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Abstract Reliability-redundancy allocation, preventive
maintenance, and spare parts logistics are crucial for
achieving system reliability and availability goal. Existing
methods often concentrate on specific scopes of the
system’s lifetime. This paper proposes a joint redundancy-
maintenance-inventory allocation model that simultane-
ously optimizes redundant component, replacement time,
spares stocking, and repair capacity. Under reliability and
availability criteria, our objective is to minimize the
system’s lifetime cost, including design, manufacturing,
and operational phases. We develop a unified system
availability model based on ten performance drivers, serving
as the foundation for the establishment of the lifetime-
based resource allocation model. Superimposed renewal
theory is employed to estimate spare part demand from
proactive and corrective replacements. A bisection algo-
rithm, enhanced by neighborhood exploration, solves the
complex mixed-integer, nonlinear optimization problem.
The numerical experiments show that component redun-
dancy is preferred and necessary if one of the following
situations occurs: extremely high system availability is
required, the fleet size is small, the system reliability is
immature, the inventory holding is too costly, or the hands-
on replacement time is prolonged. The joint allocation
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model also reveals that there exists no monotonic relation
between spares stocking level and system availability.
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1 Introduction

In the integrated product-service paradigm, many original
equipment manufacturers (OEMs) strive for delivering
high-reliability products along with responsive repair and
maintenance services. However, achieving these goals at
the same time can be challenging due to resource, time,
and cost constraints. Therefore, it is important to develop
a holistic framework that can effectively coordinate relia-
bility design, maintenance policy, repair capacity, and
spares provisioning throughout the entire product life-
time.

Various models have been proposed to achieve high
system reliability at a low cost, including reliability-
redundancy allocation (RRA), preventive (or predictive)
(PM), and spare parts logistics (SPL). These models often
focus on specific phases of the product lifetime. RRA
primarily addresses product design and manufacturing,
while PM and SPL are concerned with the aftermarket
period. However, since these models are often imple-
mented independently, they often lead to suboptimal
solutions. To gain a better understanding of RRA, refer-
ences such as Coit and Zio (2019) and Si et al. (2020) can
be consulted. For comprehensive reviews on PM, including
condition-based maintenance (CBM), refer to Alaswad
and Xiang (2017) and Hu et al. (2022). Basten and van
Houtum (2014) and Zhang et al. (2021) provide insights
into SPL models. Recently, there has been a growing
research stream on the coordination of RRA and PM,
RRA and SPL, and PM and SPL, which will be discussed
in Section 2. Despite the aforementioned studies, there is
a lack of a holistic framework in which RRA, PM (or
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CBM), and SPL are jointly optimized over the product
lifetime (Jin, 2023). A holistic approach can guide firms
in maintaining market competitiveness and achieving a
win-win result between the OEM and customers. With
emerging technologies such as digital twin and Internet
of Things, the integration of all product phases, including
design, manufacturing, and aftermarket, is the basis for
minimizing product lifetime cost without compromising
reliability and availability performance (Wang, 2021).

This paper aims to fill this gap by proposing a joint
RRA, PM, and SPL optimization model to minimize
costs across system design, manufacturing, and aftermar-
ket. To that end, we present a mixed-integer, redundancy-
maintenance-inventory allocation model that optimizes
redundancy level, replacement time, spares inventory,
and repair and renewing capacity. The goal is to minimize
annualized system cost while satisfying reliability and
availability criteria. The proposed model is applied in the
semiconductor equipment industry, where zero system
downtime is desirable for high production throughput.
Our study shows that the OEM opts to adopt a redundancy
strategy if: 1) extraordinary system availability, such as
0.999, is required; 2) the system fleet size is small;
3) parts holding costs are extremely high; 4) system relia-
bility is immature; or 5) a prolonged replacement time
occurs. The joint allocation model also reveals that the
correlation between spares inventory and system avail-
ability is not necessarily monotonic.

The remainder of the article is organized as follows:
Section 2 reviews the related literature. Section 3 charac-
terizes Erlang-C repair and renewal queues under super-
imposed renewal processes. Section 4 presents a unified
system availability model incorporating redundancy,
maintenance, spares, and repair capacity. In Section 5, a
joint  redundancy-maintenance-inventory  allocation
model is formulated, and the bisection search algorithm is
also elaborated. In Sections 6 and 7, the proposed model
is demonstrated on semiconductor test equipment
comprised of single and multiple redundant subsystems,
respectively. Section 8 concludes the paper.

2 Literature review

This section reviews the works pertaining to three
research streams: 1) joint allocation of RRA and SPL;
2) joint decision on RRA and PM; and 3) joint optimization
of PM and SPL.

2.1 Joint allocation of reliability-redundancy and spares
inventory

Much effort has been dedicated to managing spare parts
inventory through the consideration of component relia-
bility and installed base data (Louit et al., 2011; Dekker
et al., 2013; Selviaridis and Wynstra, 2015). For example,

Jin and Tian (2012) treat component reliability as an
endogenous variable and combine it with an adaptive
(Q, r) inventory policy to minimize the overall cost of the
growing installed base throughout its lifecycle. This
model has been further expanded by Jin et al. (2017) to
integrate redundancy, along with reliability and spares
stocking, in order to minimize system lifetime cost.
Seleuk and Agrali (2013) study the trade-off between
reliability investment and parts base-stock level to mini-
mize the cost of a multi-item system fleet. Oner et al.
(2013) propose an on-site, cold-standby redundancy strat-
egy to mitigate equipment downtime, utilizing perfor-
mance measures such as parts availability, expected back-
orders, and inventory cost. In our paper, we aim to optimize
maintenance time and repair capacity, along with compo-
nent redundancy and spares inventory for attaining the
system availability goal.

