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Abstract Rail transit plays a crucial role in improving
urban sustainability and livability. In many Chinese cities,
the planning of rail transit routes and stations is focused on
facilitating new developments rather than revitalizing
existing built-up areas. This approach reflects the local
governments’ expectations of substantial growth to
reshape the urban structure. However, existing research on
transit-oriented development (TOD) rarely explores the
spatial interactions between individual transit stations and
investigates how they can be integrated to achieve syner-
gistic effects and balanced development. This study
proposes that rail transit systems impact urban structure
through two “forces”: the provision of additional and reliable
carrying capacity and the reduction of travel time between
locations. Metro passenger flow is used as a proxy for
these forces, and community detection techniques are
employed to identify the actual and optimal spatial clusters
in Wuhan, China. The results reveal that the planned sub-
centers align reasonably well with the optimal spatial clus-
ters in terms of spatial configuration. However, the actual
spatial clusters tend to have longer internal travel times
compared to the optimal clusters. Further exploration
suggests the need for equalizing land use density within
planned spatial clusters served by the metro system. Addi-
tionally, promoting concentrated, differentiated, and mixed
functional arrangements in metro station areas with low
passenger flows within the planned clusters could be bene-
ficial. This paper presents a new framework for investigating
urban spatial clusters influenced by a metro system.
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1 Introduction

The planning, design, and expansion of rail transit
systems have been implemented in numerous cities
worldwide with the aim of reducing the negative effects
of private car usage and enhancing urban sustainability
and livability. The initial underground rail transit system
established in London in the 1860s marked the beginning
of this trend (Ibraeva et al., 2020). However, the moti-
vations behind these efforts are context-specific. While
density-oriented transit planning is prioritized by federal
agencies in the United States due to its ability to ensure
ridership and fare revenue, many Chinese municipal
governments have adopted a development-oriented
approach (Yang et al, 2016). In China, rail transit
stations are typically located in undeveloped or Iess
developed land parcels, with the expectation of promoting
compact and mixed-use development in these areas. The
aim is to stimulate substantial and synergistic development
through the implementation of rail transit systems. Thus,
rail transit systems and their associated sphere of influence
play a pivotal role in urban spatial restructuring.

The seminal concept of transit-oriented development
(TOD) by Calthorpe (1993) has inspired many municipal
governments in the United States to create self-contained
neighborhoods within pedestrian catchment areas (PCAs)
surrounding transit stations. The belief is that most resi-
dents’ daily needs can be met within these PCAs (Curtis
and Olaru, 2010). PCAs, however, are not isolated. TOD
should be promoted in closely connected PCAs, requiring
a deep understanding of the spatial network structure
based on PCAs and the travel flows between them.
Unfortunately, researchers and practitioners focusing on
single PCAs often neglect to investigate the spatial inter-
actions between them and how they can be combined to
achieve synergistic effects and balanced development.

There are two related streams of analysis on urban
spatial structure: morphological and functional. The
morphological approach characterizes the urban form as
monocentric or polycentric based on the clustering of
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population, employment, or human activities (Kloosterman
and Musterd, 2001). Building on Castells’ (1996) concept
of “spaces of flows,” an increasing number of studies
emphasize the importance of considering functional link-
ages and spatial interactions between urban areas (Vasa-
nen, 2012; Xiao et al., 2021). This functional approach
moves beyond morphology and reveals urban spatial
structure through various flows, such as commuting trips,
shopping trips, and telephone calls. Several studies have
used passenger flows from different modes of transpo-
rtation (e.g., rail transit, taxi, and shared bike) to explore
existing urban spatial structure (Roth et al., 2011; Liu
et al.,, 2015; Wang et al.,, 2020; Chen et al., 2022).
However, these studies rarely explore scenarios that
could assist in joint TOD planning and design. Flows are
influenced by urban form, which can be measured using
indicators related to density, mixture, and function (Stead
and Marshall, 2001). Understanding the relationship
between land use in PCAs and passenger flows between
them can guide development in PCAs and shape urban
form more effectively.

Treating metro passenger flow as a proxy variable, this
study aims to present a novel approach for identifying
spatial clusters that are partially influenced by a metro
system, consisting of stations and PCAs. In the existing
literature, sub-centers refer to locations where population
and various activities are concentrated, while sub-regions
refer to partitioned urban areas that reveal a polycentric
urban structure. In contrast to sub-centers and sub-
regions, this study defines spatial clusters as sets of metro
station areas (MSAs), where an MSA comprises a metro
station and its corresponding PCA. Compared to an MSA,
a spatial cluster is more self-contained due to the functional
complementarity among MSAs within a cluster. Conse-
quently, a greater volume of passenger flows can be
observed between MSAs within a cluster when compared
to other areas. These flows largely reflect the spatial
interaction and functional linkage between different
MSAs within a spatial cluster. On the one hand, these
flows are influenced by land use attributes (e.g., function,
mixture, and density) of PCAs in the cluster; on the other
hand, they gradually reshape the existing land use of the
city or region in question due to phenomena such as
agglomeration, spillover, and economies of scale.

