed around 25% carbohydrate, 35% lipid and 56% protein 
and relatively higher amount of enzymatic and non-enzymatic antioxidants.
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Abbreviations
DO  Dissolved oxygen
BOD  Biological oxygen demand
COD  Chemical oxygen demand
TDS  Total dissolved solid
SS  Suspended solid
DCW  Dry cell weight

Introduction

Algae are well recognised for their potential role in bio-
transformation of pollutants, nutrients and xenobiotic from 
waste water and carbon dioxide from waste air (Babaei 
et al. 2018). The release of wastewater to the receiving 
natural water bodies poses serious environmental chal-
lenges (De-Bashan and Bashan 2010). Microalgae by way 
of nutrient removal can help counter eutrophication in the 
aquatic ecosystem and are unique in sequestering carbon 
dioxide (Olguín 2003). The domestic sewage water being 
rich in organic carbon, nitrogen, phosphorus and other 
compounds supports the growth of microalgae (Liang 
et al. 2013).

Like fungi and bacteria, many algae are capable of 
sorbing heavy metals from polluted waters (Mehta and 
Gaur 2005; Yadav et al. 2017). Microalgae cultivation are 
now-a-days integrated with various wastewater as growth 
media to reduce the production cost of biomass. Apart from 
being cost-effective, recovering nutrients from waste water 
through microalgae assimilation is also considered a viable 
and sustainable option. Growing algae using sewage water 
(Renuka et al. 2013; Singh et al. 2017; Bansal et al. 2018) 
have been documented. The technique is considered efficient 
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in producing high value added products such as proteins, 
carbohydrates, lipids, enzymatic, non-enzymatic antioxi-
dants and biofuels as an alternative source of energy (Kumar 
et al. 2014; Marchão et al. 2017). Blend of organic and inor-
ganic materials, sewage water generally contains carbohy-
drates, fats, proteins, amino acids, and volatile acids besides 
inorganic ions such as sodium, calcium, potassium, mag-
nesium, chlorine, sulphur, phosphate, bicarbonate, ammo-
nium salts and heavy metals (Tebbutt 1983). Silchar, a class 
II urban township in Assam state in India alone produces 
8000 kilo litres of sewage water daily which is generally 
released into the river Barak (CPCB 1999; Datta Ray et al. 
2000). Municipal wastewater is replete with pathogenic and 
non-pathogenic bacteria besides various toxin compounds 
(Shannon et al. 2007). Wastewater treatment by physico-
chemical means are quite expensive, cumbersome and often 
not feasible. Thus low-cost effective biological waste treat-
ment methods have drawn immense attention of researchers 
across the world (Yadav et al. 2017; Babaei et al. 2018). All 
algal species, however, cannot thrive in wastewater environ-
ment and selection of algal species is very crucial in the 
context of wastewater treatment (Pittman et al. 2011). The 
nutrient uptake potential of genus Chlorella from wastewater 

has been explored rather extensively (Megharaj et al. 1992; 
Marchão et al. 2017; Salgueiro et al. 2018).

Accordingly we report herein an assessment of growth 
of an algal species Chlorella ellipsoidea using raw sewage 
water of Silchar town located in the state of Assam, India 
in relation to phycoremediation, biomass production via an 
integrated approach of nutrient uptake process.

Materials and methods

Collection and analyses of domestic sewage water 
sample

Domestic sewage water samples were collected in clean 
polythene bottles from the apartment’s outlets of Vive-
kananda road, Silchar town, Assam (Fig. 1a).The colour 
of the domestic sewage water was ‘greyish’ with BOD and 
COD values being 600 ± 0.18 mg/l and 1520 ± 0.18 mg/l. 
(Table  1), respectively. The samples were filtered to 
remove any suspended particles and stored at 4 °C until 
further use. Standard protocols were followed for analysis 
of domestic sewage water (APHA 2005).