Xie et al. (2014) present a continuous-time Markov
chain model to maximize the system availability by
jointly optimizing active redundancy and the base-stock
level. Sleptchenko and van der Heijden (2016) jointly
allocate redundancy and spare parts for a k-out-of-n
system with different standby modes and part types. They
find that high redundancy levels are only beneficial when
components are relatively inexpensive and part replace-
ment times are long. The latter also echoes our finding.
Zhao et al. (2019) concurrently allocate repairmen, cold
standby redundancy, and spares inventory to maximize
system availability. A common assumption in these RRA-
SPL models is that component lifetimes follow an expo-
nential distribution with a constant failure rate. In our
paper, we relax the constant failure rate assumption, and
consider time-varying failure rates to generalize compo-
nent lifetime distribution.

2.2 Joint decision on reliability-redundancy and
maintenance

Some researchers argue that it is necessary to combine
RRA and PM decisions because these decisions influence
each other and collectively impact the total cost of a
system’s lifetime. For instance, Levitin and Lisnianski
(1999) jointly optimize component redundancy and
replacement schedules for multi-state systems to achieve
the desired reliability objectives. They employ genetic
algorithms to minimize system costs, which include capi-
tal, maintenance, and random failures. Nourelfath et al.
(2012) and Liu et al. (2013) address the redundancy-
maintenance optimization problem for multi-state
systems under imperfect repair. The focus of both studies
is to achieve the desired system availability while mini-
mizing investments in redundant units and maintenance
activities.

Moghaddass et al. (2012) conduct a study comparing
the trade-off between component redundancy and its
maintenance frequency to maximize the profitability in a
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multi-state system, rather than solely focusing on cost
reduction. They use a continuous-time Markov process
model to estimate system availability and determine
maintenance initiation criteria. Bei et al. (2017) formulate
a two-stage stochastic optimization method assuming
constant stress and perfect repair to determine component
choice, redundancy level, and maintenance time for a
series-parallel system. Later, Zhu et al. (2018) extend the
redundancy-maintenance optimization model by incorpo-
rating time-varying usage stress and minimal repair. Bei
et al. (2019) solve a similar problem by considering worst-
case scenarios for future system usage. They minimize
the conditional value-at-risk of the cost rate to obtain the
risk-averse decision.

One common assumption in existing RRA-PM allocation
models is the availability of spare parts is guaranteed.
However, our paper acknowledges the backorder situation
when spares inventory runs out. We aim to mitigate parts
supply uncertainty and make a robust redundancy-main-
tenance decision by optimizing redundant components
and replacement time.

2.3 Joint optimization of maintenance and spares
inventory

This research stream is also known as maintenance
service logistics (Vaughan, 2005; Van Horenbeek et al.
2013). The objective is to achieve high system availability
by coordinating part replacement time with spares provi-
sioning. For instance, de Smidt-Destombes et al. (2009)
conduct a joint optimization of maintenance initiation,
spares quantity, and repair capacity to minimize the
ownership cost in a k-out-of-n system. Bjarnason and
Taghipour (2016) coordinate inspection time, periodic
reorders, and emergency order-up-to level using an (s, S)
replenishment policy to minimize the system cost rate.
Zhu et al. (2020) utilize maintenance schedules and
advance demand information to forecast intermittent
spares demand and develop a dynamic inventory control
mechanism to minimize costs. Wang and Zhu (2021)
jointly coordinate condition-based replacement and
spares stocking policies for a multi-state k-out-of-n
system. Zhang et al. (2022) address a condition-based
maintenance service logistics problem for a series-parallel
system with both hard and soft failures. These studies
assume a pre-defined component redundancy level.
However, in our model, redundancy is treated as an
endogenous decision variable that is optimized alongside
replacement time and spares stocking level.

Jin et al. (2015) present a principal-agent game model
to minimize the annualized cost of repairable systems
through the coordination of maintenance, spares inven-
tory, and repair and renewing times in the aftermarket.
Our study expands their model in two aspects. First, in
addition to PM and SPL, we adopt component redundancy
as an alternative approach to enhancing system reliability

and availability. Secondly, we consider the limited capacity
of repair and renewing shops, which are operated in a
decentralized mode to accommodate different levels of
skills and resources.

For further research on PM-SPL, we refer readers to
the works of Wang et al. (2009), Chen et al. (2013), Bjar-
nason et al. (2014), Olde Keizer et al. (2017), Basten and
Ryan (2019), and Zhu et al. (2022). It is common for
maintenance service logistics models to assume unlimited
repair capacity. However, our paper distinguishes itself
from existing PM-SPL works by considering a repairable
inventory with limited repair capacity. Diaz and Fu (1997)
and Sleptchenko et al. (2002) demonstrate that capacitated
repair is more realistic due to constraints in facilities and
manning hours.