Recent literature and relevant public policies have
underscored the significance and implications of polycen-
tricism across varying geographic scales. Research indi-
cates a positive relationship between polycentricism and
spatial integration (Vasanen, 2013), commuting behaviors
(Lin et al., 2015; Sun et al., 2016a), economic productivity
(Li and Liu, 2018), and air quality (Li and Zhou, 2019) at
the intra-urban level. However, these studies on polycen-
tricism often narrowly focus on the identification and
exogenous effects of sub-centers, overlooking the internal
land use or functional composition of sub-regions and
spatial clusters, as well as the flows within these areas.

Therefore, this study proposes that analyzing the compo-
sition and flows would yield a better understanding of
urban spatial configuration. By efficiently serving these
spatial clusters, rail transit systems can minimize
residents’ overall travel time and enhance their overall
quality of life, ultimately achieving the “city for people.”

In this study, we utilize the community detection
approach to identify spatial clusters formed by the metro
system in Wuhan, China, based on smartcard data. We
consider two types of flows: observed and potential
passenger flows, which can be used to identify actual and
optimal spatial clusters, respectively. By comparing
actual spatial clusters, optimal spatial clusters, and
planned sub-centers, as well as exploring the effects of
land use on spatial clusters, we propose policies for poly-
centric spatial development. This study makes two key
contributions: (1) It expands on the exploration of metro
flow networks using a geographical approach, revealing
the spatial cluster structure in both reality and the ideal
scenario. This is in contrast to traditional urban designs
and plans, which often provide subjective knowledge of
urban spatial structure for the future. (2) Based on metro
passenger flows, the spatial clusters identified in this
research, along with further exploration of their relation-
ships with land use, can provide insights to urban policy-
makers and practitioners on TOD planning and design
strategies, promoting synergistic effects and balanced
development.

2 Relevant literature

2.1 Urban spatial structure: toward a “flow” era

A significant body of literature focuses on urban spatial
structure, particularly on identifying sub-centers and
measuring polycentricity. The identification of sub-
centers has primarily relied on urban morphological
attributes, with various methods proposed and employed.
One of the simplest approaches involves using cut-off
values, such as total employment numbers and minimum
employment density within contiguous sub-areas
(Giuliano and Small, 1991). More advanced methods
include spatial statistical techniques (e.g., geographically
weighted regression, as seen in McMillen, 2001), spatial
clustering analyses (e.g., local Moran’s I, as seen in
Vasanen, 2012), and kernel density analysis (Leslie,
2010). The functional arrangement of urban land
resources generates demands for interaction and gives
rise to various flows (Stead and Marshall, 2001). These
functional linkages, represented by different flows,
connect discrete urban resources into an integrated
system and reflect the spatial interactions between loca-
tions within the city (Liu et al., 2015). Recently, there has
been increased attention on revealing urban spatial
structure from a functional perspective, through the
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examination of the associations between land use and
flows. Scholars often use functional linkages to detect
and analyze urban polycentricity. For example, Vasanen
(2012) proposed a connectivity field method as a measure
of functional polycentricity and applied it to commuting
flows in Finland. Instead of considering interconnections
between sub-centers, Roth et al. (2011) explored the
interactions between the London subway and arranged
sub-centers to reveal polycentric urban spatial structure
and organization. In recent studies, network science
methods have been used to identify urban sub-regions
and sub-centers and investigate functional linkages
between sub-centers and within sub-regions based on
various flows, particularly travel flows (Zhong et al.,
2014; Liu et al., 2015; Munoz-Mendez et al., 2018; Wang
et al., 2020; Zhang et al., 2021; Chen et al., 2022).

2.2 Network science methods: useful tools for urban
spatial structure

While network science has a long history, its application
in urban spatial studies is relatively new, particularly in
the context of rail transit networks (Ducruet and Beaugui-
tte, 2014). Network science methods have been utilized to
reveal both inter-city and intra-city structures. Among
these methods, network centrality metrics are commonly
used to identify sub-centers, while community detection
techniques are often employed to identify sub-regions.

A place’s centrality in the spatial network indicates the
number of people and activities it can attract. Therefore,
identifying centrality is crucial for understanding its rela-
tionship with other places in terms of land use. For exam-
ple, Burger and Meijers (2012), from an inter-city spatial
network perspective, applied network centrality to deter-
mine the importance of a city within a polycentric
metropolitan region, which reflects its connection
strength with other cities. Building on this work, Liu et al.
(2016) extended the definition by using total centrality
and internal centrality to establish morphological poly-
centricity and functional polycentricity, respectively.

The fundamental concept of community detection, also
known as graph partitioning or graph clustering, is to
identify sub-regions within a spatial network by dividing
it into several sub-networks, or communities. These
communities are characterized by stronger internal func-
tional connections compared to external ones (Girvan and
Newman, 2002). Effective community detection can
provide insights into the configuration of land use among
urban areas. For instance, if two geographically distant
areas exhibit strong functional linkages, they are likely to
be grouped into the same community.