Fig. 1  a Domestic sewage water collection site; b Chlorella ellipsoidea; c domestic sewage water without any pre-treatment; d phycoremedia-
tion treatment series
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Microalgae and growth condition

Chlorella ellipsoidea (AUS/EC/JR/PSGA294) was col-
lected from submerged polythene surface in domestic sew-
age water of Silchar town, Assam state in India and pure 
culture developed. The algal species (Fig. 1b) was main-
tained in nitrogen enriched BG11(N+) media under con-
tinuous illumination (2000 lx) at 24 ± 1 °C (Rippka et al. 
1979). The isolated microalga was identified using stand-
ard keys (Prescott 1952). The C. ellipsoidea was grown in 
varying concentration of domestic sewage water with five 
treatments (Fig. 1c) including BG11(N+) media (Table 2).
The microalga grown in BG11(N+) medium served as a 
control. The flasks for phycoremediation series in differ-
ent amount of domestic sewage water is shown in Fig. 1d. 
Flasks were shaken twice a day to avoid adherence of cells 
at bottom surface of conical flask.

The culture was thoroughly vortexed and cell count 
was performed using a Neubauer haemocytometer. The 

chlorophyll a (Chl a) was determined spectrophotometri-
cally (Strickland and Parsons 1968).

Nutrient removal analysis

The nutrient removal capacity of C. ellipsoidea was assessed 
at the first and last day of the experiment by measuring 
physico-chemical properties of domestic sewage water. 
The removal rate of  NO3

− and  PO4
3− were calculated as per 

equation: removal rate ( mg L−1 day−1) = Ci − Cf/t; where  Ci 
and  Cf are initial and final concentration of nutrients or DO 
and t is the time duration.

DCW of C. ellipsoidea

On 30th day of treatment, 10 ml of homogenised culture were 
filtered through pre-weighed Whatman filter (grade 42) papers 
and dried at 60 °C until constant weight of DCW was obtained.

Biochemical analysis of C. ellipsoidea

The total carbohydrate was determined according to anthrone 
method (Spiro 1966) and total protein was determined fol-
lowing modified folin’s method (Herbert et al.1971). Lipid 
estimation has been carried out as per Bligh and Dyer (1959).

Estimation of enzymatic and non‑enzymatic 
antioxidants

Catalase activity was estimated according to Aebi (1984). 
Peroxidase activity was assayed by the method of Kar and 
Mishra (1976). Superoxide dismutase (SOD) activity was 
determined as per method of Van Rossum et al. (1997). 
Glutathione peroxidase activity was estimated according 
to standard procedure (Rotruck et al. 1973). Ascorbic acid 
contents were determined as per Roe and Kuether (1943). 
Glutathione reductase was assayed by the method of Schae-
dle and Bassham (1977).

Phaeopigment and physiological stress indices

Physiological stress indices (chlorophyll to phaeophytin 
ratio) of C. ellipsoidea grown in domestic sewage water 
and domestic sewage water + BG11(N+) treatments were 
determined according to the standard method (Megateli et al. 
2009).

Conversion of phaeophytin from chlorophyll was effected 
by addition of 10µL HCl (35% GR, Merck) to 3 ml of 
extract. The ratios,  D430/D410 (Phaeopigment Index),  D430/
D665 (Margalef Index I),  D480/D665 (Margalef Index II) were 
evaluated (Martinez-Abaigar and Nùñez-Oliveira 1998).

Table 1  Physico-chemical data of domestic sewage water

Parameters Value

Colour Greyish
Odour offensive
Temperature 32 ± 0.56 °C
pH 8.3 ± 0.13
BOD 600 ± 0.18 mg/l
COD 1520 ± 0.18 mg/l
DO 2.2 ± 0.23 mg/l
Alkalinity 10 ± 1.4 mg/l
Free  CO2 36.98 ± 0.13 mg/l
TDS 500 ± 0.18 mg/l
Suspended solids 50 ± 0.54 mg/l
Chloride 60 ± 0.67 mg/l
Calcium 60 ± 0.13 mg/l
Sulphate 50 ± 1.6 mg/l
Nitrate 12 ± 1.5 mg/l
Magnesium 30 ± 0.02 mg/l
Ammonia 30 ± 0.12 mg/l
Phosphate 70 ± 0.45 mg/l

Table 2  Different treatment series used for phycoremediation of 
domestic sewage water

Treatment series Code

BG11(N+) a
Domestic sewage water b
BG11(N+) (10%) + domestic sewage water (90%) c
BG11(N+) (50%) + domestic sewage water (50%) d
BG11(N+) (90%) + domestic sewage water (10%) e
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Statistical analyses

Correlation study was performed using the Software Statisti-
cal Package for Social Sciences (SPSS Version 21.0). Data 
are average of three experiments ± S.D, n = 3.