2.4 Summary of the research gap

The literature review reveals a lack of joint optimization
framework of RRA, PM, and SPL. Our paper contributes
to the literature in three key ways. First, our proposed
redundancy-maintenance-inventory allocation model is
the first of its kind to drive system reliability and avail-
ability performance throughout the design, manufacturing,
and field use stages. Secondly, we introduce two parallel
Erlang-C queues to handle parts repair and renewing
tasks, respectively. Both queues can effectively accom-
modate the distinctions in processing time, manning
skills, and reasons for return. Thirdly, we derive a unified
system availability model that captures ten performance
drivers, including redundancy level, maintenance time,
spares stocking, and repair and renewing capacity.

3 An integrated product-service supply
chain

3.1 The network setting

As depicted in Fig. 1, the system consists of multiple ;-
out-of-n; active redundant subsystems (for i =1,2,...,N)
connected in series. The components within each subsys-
tem are identical, but they differ among subsystems.
Therefore, the system is made of N different part types.
For the i subsystem, k; represents the minimum required
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1 1 -t -

k, k,

1 1
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n, n, J

Subsystem 1 Subsystem 2 Subsystem N

Fig.1 A system comprised of N redundant subsystems in
series.
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working units, with k; < n;. As components are removable,
they are also referred to as line replaceable units (LRUs).
In this study, we use the terms component, part, and item
interchangeably to refer to a repairable LRU.

The OEM implements an integrated product-service
offering program to support m systems at the customer
site shown in Fig. 2. Since the demand for spare parts is
intermittent, a spares inventory is placed in proximity to
these systems to facilitate replacement (Hekimoglu et al.,
2018). In the industry, age-based replacement is widely
used due to its technical maturity and scheduling flexibility
(El-Ferik, 2008; Huynh et al., 2012). For a part type i,
where i =1,2,...,N, it is inspected at a predefined time
interval ;. If the item survives through 7,, it is proactively
replaced with a spare item. If the item fails prior to 7;, a
corrective replacement is performed immediately. As a
result, two types of spares demands are generated from
the fleet: one for proactive replacement and the other for
failure replacement. Upon renewal or repair, the part is
put back into the inventory for future use.

Since repairing a failed part requires more time,
resources, and skills than renewing an aging item, the
OEM decides to decentralize the renewal and repair
shops. Poisson process is commonly used to estimate
spare part demands in repairable inventory literature (Lee,
1987; Kim et al., 2007; Oner et al., 2013). We adopt a
similar approach to model the renewal and repair shops,
respectively. Particularly, the M;/M,/p;/c0 model repre-
sents the renewal process, and the M;/M;/q;/c0 model
represents the repair process, where p; and ¢, are the
numbers of servers, respectively.

Table 1 lists the decision variables that the OEM
attempts to optimize, including component redundancy,
base stock level, replacement age, and renewing and
repair servers. Table A. in Appendix A summarizes the
notation of the model parameters of this paper. The
objective is to minimize the annualized system cost
subject to system reliability and availability criteria
which will be elaborated in Section 5.

3.2 Superimposed parts renewal process

We begin the analysis of parts renewal process from
single-item system that contains only one LRU. Reliability
of a single-item system under age-based maintenance is
often characterized by the mean-time-between-replace-
ments (MTBRs). Let R(f) be the component reliability,
and F(t) be the cumulative distribution function. Its
MTBR can be estimated as:

MTBR = j;R (dt = 7— f;F(z) dr. )

In age-based maintenance, the spare parts demand
process can be treated as the superposition of two
renewal processes: a proactive replacement stream and a
failure (i.e., corrective) replacement stream (Jin et al.,
2015). For a single-item system with one LRU, let 4, (7)
and A,(7) be the spare parts demand rate for proactive
replacement and failure replacement, respectively. Based
on Eq. (1), we have:

4,(0) = —,R @) , )
jOR (1) dt

A=t 3)
LR (1 dr

Here R(7) is the probability of a proactive replacement,
and F (1) is the probability of a failure placement. Given
a fleet with m single-item systems, each system indepen-

Table 1 Decision variables

Notation Definition

X; Redundancy level for part type i, fori=1,2,...,N

Si Base-stock level for part type i, fori=1,2,...,N

T Replacement age or interval for part type i, fori = 1,2,...,N
pi Number of renewing servers for part type i, fori=1,2,..., N
qi Number of repair servers for part type i, fori=1,2,...,N

Failure returns

4

Repairing failed parts
M/M/q/
fori=1,2,..,N

Redundancy

allocation in

system design and

M/M/p;/o
fori=1,2,..,N

manufacturing

Replenish

Customer site

Renewing degraded parts /

* There are m systems at
Spare parts .
inventory Replace customer site.
TG » + Each system has N
fori=1,2,..,N redundant subsystems.

Pro-active replacement returns

* Age-based replacement
maintenance

Installation of new systems in field

Fig. 2 Product-service integration with decentralized repair services.
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dently generates proactive replacement and failure
replacement streams, respectively. Hence the aggregate
spare part demand rate of a single-item system fleet,
denoted as A,, (1), can be estimated as:

A, (1) =mx(A,(1)+,(1) = (@)

m
| R@war

The process formed by the union of fleet replacements
is called a superimposed renewal process (SRP). Cox and
Smith (1954) have demonstrated that as the fleet size (m)
approaches infinity and the operating time is sufficiently
large, the SRP becomes a homogeneous Poisson process,
regardless of the lifetime distribution of each system.
Wang (2012) further proves that the occurrence times
between two successive replacements can be approximated
as exponential as long as m > 10. The simulation done by
Jin et al. (2021) also supports this statement, specifically
in the context of age-based replacement. Wu (2019, 2021)
has expanded the SRP theory to investigate systems
under imperfect repair, incorporating non-exponential
failures such as the arithmetic reduction of failure intensity
and the arithmetic reduction of age. In our study, since a
failed part is replaced with a spare part, the replacement
is equivalent to a perfect repair.