With the advent of ubiquitous sensors and location-
based services, community detection has been utilized in
various studies to analyze sub-regional structures from an
intra-city spatial network perspective with emerging
geospatial movement data. The data includes smart card

data (Zhong et al., 2014; Zhang et al., 2021), taxi trip
data (Liu et al., 2015; Wang et al., 2020), bike sharing
data (Munoz-Mendez et al., 2018; Chen et al., 2022),
mobile phone positioning data (Tanahashi et al., 2012;
Gao et al., 2013; Jin et al., 2021), location-based social
networking data (Sun et al., 2016b), and among others.

For example, Zhong et al. (2014) and Zhang et al.
(2021) studied the evolution of hubs, centers, and borders
in Singapore and London, respectively. Their studies
revealed a trend toward a polycentric and compact urban
form. Zhong et al. (2014) also noted that the emergence
of these hubs, centers, and borders aligns with the cities’
master plan, while Zhang et al. (2021) investigated the
effect of employment density and residential density on
travel flow structures.

Tanahashi et al. (2012) applied community detection to
identify sub-regions within New York City, based on
phone records, and analyzed mobility patterns between
these sub-regions. However, their study focused solely on
flows between sub-regions and overlooked flows within
them. Thus, they were unable to comprehensively under-
stand the differences in internal spatial interaction
patterns compared to inter-subregion patterns.

Liu et al. (2015), by categorizing taxi trips as either
short or long-distance, discovered a two-level hierarchical
polycentric structure in Shanghai. Additionally, they
examined the internal and external characteristics of sub-
regions using two network centrality metrics - betweenness
centrality and closeness centrality. They also integrated
land use information to elucidate the formation of urban
sub-centers and sub-regions. In a similar vein, Wang et al.
(2020) used similar data and methodologies to define the
detected sub-regions as functional urban regions. They
found that these regions did not align with administrative
borders, leading them to conclude that policy interventions
should focus on enhancing functional linkages between
sub-centers in the future. However, the results failed to
offer insights into the sub-regions’ potential for promoting
polycentricity.

These studies serve as examples of constructing spatial
networks based on emerging geospatial movement data
and utilizing community detection to identify spatial clus-
ters. Furthermore, they shed light on the influence of land
use on flow structures and functional linkages.

3 Methodology

3.1 Identifying spatial clusters among metro station
areas

Rail transit systems have a significant effect on urban
spatial structure through two “forces”: providing additional
and reliable carrying capacity and reducing travel time
between different locations. These forces are reflected in
the flow of passengers among MSAs. By treating the
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spatial network as a social network that comprised of
nodes (vertices) and links (edges), we can consider MSAs
as nodes and passenger flows between MSAs as weighted
links. This allows us to construct a spatial network based
on the configuration of the metro system and the flows
between MSAs. Community detection techniques are
then utilized to identify spatial clusters defined in the
introduction, referred to as MSA clusters (MSACs).
Therefore, an MSAC represents a cluster of MSAs that
share stronger relationships with each other compared to
others in a particular city or region.

Defining spatial network connections

The identification of MSACs through community
detection raises an important question: how should we
define the connections between MSAs? While observed
passenger flows reflect the actual strength of spatial inter-
actions, they may not necessarily capture the potential of
metro systems or reasonable land uses. For instance, a
small passenger flow between two MSAs with a short
travel time might be considered an external connection
across communities. In this case, the community detection
algorithm would assign the two MSAs to different
MSACs, even though they may have the potential to
generate more travel demands and trips. Similarly, a large
passenger flow with a long travel time may be viewed as
an internal connection within a community. Essentially,
while passenger flows provide a measure of connection
in terms of actual spatial structure, there may be instances
where unfavorable situations arise, such as large passenger
flows with long travel times within MSACs or small
passenger flows with short travel times between MSACs.

One of the primary advantages and explicit goals of
transportation development is to reduce travel time. Thus,
the inverse of travel time can serve as a proxy for the
expected passenger flows that represent optimal spatial
interaction patterns, maximizing benefits and approxi-
mating goals. By utilizing the inverse of travel time as a
measurement for spatial network connections, we can
establish an optimal spatial structure based on the metro
system.

Creating spatial networks

A weighted spatial network, with MSAs as vertices and
trip number between the MSAs as the weights of edges,
is denoted by G,(V, E), where V is the number of vertices
and E is the number of edges. Here, the weights are
calculated by W, = TN;;, where TN,; denotes trip number
between MSA i and MSA ;.

Similarly, with MSAs as vertices and the inverse
number of travel time between the MSAs as the weights
of edges, the other type of weighted spatial network is
denoted by G,(V, E). Here, the weights are calculated by
W, = =TT, where TT; denotes travel time between MSA
i and MSA ;.