Results and discussion

Physico‑chemical properties of domestic sewage 
water

The colour of domestic sewage water was greyish (Table 1). 
The temperature was 32 ± 0.56 °C. BOD, COD and DO 
of water was 600 ± 0.18, 1520 ± 0.18 and 2.2 ± 23 mg/L, 
respectively. The total alkalinity was 10 ± 1.4 mg/L, free 
 CO2 was 36.98 ± 0.13  mg/L and TDS was found to be 
500 ± 0.18 mg/L. The SS was 50 ± 0.54 mg/L. The chloride 
and calcium concentrations were found to be 60 ± 0.67 mg/L, 
60 ± 0.13 mg/L, respectively. The sulphate, nitrate, magne-
sium and ammonia of sewage water was present at a concen-
tration of 50 ± 1.6 mg/L, 12 ± 1.5 mg/L, 30 ± 0.23 mg/L and 
30 ± 0.45 mg/L, respectively. The phosphate concentration 
was found to be 70 ± 0.45 mg/L. These results (Table 1) are 
in compliance with a recent study from this town (Sarmah 
and Rout 2017).

Effect of sewage water on cell number and Chl a

Growth study of C. ellipsoidea in different treatments 
(Fig. 2a) show the lag period and log period to be longest 
in raw domestic sewage water treatment. The treatment c 
showed a shorter lag period than that of raw sewage treat-
ment. The treatment d, control BG11(N+) and the treatment 
e showed same log period. Stationary period was found to be 
the longest for the treatment b. Similar growth profiles were 
observed in the treatments d and e. Maximum cell number 
(1008 × 106cell/ml) was observed in the treatment b on 16th 
day of the treatment (Fig. 2). The cell number in domestic 
sewage water grown C. ellipsoidea were considerably higher 
than that of BG11(N+) grown culture. This suggests that C. 
ellipsoidea can grow well in sewage water without additional 
nitrogen source. This is in conformity with another species 
of C. vulgaris which showed higher growth in confectionery 
effluent water (Kumar et al. 2014).The C. ellipsoidea was 
found growing till 40 days, while the standard BG11(N+) 
medium registered growth till 22 days from inoculation. A 
wild-type Chlorella sp. isolated from freshwater was found 
to grow, adapt easily in diluted dairy manure samples in 
comparison to TAP media (Wang et al. 2010). In a related 
study, Chlorella sp. grown in municipal sewage water, 33% 
decline in growth rate was observed in comparison to stand-
ard media (Mutanda et al. 2011).

In this study, the peak point of growth of C. ellipsoidea 
was observed on day 16 of cultivation. The Chl a content 
was highest in the treatment b (raw sewage water), lowest 
in e (Fig. 2b). Due to high nutrient content, sewage water 
used in the present study may serve as a suitable media for 
cultivation of C. ellipsoidea. The pH was monitored daily for 
the different treatment series for a period of 30 days (Fig. 3). 
The alga reduced the dissolved  CO2 concentrations of sew-
age water through photosynthesis which in turn raised the 
pH level. The growth of alga was affected by pH. High pH 
can lower the growth of the microalgae besides inhibiting 
the photosynthetic rate of the alga (Leavitt et al. 1999). The 
algal growth was measured in terms of Chl a content. A 
positive correlation was noted for the residual phosphate 
(r = 0.974**), nitrate (0.765**), ammonia (0.532**) and TDS 

Fig. 2  Effect of domestic sewage water on a cell number and b Chl a 
of C. ellipsoidea 
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(0.768**) and increased rate of DO (0.438*) in the medium 
with the Chl a concentration of the culture (algal biomass) 
(Table 3).