3.3 Parts repair queueing model

Since SRP can be approximated as a homogeneous Poisson
process, the Erlang-C queueing model can be used to
characterize the performance of the repair shop. The
Erlang-C queue accommodates a waiting line, which is
commonly found in a capacitated repair shop. Let ¢
denote the number of repair servers, and A, denote the
arrival rate of failed parts to the repair shop. If a fleet
consists of m single-item systems, then A, =mAd, (1)
where A, (7) is given in Eq. (3). The transition diagram of
the M/M/q/ queue is provided in Fig. 3.

The state in the transition diagram represents the
number of failed parts in the repair shop, and y, is the
repair rate per server. Let B(g) denote the probability that
an incoming part needs to wait in the queue. According to
Winston (2004), we have:

(Apy /1y’
(1= Ar,/(qu,
Bg)= — q!( . ol (qg))
Z (/lF,q//'lq)] + (/ll",q//lq)q
o~ q!(1 = A,/ (qu,))
(gpy)’
I(1-
- q (. Py) ’ )
Z(qpq)’ N (gp,)’
! q'(1-p,)

— is called the traffic intensity rate. The
q

where p, =

queue is stable if and only if p, < 1. The repair turn-
around time, denoted as #,, measures the duration from
when the part enters the repair shop to when it is fixed
and put back to the spares inventory. If the part trans-
portation time is small or can be ignored, f, can be
obtained as:

B(q) N 1

t, = —.
qu_/lﬁq Hq

q

(6)

3.4 Parts renewing queueing model

A separate Erlang-C queue denoted as M/M/p/o is used
to characterize the renewing shop. The probability that an
incoming part needs to wait before being renewed can be
estimated as:

(pp,)"
p!d-p,)

Cp)=—"—"7 ()

Z(pp,))’ Lo,

= b pid-py)
/lF,p . . . .

where p, = i) is called the renewing traffic intensity
P

rate. Note that A, is the parts arrival rate to the renewing
shop with Az, =mdA, (1), and y, is the renewing rate per
server. The renewing queue is stable if and only if p, < 1.
The renewing turn-around time, denoted as t,, can be
estimated as:

C(p) +1

-0, ®)
PHy—Ar, My

14

By combining Egs. (6) and (8), the average part turn-

around time (ATT), denoted as #,;;, is obtained as
follows:

tATT = th (T) + tpR(T)

= F(T)(—B(q) + l)+R(7’)(

cw_. 1)
qHl, — /11'",q Hq

Py = App My
Q)

4 Availability of repairable system

4.1 Awvailability of single-item system

The availability of a single-item system is frequently used
to manage preventive maintenance and spare parts logistics
when the system’s unitization remains relatively stable
(Louit et al., 2011; de Smidt-Destombes et al., 2009). It
can be calculated using the following expression:

MTBR

Az
MTBR+MDT

(10)
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qu, qH, K,

Fig. 3 The M/M/q/> queueing model for parts repair process.

where MTBR is given in Eq. (1), and MDT stands for the
system mean downtime either due to a planned or a failure
replacement. System downtime under a planned replace-
ment comprises of hands-on replacement time and delay
if the inventory is out of stock. Let O be a random variable
representing the spare part demand of the inventory, and
s be the base-stock level with one-for-one replenishment.
The downtime under a planned replacement, denoted as
T,, can be expressed as:

T,=t+1t,Pr{O > s}, (1D

where ¢, is the hands-on replacement time, and Pr{O > s}
is the stockout probability. Similarly, the downtime of a
failure replacement, denoted as T, can be expressed as:

(12)

By combining both scenarios, the actual MDT of a
single-item system is given as

T,=t+1tPr{O > s}.

MDT = TFR(T)+TqF(T)
=t,+(t,R(1)+1,F (1)) Pr{O > s}
=IS+tATTPI‘{O> S},

(13)

where t,;; is the average part turn-around time in Eq. (9).
Since O is the fleet spare parts demand that follows the
Poisson process, the stockout probability can be obtained
as:

B bl /J.ie—# B S /.t-ie_" B
Pr{O > s} = Z i 1—27, fors=0,1,2,...
Jj=s+1 Jj=0
(14)
with
1= (t,R(1)+1,F (1)), (15)

where u is the mean spare parts demand during ATT, and
Ar is the parts demand rate of the fleet. If a fleet
comprises m single-item systems, we have A, = 4,,(7) as
shown in Eq. (4). Now the single-item system availability,
denoted as A, is obtained by substituting Eqgs. (1), (13)
and (14) into (10) as follows:

jTR (1) dt

A=— 0 . }
fOR (O dt+t,+(t,R (7)+1,F (1)) (1 —X pet(j !)‘1)

i (16)

Note that Eq. (16) incorporates nine performance

drivers. These are the part reliability R (¢), the maintenance
interval 7, the base stock level s, the fleet size m, the
hands-on replacement time #,, the number of renewing
and repair servers p and ¢, and the parts renewing rate y,
and repair rate y, that are embedded in u through Egs.
(6), (8) and (15).