Identifying spatial clusters

There is no universally accepted protocol for identifying
community structures (Fortunato and Hric, 2016). To

Front. Eng. Manag. 2024, 11(2): 231-246

ensure scientific rigor, communities detected by different
algorithms should be evaluated based on the knowledge
specific to the research fields and objectives. In this study,
the community detection algorithm known as Spinglass is
employed to identify spatial clusters. Spinglass is an opti-
mization algorithm that utilizes spin models and simulated
annealing algorithm (Reichardt and Bornholdt, 2006). It
solves the problem of community detection by identifying
the ground state of an infinite range spin glass. To deter-
mine the ground state configuration and define the cluster
structure of the spatial network, a quality function called
Hamiltonian is utilized. The goal of the Hamiltonian is to
minimize the energy of the spin glass and maximize the
modularity of the spatial network system. The Hamiltonian
is defined as follows:

H({s})zAiijijé(sivsj)s (1)

where H({s}) represents the Hamiltonian of partition s, A,
is the adjacent matrix of spatial network consisting of
vertices i and j, as well as the edges between them, W is
the weights of the edges, p; is the probability of the
edges, s; and s; are the spin states (i.e., spatial cluster
indices), d(s;, 5;) is a dummy variable that is equal to 1 if i
and j are within the same spatial cluster, and it is equal to
0 otherwise. During the optimization process, an initial
solution is randomly assigned and subsequently updated
based on the quality function. In each iteration, candidate
solutions are generated by moving vertices to other clusters
or combining/dividing previous clusters.

The two types of spatial networks can be classified as
positively and negatively weighted. The advantage of
using the Spinglass algorithm over other algorithms is its
ability to handle edges with negative weights (Traag and
Bruggeman, 2009). Typically, a community detection
procedure would identify communities with strong internal
edges and weak external edges. However, in the case of
networks with negative weights, this situation is reversed.
In a negatively weighted network, the community structure
is characterized by weaker negative edges within commu-
nities and stronger negative edges between communities.
This research applies the Spinglass algorithm to detect
two types of spatial clusters: actual MSACs and optimal
MSACs. Actual MSACs refer to a set of MSAs that are
connected to each other through larger passenger flows,
while optimal MSACs refer to a set of MSAs that are
connected to each other through shorter travel time. In
other words, actual MSACs represent real urban spatial
clusters with strong internal spatial interactions and weak
external spatial interactions, while optimal MSACs repre-
sent an ideal situation where internal trips are generally
more efficient than external trips.

3.2 Implementation of the empirical research

The overall procedures of the analysis are illustrated in
Fig. 1. The first step involves constructing spatially
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Fig. 1 Overall procedures of analyses.

embedded metro travel networks and identifying the
actual MSACs and optimal MSACs using the community
detection method. The identified spatial clusters will then
be compared to the planned urban sub-centers established
by the local government. Next, to evaluate the performance
of the community detection method and gain a better
understanding of the structures of actual and optimal
spatial clusters, metro travel features such as trip number
and travel time between stations will be compared,
specifically focusing on internal versus external and
actual MSACs versus optimal MSACs. Subsequently, we
will explore the relationships between the identified
spatial cluster structure and land use features, specifically
land use density and land use mix. This analysis will be
conducted at both the MSAC level and the internal MSA
pair level. Finally, based on the findings, we will propose
policy recommendations for local development.

4 Empirical study

4.1 The study site

Wuhan, located in east-central Hubei in central China,
was chosen as the empirical study site for two reasons.
First, Wuhan is a densely populated city with a growing
number of rail transit lines. It is highly likely that these
rail transit lines have significantly influenced the poly-
centric structure of the city. As of 2019, the population of
Wuhan was approximately 8070000, with a population
density of 2475 persons/km? within the Core Urban
Development Zone (Wikipedia, 2019). In 2019, Wuhan

had a metro system consisting of 9 lines and 189 stations,
serving about 3.05 million trips per day. With a long-term
goal of reaching a total length of 1100 km by 2049,
ambitious expansion projects are currently underway.
Secondly, Wuhan has long been recognized for its poly-
centricism due to the presence of rivers and lakes. The
city is divided into three parts by the Yangtze River and
Han River, namely Wuchang, Hankou, and Hanyang.
Before the introduction of cross-river rail transit lines,
this division resulted in fragmented landscapes and poly-
centricity (Liu and Wang, 2016). These geographic
factors provide favorable conditions for promoting poly-
centricity and spatial cluster development in Wuhan. The
concepts of polycentric urban spatial development were
incorporated into the Wuhan Master Plan (2017-2035).

TOD is also emphasized in the Wuhan Master Plan
(2017-2035). Like many cities in China, Wuhan is striving
for development through the integration of rail transit and
land use. Therefore, studies on MSACs in Wuhan can
offer valuable insights for other cities. Additionally, these
studies can address the research gap in the existing litera-
ture, which has focused less on MSCAs using emerging
geospatial movement data and network science methods.