DCW of C. ellipsoidea

The DCW was quite higher (39.67 mg L−1) in sewage water 
compared to BG11(N+) medium (18.67 mg L−1) (Table 4), 
reflecting a significant increase in DCW (50%) in domes-
tic sewage water in 4th day of the treatment. For 30th 
day of the treatments also, the dry cell weights in sewage 

water (998 mg L−1) were found to be higher compared to 
BG11(N+) medium (718 mg L−1). In a recent study, Para-
chlorella kessleri grown in municipal waste water has been 
shown to produce 50% more biomass as compared to TAP 
and ASW media (Singh et al. 2017).

Removal rate of nitrate, phosphate and ammonia

Nitrate, phosphate and ammonia removal rates were found 
to be maximum (4.79, 5.85, 4.05 mg L−1 day−1, respec-
tively) in the treatment b (raw sewage water) as compared 
to BG11 (N+) media (Fig. 4). It is generally believed that 
there is direct correlation between chlorophyll production 
and nutrients removal efficiencies of alga in sewage water. 
In the present case, both parameters recorded highest in log 
period of C. ellipsoidea. The nutrient sequestration pattern 
suggests that removal efficiencies were associated with algal 
growth (Kim et al. 2013; Delgadillo-Mirquez et al. 2016; 
Babaei et al. 2018).This can be ascribed to nitrogen depend-
ence of C. ellipsoidea from sewage water and large surface 
area and high binding affinity of algae. Cell wall of algae 
is considered as main binding site for nutrients and metals 

Table 3  Bivariate correlation analysis of the nutrients removal and algal growth conditions

*Correlation is significant at the 0.05 level (2-tailed)
**Correlation is significant at the 0.01 level (2-tailed)

Chl a pH Nitrate removal Ammonia removal Phosphate removal DO
increased

TDS removal

Correlations
 Chl a 1
 pH 0.479** 1
 Nitrate removal 0.765** 0.749** 1
 Ammonia removal 0.532** 0.987** 0.373* 1
 Phosphate removal 0.974** 0.779** 0.147 0.467* 1
 DO increased 0.438* 0.934** 0.312** 0.134 0.693** 1
 TDS removal 0.768** 0.340* 0.501* 0.693** 0.072 0.285* 1

Table 4  Dry cell weight ( mg L−1) of C. ellipsoidea in the different 
treatments

Treatment 4th day 30th day

a 18.67 ± 0.24 178 ± 1.2
b 39.67 ± 0.56 998 ± 0.89
c 28.67 ± 0.78 913 ± 0.93
d 25.67 ± 0.12 893 ± 0.76
e 24.67 ± 0.34 819 ± 1.45

Fig. 4  Rate of nutrient removal 
and DO enhancement by 
C. ellipsoidea in different 
treatments on the 30th day of 
incubation
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(Romero-Gonzalez et al. 2001). Phosphate removal rate was 
very high presumably owing to the utilization of phosphorus 
for their growth.

DO of sewage water

Dissolved oxygen, an important water quality parameter 
was found to have significantly high rate of enhancement 
(4.2 mg L−1 day−1) in the treatment b (raw sewage water) 
(Fig. 4). About 46% hike has earlier been observed in DO 
concentration in sewage water when incubated with Calo-
thrix sp. (Renuka et al. 2013). In another recent study, 96% 
increase in DO rate was observed for Scenedesmus sp. in 
tannery waste water (Ajayan et al. 2015). It is evident that 
increased rate of DO associated with reduced dissolved  CO2 
concentrations through photosynthesis raises the pH level 
(Borowitzka 1998).

Removal rate of TDS

The maximum TDS removal rate (7.48 mg L−1 day−1) was 
observed in the treatment b, raw domestic sewage water, as 
compared to BG11(N+) media (Fig. 4). Notably, the species 
C. ellipsoidea in the present study, showed the potential to 
reduce the TDS below permissible limit. The TDS removal 
was found to be 41% for C. vulgaris in tannery wastewater 
(Das et al. 2017).