4.2 Availability of k-out-of-n redundant system

For a k-out-of-n system with active redundancy, the
system is functional provided that at least k components
are good at any point in time. Hence the system availabil-
ity, denoted as Ag, is estimated by

n n l )
Ar(x, 5,7, p,q) = Z[ . AV(1 =AY
j=k \ J
k+x k+x , s
=) [ra-as an
J=k J

where x is the number of redundant units with x+k = n.
Note that 4 is the single-item system availability in Eq.
(16). Together with x, there are ten performance drivers
in Ag. For a fleet with m redundant systems, the spare
parts demand rate of the fleet is Ay = (x+k) 4, (7). Two
assumptions are made in Egs. (16) and (17). First, the
system is repairable with random up and down cycles.
Second, the utilization of each system may vary, but the
average utilization shall remain stable over time.

5 Redundancy-maintenance-inventory
allocation model

5.1 Minimizing annualized system cost

Based on the integrated product-service supply chain
depicted in Fig. 2, we propose a redundancy-maintenance-
inventory allocation (RMIA) model with the objective of
minimizing the annualized system cost of the fleet.
RMIA represents a lifetime approach to attaining system
reliability and availability goal by integrating design,
manufacturing, and maintenance logistics activities. The
system cost is comprised of: 1) initial capital, 2) overhead
costs for repairing and renewing parts, 3) inventory
expenses for spare parts, and 4) operating costs for repair
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and renewal shops. Table 1 lists the decision variables,
which include redundancy level, spares stocking level,
replacement age, renewing servers, and repair servers.
We denote this model as RMIA, and it is formulated as
follows:

Model RMIA

Min:

N
fe,8,7,p,q) = (ki + x) (0, Crry; + ApiCui + AgiCy
i=1

1N
+ ZZ (5:(@sCrrui + Cri) + (picyi+ C]icq,f)) s
i=1

(18)
subject to:
N
| JAri 507 poa) > A (19)
i=1
7,> 0T, fori=1,2,...,N, (20)
X+ ki < Ny, fori=1,2,...,N, 20
s;and x; €{0,1,2,...}, fori=1,2,...,N, (22)
piand g, €{1,2,3,...}, fori=1,2,...,N. (23)

The objective Eq. (18) captures the annualized system
cost associated with initial capital, preventive mainte-
nance, spares inventory, and parts repair and renewal
activities. Note that x = [x;,X,...,Xx], § = [51,52,...,85y],
T=[1,T2...,Tnl, P=1[pi,p2-.-sPn); and
q=1[91,92...,qy] represent the decision variables. Model
RMIA is also applicable to new product introduction
phase, when the cost, reliability, repair skillset, and
technology maturity differ significantly among different
LRU types. To meet the time-to-market goal, the OEM
utilizes both in-house and global resources to perform
decentralized repairs in different locations with distinct
repair crews. For instance, in the high-speed rail industry,
maintenance tasks are assigned to different repair crews
based on their individual skillsets to enhance accountability
and categorize labor skills. Both ¢, and ¢, are the capital
recovery factors for the system and spare parts, respec-
tively. 4,,(7) and A, (1) are the spare parts demand rate
for planned and failure replacements of part type i. Addi-
tionally, c,; and c,,; represent the renewal and repair costs
of part type i, respectively, while c¢,; signifies the unit
annual holding cost. Finally, c,, represents the annual
cost per repair server, and c,; denotes the annual cost per
renewing server.

Constraint (19) defines the system availability target,
where Ag; stands for the availability of redundant subsys-
tem i, as given in Eq. (17). Constraint (20) defines the
reliability criterion for each LRU type. That is, 7; should
exceeds certain percentage of component’s MTBF, and

typically 6 > 50%. Constraint (21) defines the physical
limitations of each subsystem. Constraints (22) and (23)
simply stipulate that x, s, p, and ¢ are nonnegative inte-
gers.

5.2 Bisection search algorithm

The bisection algorithm is a highly effective method for
solving non-convex optimization models that arise in a
variety of fields including reliability, inventory, power
systems, and space-trajectory problems. For example,
Mouatasim (2018) proposes a reduced gradient and bisec-
tion method for optimizing a non-convex differentiable
objective function, with results confirming the global
convergence of the algorithm. Reddy and Bijwe (2018)
combine the bisection method with simulation to efficiently
solve a large-scale optimal power flow model involving
non-convex and discrete variables. Jin et al. (2017)
demonstrate the use of the bisection search to address a
joint RRA and SPL allocation problem. More recently,
Barnett and Gosselin (2021) have developed a bisection
algorithm to minimize the time required to follow a path
defined in space by dividing the global problem into a
series of simpler subproblems. In this paper, we propose
the use of bisection search coupled with neighborhood
exploration to solve the RMIA model. Specifically, we
utilize Algorithms 1 and 2 for solving the case of single &
-out-of-n systems (i.e., when N = 1), while Algorithm 3
becomes necessary when N > 2.

Algorithm 1: (Minimizing system cost)

Step 1: Initialization: estimate ¢q;, gy, p., and py using
Egs. (B3), (B4), (B7), and (B9), respectively. Set x =0,
$=0, Twin=7ml> Towx =Voul> P=DPn q=q., and
Sonin = 10° (an arbitrarily large value).

Step 2: Compute system availability using Eq. (17)
based on current {x, 5,7, p,q}.