The study area includes MSAs (metro stations and their
PCAs) in Wuhan in 2019. A PCA refers to a buffer area
around a transit station that is easily accessible by foot.
Typically, it is defined within a radius of 400-800 m
from a transit station. Jun et al. (2015) and Chakour and
Eluru (2016) compared different radii in their empirical
studies and suggested a radius of 600 m as the most
effective analysis scale for TOD. Therefore, this study
adopts a 600-meter radius.
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4.2 Data

Smartcard data

The smartcard data used in this study covers a typical
week, specifically March 11-17, 2019. The original data
set contains records of passengers tapping in and out of
metro stations in Wuhan, China. As our focus is on
passenger flows between stations, we extract the relevant
trips from the original data set. In total, there are more
than 16.7 million trips, with each trip including information
such as the boarding station, boarding timestamp, alighting
station, alighting timestamp, and duration.

Figure 2 displays the hourly trip numbers and average
travel times across the metro system over a period of
seven consecutive days. By comparing these figures, we
can identify distinct travel patterns between weekdays
and weekends. Consequently, our analyses are divided
accordingly for weekdays and weekends. To facilitate the
construction of the spatial networks, we aggregate the
weekday and weekend trips into station-based matrices
based on trip numbers and travel times. Please note that
this study does not consider the directions of trips, but
rather focuses on the strength of potential spatial interac-
tion.

Points of interest (POI) data

A growing number of studies utilize open data, particu-
larly points of interest (POI) data obtained through data
mining techniques, to portray land use characteristics
(Yue et al., 2017). Compared to traditional land use data,
POI data offer higher precision and more comprehensive
details. They describe land use characteristics through a
broader range of facilities and destinations, rather than
being limited to specific land use types and sizes.

250000+
2000001
oy
£ 150000
=
=]
L
=
1000001
500001 Monday =~ —— Friday
Tuesday = —— Saturday
Wednesday Sunday
01 —— Thursday
NN RN RN RRN RN RN RN R R RN RN RN NN
SISO QSISS S QSIS SRS IS
NN RN BBt
Time

Front. Eng. Manag. 2024, 11(2): 231-246

For this study, we obtained POI data of Wuhan from
Amap.com in 2019. The data set comprises two levels of
classification. At the first level, there are 13 categories,
and at the second level, more than 60 categories exist. We
subjectively omit or condense certain information at the
second level. For instance, we assume that agriculture
facilities, moving companies, and laundry services have
negligible relevance to metro travel behavior, and therefore
exclude them from our analysis. Additionally, similar
categories such as museums, art galleries, exhibition halls,
science and technology museums, and libraries are
merged into a single category. Following these proce-
dures, we obtain 13 categories at the first level and 50-
five categories at the second level, as depicted in Fig. 3.
We adopt the second level of classification to achieve
enhanced detail and accuracy in representing land use.
Subsequently, we extract a subset of POIs located within
the study area.

Based on these POls, land use density and land use mix
by PCA are calculated. The land use density for POIs of
category i in an PCA j is measured by Density;; = Ni/Area,,
where N; denotes the number of POIs of category i, and
Area; denotes the area of PCA j. Entropy is a widely used
measurement of land use mix, which assumes that land
use with equal percentage for each type creates the best
mix. However, this assumption is theoretically problematic
(Song et al., 2013). In this study, we employ an adapted
entropy proposed by Song et al. (2013), which overcomes
the problem by incorporating a reference geography.
Based on POls, it is calculated as follows: Suppose that R
is a reference geography (it refers to a well-balanced area,
here, we consider the city as a reference geography), for
land use i = 1,2,...,55, the percentage of type i within R
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Fig. 2 Hourly trip number (a) and hourly average travel time (b) across the metro system within a typical week.
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Fig. 3 A summary of POI data.

is r;, > r; = 1. For a PCA j, with the percentages of POIs
of all categories py,p.,...pi, L pi=1. Let gq;=p:/ri,
recreate land use percentages for PCA j, si=¢,/> q:
>.s; = 1. Finally, the adapted entropy is calculated by
Entropy; = - 3..(s; Ins;)/In 55.

4.3 Analysis and discussion

4.3.1 Actual and optimal spatial cluster structures

Identifying MSACs via community detection

The MSACs in Wuhan are investigated from two
perspectives: the actual and the optimal. We create two
types of spatial networks, i.e., G|(V =189, E=17112)
and G,(V =189, E=17112) for weekdays, G,(V =189,
E =16728) and G,(V =189, E =16728) for weekends,
where the edge weights denote the actual and potential
spatial interaction strengths, respectively. The community
detection analysis is performed using the Spinglass algo-
rithm, provided in the igraph package in R. This algorithm
enables us to handle both positively weighted spatial
networks and negatively weighted spatial networks. It is
important to note that as a stochastic heuristic optimization
algorithm, the operation of the algorithm may generate
different results each time. To ensure the robustness of
the results, we conduct pre-analyses one thousand times
and set seeds for each analysis. Then, we determined the
median spatial cluster number and performed formal
analyses based on the corresponding seed. Four sets of
MSACs, namely actual MSACs and optimal MSACs for
weekdays and weekends, are identified and displayed in
Fig. 4. Each MSA in the maps is color-coded based on its
respective cluster.