Phaeopigment and physiological stress

Stress condition in different plants such as algae (Marker 
et al. 1980), bryophytes (Spitale 2009), and vascular plants 
(Megateli et al. 2009) were calculated by measuring pho-
tosynthetic pigment composition. Photosynthetic pigment 
composition was calculated at the end day of the sewage 
water phycoremediation. Phaeopigment, Margalef I and 
Margalef II indices were calculated (Fig. 5). For the different 
treatments, phaeopigment and physiological stress indices 
revealed a trend of a > c > d > b > e. The Magalef index I and 

II also showed a similar trend indicating virtually no stress 
level for the alga. Similar low stress levels were found in 
phycoremediation of sewage water by Chlorella sp. (Renuka 
et al. 2013).

Biochemical contents

The carbohydrate content (35 ± 0.72%) of C. ellipsoidea 
grown in sewage water was higher compared to that of 
the BG11(N +) grown (30 ± 0.81%). Total protein content 
(56 ± 0.77%) of C. ellipsoidea grown in domestic sewage 
water was also higher than that of the BG11(N+) grown 
(43 ± 0.54%). Lipid content of C. ellipsoidea grown in sew-
age water (34 ± 0.67%) was relatively higher than that of the 
BG11 (N+) grown (24 ± 0.52%, Fig. 6). It is noteworthy that 
biochemical constituents of C. ellipsoidea were obtained 
2–3 times higher as compared to those of BG11(N+) media 
maintained culture. The alga, Acutodesmus dimorphus was 
found to contain around 25% lipid and 30% carbohydrate 
(Chokshi et al. 2016). For C. sorokiniana, cultivated in 
municipal sewage water, an enhanced amount of biomass 
(77.14 mg L−1 day−1), lipid (24.91 mg L−1 day−1), carbohy-
drate (20.10 mg L−1 day−1) and protein (22.36 mg L−1 day−1) 
were observed (Ramsundar et al. 2017).

Enzymatic and non‑enzymatic antioxidants

The sewage water grown C. ellipsoidea showed 56U/mg of 
protein of catalase, 54U/mg of protein of peroxidase, 63U/
mg of protein of superoxide dismutase, 53U/mg of protein 
of glutathione peroxidase and the laboratory maintained C. 
ellipsoidea showed 53 U/mg of protein of catalase, 51 U/mg 
of protein of peroxidase, 60 U/mg of protein of superoxide 
dismutase and 47 U/mg of protein of glutathione peroxidase. 
Non-enzymatic antioxidants, 2.5 µg/mg of ascorbic acid, 
69 U/mg of protein of glutathione reductase were recorded 
in C. ellipsoidea grown in sewage water. Ascorbic acid 
and glutathione reductase content in control were 1.18 µg/
mg and 61 U/mg of protein, respectively. In a recent study, 
C. vulgaris cultivated in effluent of a confectionery waste 
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water revealed similar results (Kumar et al. 2014). The non-
enzymatic antioxidants were shown to be highly crucial in 
scavenging reactive oxygen species (ROS).

Conclusion

Cultivation of C. ellipsoidea algae in untreated municipal 
sewage water without any additional nutrients afforded 
remarkable growth and biomass production. The lipid rich 
green alga was able to effectively sequester nitrate and phos-
phate, increase the DO level, and lower the TDS well below 
the permissible limit. The study also demonstrate that the 
microalga is capable of efficiently remediate domestic sew-
age water, mitigate carbon dioxide as it grow proficiently 
in polluted water. High lipid production in sewage water 
relative to the control medium may be exploited for its fea-
sibility in biofuel generation. The antioxidant produced by 
the alga during the remediation of domestic sewage water is 
anticipated to be of significance in pharmaceutical, food and 
cosmetic applications. Employing domestic sewage water 
to harvest algae for production of value added chemicals 
could thus serve as an integrated approach for manifold 
applications.
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