Step 3: If A < A, let s =5+ 1, and go to Step 2. Else,
compute f(x,s,7,p,q) using Algorithm 2. If f(x,s,7,
PsCI) <f;nim let f;nin = f(x,S,T,P,CI)a X'=x,8=s1=1,
p'=p,andq =q.

Step 4: If p<py, let p=p+1, and s=0, and go to
Step 2.

Step 5: If g< gy, let g=g+1, p=p,, and s =0, go to
Step 2.

Step 6: If x <ngw—k, let x=x+1, g=q,, p=p., and
s =0, go to Step 2.

Step 7: Output fi,, and {x*, s*, 7%, p*,q"}.

Algorithm 2: (Bisection search)

Let 7, and 7, be the lower and upper bounds of 7, and
fr and f;; are the corresponding objective function values
for given x, s, p, and ¢q. Figure 4 illustrates the working
principle of the bisection search. The detailed procedures
are given below.

Step 1: Let 7, = (1, +7y)/2, and use Algorithm 1 to
find f.
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Step 2: Let 7, = (7, +71,)/2, and use Algorithm 1 to
find f.

Step 3: Let 73 = (7, +7y)/2, and use Algorithm 1 to
find f;.

Step 4: If f,> fi, and f; > f, let 7, =1,, Ty =73, and
Jmin = f1, 0 to step 2.

Step 5: If f,> fi> f;, let 7, =71,, and f,;, = f5, or if
fi> fi> fo, let Ty =713, and fiu, = f5, g0 to step 2.

Step 6: The algorithm terminates if |f, — f(x*,s*, 7%,
P, q")| < g, where f.;, and f(x",s*,7", p*,¢") are the previ-
ous and the current values, and ¢ is a small threshold.
Finally, the optimal solution is {x*, s*,7*, p*,q"}.

Algorithm 3: (Neighborhood exploration)

This algorithm solves Model RMIA for systems
comprised of multiple k;-out-of-n; redundant subsystems
for i=1,2,...,N. First, Algorithms 1 and 2 are used to
find the optimal solution for each subsystem. Next, a
neighborhood search is employed to further reduce the
cost by refining all the decision variables. The detailed
procedures are as follows:

Step 1: Set A i = (Amin)"" Where A,;,; is the subsystem
availability for i = 1,2,..., N. Find the optimal solution of
subsystem i using Algorithms 1 and 2. The results are
kept as f;, A, and z,={x;,s;,T,piq:}. Note that
AL > A

Step 2: For subsystem i, perform neighborhood explo-
ration by increasing or decreasing z; = {x;, s;,T:, Pi»¢i} by
one step size, i.e., {Ax;,As;,At;,Ap;,Aq;}, and compute
the new cost and subsystem availability for i =1,2,...,N.
The results are kept at {z;*, f;",A,"} and {z;", f;,A,”}. Note
that “+” stands for the increment, and “—" stands for the
decrease.

Step 3: Among N subsystems, choose the subsystem
with the maximum cost saving and the smallest availability
reduction, say subsystem j. Also choose the subsystem
with the minimum cost increase and the largest availability
growth, say subsystem /.

Step 4: If the cost saving of subsystem j is less than the
cost increase of subsystem [, using the current solutions
for subsystems j and /. Compute the new system avail-
ability A,.

Step 5: If Ay 2 Amin, let z;=2,7, fi=f;,and A;=A;"
for subsystem j. Let z;=z2", fi=/f", and A, =A," for
subsystem [. Also update objective function f;, and

i Objective
function value

Objective function (cost)

Time

7 L Th T T Ty

Fig. 4 A graphical illustration of the bisection search.

{x,s,7,p,q}. Go back to Step 2.

Step 6: The algorithm terminates if |f,, — f(x*,s*, 7",
p,q) <e, where f,, and f(x*,s*,7",p",q*) are the
previous and the current costs, and & is a small threshold.
The final solution is {x*,s*,7*, p*, q*}.

6 Applications to systems with single
redundant subsystem

6.1 System description

Automated Test Equipment (ATE) is widely used for
micro-device testing in the semiconductor manufacturing
industry. ATE belongs to k-out-of-n redundant system,
where k is the number of primary working units, and » is
the total number of LRU items. Each LRU is made of a
printed circuit board that is repairable. Without loss of
generality, the lifetime of an LRU follows the Weibull
distribution with shape and scale parameters @ >0 and
B> 1, respectively. Table 2 lists the reliability and cost
data associated with ATE design, manufacturing, and
after-sales support. The second column data are for the
benchmark study, and those in the third column are for
sensitivity analysis. Both ¢, and ¢, are estimated assuming
a 5% discount rate with a 10-year and 5-year payoff
period for systems and LRU, respectively.

6.2 Result and discussion of benchmark study

The benchmark data in Table 2 are used to solve Model
RMIA for a fleet of k-out-of-n redundant systems. Algo-
rithms 1 and 2 are used to search for the optimal solution.
For m = 50 systems, the optimal decisions are x* =0, s* =
15, * =3.706, p* =2, and ¢* = 2. The annualized system
costis fri, = $126,407.18. The achieved system availability
is Ay = 0.9901, larger than A, = 0.99.

Now we examine how the fleet size m influences the
system cost, and the results are shown in Fig. 5. Initially,
the system cost decreases with m due to economies of
scale. However, it tends to level off as m further increases.
For instance, the system cost drops to $138,598.13 for
m =20, compared to $191,147.79 for m = 10, resulting in
a decrease of 27.4%. However, the cost tends to remain
relatively flat with an average of $120,415.45 for
m > 110. The achieved system availability Ay, fluctuates
between 0.99 and 0.992 as m increases from 10 to 200.