As depicted in Figs. 4(a) and 4(c), there are slight
disparities observed in the actual MSACs between week-
days and weekends, with the central area of the city being
the main location for such differences. In contrast, notice-
able discrepancies can be seen in the optimal MSACs
between weekdays and weekends in the western part of
the city, as illustrated in Figs. 4(b) and 4(d). The volume
of metro travel flows on weekdays and weekends exhibit
similarities with subtle variances in terms of both the
number of trips and travel duration. Throughout the week,
metro travel flows in the central area display a higher
level of instability in terms of trip numbers compared to
the peripheral area. This can primarily be attributed to the
central area’s more complex and multifunctional nature
when compared to the peripheral area. Furthermore, there
are significant changes in metro travel time to and from
the western part of the city. This can be attributed to vari-
ations in congestion levels within the metro system and
different metro departure frequencies between weekdays
and weekends. On one hand, the consistency of metro
travel flows between weekdays and weekends leads to
similar optimal spatial clusters. These spatial clusters can
facilitate TOD practices. On the other hand, the subtle
distinctions give rise to partial differences in both actual
and optimal spatial clusters, necessitating adaptive TOD
policies that take into account both weekday and weekend
scenarios.

Interestingly, the actual MSACs exhibit a spatial mix
within the central area, while they remain spatially cohesive
in the peripheral area. This reflects the intricacies of
metro travel activities in the real world and aligns with
the urban form and functional arrangement across different
urban spaces. The central area is often characterized by
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Fig. 4 The detected actual and optimal spatial clusters and the planned sub-centers.

dense buildings and mixed-use developments, whereas
the peripheral area tends to have low-density and func-
tionally homogeneous landscapes. As anticipated, the
optimal MSACs exhibit greater spatial cohesion, with the
MSAs therein being contiguous due to the metro travel
time being roughly consistent with the corresponding
Euclidean distance. Such cohesive spatial clusters can
contribute to the promotion of urban polycentricity,
which necessitates the rearrangement of land use.

The optimal spatial clusters are consistent with
planned urban sub-centers

Typically, in a polycentric spatial structure, each sub-
center would dominate a specific area. To assess whether
the spatial cluster structure of a metro system contributes
to polycentric spatial development, we compare the
planned sub-centers with the identified spatial clusters.
We examine whether each planned sub-center is located
within a cluster (Fig. 4). According to the Wuhan Master
Plan (2017-2035), there are 11 planned sub-centers.
Eight sub-centers fall within one actual MSAC, while
three exceptions (Central, Shenjiaji, and Zhuankou) span
across multiple actual MSACs. In contrast, the optimal
MSAC:s align more closely with the planned sub-centers.
This can be attributed to the spatial cohesion of the optimal
MSACs and the consideration of urban residents’ travel
time characteristics in the planning process. Therefore,
optimizing the existing spatial cluster structures and
realizing the optimal ones would support polycentric
spatial development in Wuhan.

4.3.2 The travel features of actual and optimal spatial
cluster structures

Comparing external and internal travel features

By analyzing passenger flows associated with actual
and optimal spatial clusters identified through community
detection, we can gain insights into the spatial cluster
structures from the perspective of “flow.” Figure 5
presents boxen plots comparing the distribution of trip
numbers and travel times between internal and external
edges for the four sets of MSACs. Figures 5(a) and 5(b)
illustrate that the trip numbers of internal edges are
generally greater than those of external edges for both
actual and optimal spatial clusters on both weekdays and
weekends. Notably, this trend is more pronounced for the
actual MSACs. Conversely, as shown in Figs. 5(c) and
5(d), the distributions of travel times exhibit the opposite
pattern. The travel times of internal edges are generally
shorter than those of external edges. This observation is
more prominent for the optimal MSACs. These findings
are consistent with our expectations regarding actual and
optimal spatial cluster structures, indicating the suitability
of the adopted community detection method for this
study.

Comparing travel features between actual and opti-
mal spatial cluster structures

To further investigate the differences between the
actual MSACs and optimal MSACs, we compare their
total trip numbers and average travel times internally and
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Fig. 5 Comparison of internal and external travel features.

externally. On one hand, the actual MSACs display
higher internal total trip numbers and lower external total
trip numbers on both weekdays and weekends, as
depicted in Figs. 6(a) and 6(b). On the other hand, the
optimal MSACs exhibit shorter internal average travel
times and longer external average travel times on both
weekdays and weekends, as illustrated in Figs. 6(d)
and 6(e).

The ratios of internal total trip number to external total
trip number and internal average travel time to external
average travel time are utilized for further comparison in
order to analyze the degree of concentration of trips in
MSACs and the efficiency of travel within MSACs
compared to outside. A higher ratio of the former signifies
a higher level of trip “internalization” and a clearer
spatial cluster structure, while a lower ratio of the latter
indicates higher time-efficiency, a higher degree of
potential trip “internalization,” and a clearer potential
spatial cluster structure. Figures 6(c) and 6(f) demonstrate
that actual MSACs have a higher ratio of internal total
trip number to external total trip number, while optimal
MSAC:s have a lower ratio of internal average travel time

to external average travel time. These ratios suggest that
the actual MSACs are not efficient enough in terms of
saving travel time. To maximize the benefits of time
saving provided by the metro system and achieve efficient
spatial cluster development, current land use should be
promoted to optimize people’s trip-making behaviors,
resulting in MSACs characterized by larger internal total
trip number and shorter internal average travel time.

4.3.3 The relationship between spatial cluster structure
and land use

As previously argued, land use arrangements partially
influence passenger flows between MSAs (Stead and
Marshall, 2001). Examining the effect of land use on
spatial clusters derived from metro trips can provide
insights for guiding spatial development. Our exploration
in Wuhan focuses on land use density and land use mix at
two scales: the MSAC scale and the MSA pair scale.

The MSAC scale

The flows are closely related to land use, meaning that
the actual spatial cluster structure reflects the actual land
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Fig. 6 Comparison of travel features between the actual MSACs and optimal MSACs.

use at the spatial cluster level. In contrast, other potential
spatial cluster structures, such as the optimal one, may
not reflect land use to the same extent. Therefore, differ-
ences in land use patterns between the actual and optimal
spatial cluster structures may exist, offering insights into
achieving the optimal spatial cluster structure. To test this
assumption, we compare land use density and land use
mix between actual MSACs and optimal MSACs.
Heatmaps in Fig. 7 display the land use density for the
four sets of MSACs. The density data has been normalized
to eliminate the influence of POI categories. A more
equal pattern is evident among the actual MSACs in
comparison. C3, an extremely dominant cluster, is found
in both weekdays and weekends for the optimal MSACs.
The difference between the actual and optimal MSACs
for each land use category can be quantified by
D, = O.?CLualMSAC _ 0_9ptima1MSAC, where O.?CtualMSAC denotes the

standard deviation of normalized density for land use i in

the actual MSACs, o""™*¢ denotes the standard
deviation of normalized density for land use i in the optimal
MSACs. As shown in Figs. 7(c) and 7(f), the difference
values are predominantly negative. These results substan-
tiate the observation that land use density is more equal
among the actual MSACs than among the optimal
MSAC:s. Despite the spatially unequal and discrete distri-
bution of land resources and functional arrangements,
metro travel flows connect these urban spaces into equal
and integrated spatial clusters. Based on the relationship
between land use and metro travel behaviors, it is reason-
able to conclude that arranging land and functional devel-
opment equally among spatial clusters is a prerequisite
for generating a polycentric urban structure.

Entropy values for individual MSAs and the four sets
of MSACs are presented in Fig. 8. Although the entropy
values of the MSACs are significantly higher (generally
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Fig. 7 Comparison of land use density between the actual MSACs and optimal MSACs.

above 0.9) than that of individual MSAs, through #-tests?),
we find no significant differences between the actual
MSACs and optimal MSACs (p-value is 0.566 for week-
days, p-value is 0.832 for weekends). Land use mix at the
MSAC scale probably does not play a significant role in
the formation of spatial cluster structure.

The MSA pair scale

Another mesoscopic approach involves investigating
spatial interactions within the MSACs. As mentioned
earlier, two types of undesirable passenger flows exist.
The first type occurs within the actual MSACs, charac-
terized by high trip numbers and long travel times. The
second type occurs within the optimal MSACs, character-
ized by low trip numbers and short travel times. Ideally,
the passenger volume of the former should be minimized,
while that of the latter should be maximized. This

approach aims
structures.

By grouping all internal passenger flows into quartiles,
two types of undesirable passenger flows can be iden-
tified, as shown in Fig. 9. The upper quartile within the
actual MSACs represents the former, while the lower
quartile within the optimal MSACs represents the latter.
These two types of flows represent opposite poles of
spatial interactions. To understand the influence of land
use factors on these flows, our focus is on the origin and
destination MSAs. By examining the differences in land
use characteristics between the upper quantile MSA pairs
and lower quantile MSA pairs, we can gain insights into
why these two types of undesirable spatial interactions
exist. These insights can be valuable for urban planners
in the development of TOD policies.

to achieve optimal spatial cluster

D In this study, before performing t-test, Levene’s test is first conducted to test the assumption of equality of variances. If p-value < 0.05, -test is run
assuming equal variances, otherwise, 7-test is run assuming unequal variances.
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The land use density of MSA pairs can influence
passenger flows in two possible ways. The sum and
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difference of land use density values between origin and
destination MSAs might influence travel demand and
passenger volume. Our f-tests for all land use categories
produce consistent results, indicating that the upper quartile
MSA pairs are significantly different from the lower
quartile MSA pairs in both the sum and difference of land
use density values (p-value < 0.05). Figure 10 presents
the sum and difference of land use density values for the
upper and lower quantiles, with the values for the upper
quantile MSA pairs being larger than those for the lower
quantile ones. In other words, if lower quantile MSA
pairs have larger sum and/or difference of POI density
values, they are more likely to have more trips.