Figure 6 shows the solutions for {x,s,7,p,q} as m
increases from 10 to 200. Two observations can be made.
First, it is not cost-effective to employ redundant units in
order to achieve a system availability of 0.99. Secondly,
the spares stock level does not increase monotonically
with m. For instance, s = 38 for m = 100, but it decreases
to 25 for m = 130. While ¢ =4 for m = 100 and 130, the
OEM chooses to increase p from 3 to 6 in exchange for s.
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Table 2 Parameter values of ATE system (n/a=not applicable, item=
LRU)

Notation Benchmark Sensitivity Analysis Unit
1% 0.2 [0.2,1.5] failure/year
B 3 [1.5,5] n/a
k 10 10 item
Mimax 13 13 item
m 50 [10, 200] system
I 8 [4, 48] hour

1
/? 6 [3, 18] day
;Tq 12 [6, 24] day
CLRU 50,000 [25000, 200000] $/item
Cy 3,000 n/a $/item
¢y 4,500 n/a $/item
Ch 10,000 [5000, 50000] $/item/year
‘p 480,000 [0.5¢p, 1.5¢)] $/server
Cq 640,000 [0.5¢4, 1.5¢4] $/server
Amin 0.99 [0.9, 0.999] n/a
0 0.7 [0.5,1.1] n/a
Ymin> Ymax 0.5,2 0.5,2 n/a
?1, 92 0.1295,0.2310 0.1295, 0.2310 n/a

This contradicts the intuition that more spare parts are
needed as the fleet size increases under the ample repair
capacity assumption.

Figure 7 illustrates the relationship between s and parts
availability for m € [10,200]. Firstly, the parts availability
remains relatively stable between 0.924 and 0.981 regard-
less of s. Secondly, the parts availability consistently falls
below A,;,. Lastly, for m < 100, increasing s proves to be
an effective method of meeting A,;,. However, when
m > 110, the inventory levels off or even decreases.
Hence, expanding repair and renewing servers becomes
more cost-effective in order to achieve A,;,. Regardless

of m, the utilization rate of renewing and repair servers is
0.84 and 0.86, respectively. This result aligns with the
study by Sleptchenko et al. (2003), which demonstrates
that capacitated repair shops typically have a utilization
rate ranging from 0.8 to 0.95.

6.3 Comparison between redundancy and sparing

In this section, a sensitivity analysis is conducted by
comparing redundancy allocation and spares stocking.
First, five cases corresponding to parameters A, 0, @, £,
and ¢, are examined. For each parameter, Model RMIA is
solved with three different values considering redundancy
and non-redundancy, respectively. The results are
presented in Table 3, where the optimal solutions are
indicated by underscores.

In Case 1, we analyze the influence of A,;, on the deci-
sions regarding {x, s, 7, p,q}. To achieve A, = 0.999, both
redundancy and a larger spares inventory are required,
with x = 1 and s = 23. The cost of the system is $137,348.
It should be noted that there is no feasible solution for
x =0, indicating that spares inventory alone cannot guar-
antee an availability of 0.999. As A,;, decreases to 0.99,
the optimal values are x =0 and s =15, resulting in a
system cost of $126,407. If A,,;, further decreases to 0.9,
x =0 and s =9 are sufficient to achieve the target avail-
ability with a lower cost of $123,757. Case 1 also demon-
strates that as A, is relaxed, the system cost is reduced,
but the values of 7, p and ¢ remain relatively stable.

In Case 2, we increase 6 from 0.5 to 1.1 and examine
its impact on the decision variables. For 6= 0.5, the optimal
solution is the same as that of & = 0.7, indicating that a
high replacement frequency is not necessarily optimal.
For 6§ = 1.1, the optimal T = 5.068, which is 1.17 times of
the MTBF. A larger 7 results in a lower proactive
replacement frequency, but an increased corrective main-
tenance. As a result, the system cost increases to $129,
623, compared to $126,407 for = 0.5 and 0.7.

In Case 3, we decrease the LRU reliability by increasing

300 10.994
Ay
~ 250 S 70992
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5 40.990 3
S 200 T
2 0
X 40.988 =
% <
Z 150 &
- 10.986 £
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2 100 2
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Fig. 5 System cost and availability for different fleet sizes.
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Fig. 7 Spare part stock level and parts availability for benchmark study.

a from 0.2 to 1. The system can achieve the target avail-
ability A, = 0.99 by using spare parts alone for a = 0.2
and 0.5. However, redundancy with x=1 must be
adopted for @ = 1 alone with s =33. It is also observed
that s, p, and ¢ increase with «, which is expected due to
the growing number of field returns.

Case 4 examines the impact of the hands-on replacement
time ¢, on the decision making. It demonstrates that #, has
no direct effect on 7, p and ¢. In addition, a smaller s is
sufficient to achieve A,;, = 0.99 if ¢, = 8 or 24 h. However,
if t, = 48 h, x =1 must be adopted to attain the desired
system availability.

In Case 5, we increase the inventory holding cost and
exmine its impact on the decision variables. Redundancy
is not necessary when the part’s annual holding cost is
relatively low, with ¢, = 10,000 and 20,000. However, if
¢, reaches the item cost, x = 1 and s = O result in a lower
system cost compared to the alternative solution of x =0
and s = 15.