Furthermore, we compare the land use mix values
between the upper and lower quantile MSA pairs, as shown
in Fig. 11. The entropy values for the upper quantile MSA
pairs are significantly larger than those for the lower quantile
ones (#-tests, p-value < 0.05). This indicates that if each pair
of lower quantile MSAs has more mixed functions, they are
more likely to have heavier passenger flows.
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5 Conclusions

With the shift in focus toward “flow,” this study argues
for the importance of spatial organization in MSAs based
on observed and potential metro passenger flows. Taking
the case of Wuhan, this paper applies community detection
to analyze two types of passenger flows and reveal the

actual spatial clusters as well as the optimal spatial clus-

ters. It is found that the identified optimal spatial clusters
align with the planned sub-centers proposed by the local

government. Additionally, these optimal spatial clusters
exhibit shorter internal travel times compared to the
actual spatial clusters, making them more desirable.
Pursuing the optimal spatial cluster structure will ulti-
mately decrease overall travel time for residents living in
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MSAs, thereby improving their quality of life. Simultane-
ously, it will also enhance urban sustainability and
livability.

We examine the effect of land use on urban structure
and provide recommendations for land use policies that
support optimal spatial cluster structure. The principle of
promoting concentrated and mixed development within a
single MSA is widely recognized as a key principle in
TOD planning. It is now commonly accepted among
urban planners (Jacobs, 1961; Cervero and Guerra, 2011;
Song et al., 2013) that increasing land use density and
promoting a mix of land uses around transit stations are
essential. Building on this conventional wisdom, our
study expands on the concepts of land use density and
land use mix at two larger scales: the scale of MSACs
and the scale of MSA pairs. The main findings and potential
policy implications are as follows.

At the MSAC scale, the standard deviations of land use
density values among the actual MSACs are higher than
those among the optimal MSACs. These statistical results
suggest that in order to promote TOD and encourage
polycentric spatial development, urban planners and poli-
cymakers should aim to maintain relatively equal land
use density among transit station area clusters that belong
to different planned sub-regions.

At the MSA pair scale, we focus on undesirable internal
travel flows within the actual MSACs, which are charac-
terized by large trip numbers and long travel times, as
well as flows within the optimal MSACs, which involve
smaller trip numbers and shorter travel times. Our
research reveals that the sum and difference of land use
density values between the origin and destination MSAs
in the former are significantly greater than those in the
latter. This trend also applies to land use mix values. To
promote TOD and polycentric spatial development, urban
practitioners can target the elimination of the latter type
of undesirable travel flows by promoting concentrated,
differentiated, and mixed functional arrangements in both
the origin and destination MSAs. This approach may
redirect passengers from the former to the latter, resulting
in a more efficient metro travel flow structure.

While many TOD researchers and planners primarily

Front. Eng. Manag. 2024, 11(2): 231-246

focus on the scale of a single MSA, our research investi-
gates the spatial interactions between MSAs. We aim to
provide urban policymakers and practitioners with plan-
ning strategies for functional arrangements among
MSACs and MSA pairs in order to achieve synergistic
effects and promote polycentric spatial development. To
conclude, this research provides a comprehensive under-
standing of spatial cluster structures based on metro
passenger flows. Additionally, it offers practical spatial
planning strategies for urban planners and policymakers
interested in promoting TOD and polycentric spatial
development. However, due to the rapid urban growth
and global expansion of rail transit, there is still much
work to be done in fully understanding the relationships
between urban spatial structure, travel behaviors, and
land use characteristics.

It is important to approach the application of network
science methods to spatial analysis with caution, particu-
larly when considering the meaning of community detec-
tion results. In this study, the performance of the selected
algorithm is assessed by examining the characteristics of
the detected communities, as community detection pre-
sents an ill-defined problem (Fortunato and Hric, 2016).

Furthermore, in order to explore the evolution of spatial
networks and their land use determinants, it is necessary
to incorporate the factor of time. The utilization of
emerging dynamic clustering techniques and the analysis
of big and open data would undoubtedly facilitate this
exploration. By employing the concept of flows, further
investigation can be conducted to determine the extent to
which nodes in a spatial network share socio-economic
attributes with their neighborhoods.

Moreover, the findings of this study can be extrapolated
to other cities that share similar socio-economic condi-
tions, population sizes, and urban forms with Wuhan, and
are also seeking TOD and polycentric development.
Nonetheless, it is important to exercise caution when
applying these conclusions to monocentric cities such as
Beijing. Researchers and practitioners should proceed
with careful consideration. Furthermore, additional
comparative studies and empirical evidence across
diverse urban contexts are necessary to establish more
robust conclusions in the future.
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