Next, we compare five additional cases pertaining to 5,
My Mg €y and ¢, Model RMIA is solved by varying one
parameter, and the results are summarized in Table 4.
The solutions marked with an underscore represent the
optimal decisions. A common observation from Cases 6
to 10 is that spares inventory is more cost-effective than

redundancy in achieving A,;, = 0.99.

Case 6 examines the influence of the shape parameter
B on the decision variables and system cost. When g
increases from 1.5 to 4.5, there is a preference for more
proactive replacements as evidenced by the increased
value of R(7) from 0.21 to 0.86. This is because the life
distribution with a higher 8 becomes more concentrated,
thereby benefiting proactive replacements. Consequently,
p increases from 1 to 3, and ¢g decreases from 4 to 1.
Additionally, it is observed that the system cost decreases
with S due to the benefit of proactive replacements.

Case 7 explores the effects of 1, on the decision variables
and system cost. As 1/u, increases from 3 to 12 days, s
increases from 12 to 17, and the cost rises from $115,023
to $139,453. This result is expected, as a slower renewing
process requires more spare parts to ensure the system
availability. Furthermore, the OEM chooses to extend 7
from 2.5 to 5.09 years to tolerate more failure replace-
ments.

In Case 8, the repair time 1/, increases from 6 to 24
days. Similar to Case 7, the increase in 1/u, leads to an
increase in the inventory level from s =7 to 32, and the
cost from $112,741 to $145,399. Additionally, the OEM
opts to adopt more renewing servers for proactive
replacements. For instance, when 1/u, = 6, we have p =1
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Table 3 Comparison between redundancy and spares inventory for Cases 1 to 5

Case Parameter X s T p q Asys Apart R(1) Cost ($)
1 Apin = 0.999 1 23 3.728 2 2 0.9992 0.89 0.661 137,348
0 No Solution
Amin =0.99 0 15 3.710 2 2 0.9901 0.962 0.661 126,407
1 19 3.751 2 2 0.9901 0.590 0.656 135,599
Amin =0.9 0 9 3.773 2 2 0.9014 0.482 0.651 123,757
1 0 3.840 2 2 0.9131 0 0.636 127,316
2 0=05 0 15 3.710 2 2 0.9901 0.962 0.661 126,407
1 19 3.751 2 2 0.9901 0.590 0.656 135,599
6=0.7 0 15 3.710 2 2 0.9901 0.962 0.661 126,407
1 19 3.751 2 2 0.9901 0.590 0.656 135,599
0=1.1 0 16 5.068 1 3 0.9902 0.963 0.353 129,623
1 0 5.068 1 4 0.9902 0.001 0.322 142,776
3 a=02 0 15 3.728 2 2 0.9901 0.962 0.661 126,388
1 19 3.751 2 2 0.9901 0.590 0.656 135,599
a=0.5 0 24 1.331 6 4 0.9902 0.991 0.745 211,168
1 24 1.500 5 5 0.9906 0.678 0.656 222,028
a=10 1 33 0.746 10 10 0.9920 0.787 0.661 366,491
0 No Solution
4 ;=8 0 15 3.728 2 2 0.9901 0.962 0.661 126,388
1 19 3.751 2 2 0.9901 0.590 0.656 135,599
ty =24 0 18 3.817 2 2 0.9903 0.991 0.641 127,592
1 19 3.728 2 2 0.9917 0.633 0.661 135,624
ty =48 1 19 3.728 2 2 0.9907 0.633 0.661 135,624
0 No Solution
5 cp = 10,000 0 15 3.706 2 2 0.9901 0.962 0.666 126,412
1 19 3.751 2 2 0.9901 0.590 0.656 135,599
cp = 20,000 0 15 3.728 2 2 0.9901 0.962 0.661 129,388
1 0 3.483 3 2 0.9904 0.001 0.713 137,365
cp = 50,000 1 0 3.483 3 2 0.9904 0.001 0.713 137,365
0 15 3.728 2 2 0.9901 0.962 0.661 138,388

and 7 =5.202. If 1/, = 24, p becomes 3 while 7 drops to
2.679.

In Case 9, the cost of ¢, is decreased from $480k to
$240k. The value of p increases from 2 to 4, while ¢
decreases from 2 to 1. Approximately 89% of field
returns are proactive replacements. Conversely, if ¢, is
increased by 50%, the opposite conclusion can be drawn.

Case 10 investigates how ¢, influences the decision
variables. When ¢, is reduced from $640k to $320k, the
OEM opts to use more repair servers rather than renewing
servers, as expected. Consequently, 7 increases from
3.728 to 5.068, a 36% increase. In fact, only 35.3% of
field returns are proactive replacements. Conversely, if c,
is increased by 50% from the benchmark cost, the opposite
observation can be made.

6.4 Discussion of heuristic solution quality

Particle swarm optimization (PSO) and non-dominated
genetic algorithm (GA) are also employed to solve Model
RMIA using the benchmark data. The objective is to
compare the solution quality of different heuristic algo-
rithms. Both GA and PSO are frequently used to solve
reliability, availability, and maintainability problems
(Zaretalab et al., 2022), as well as PM planning (Alaswad
and Xiang, 2017), and SPL models (Yan et al., 2023).
The PSO and GA algorithms are implemented in Matlab
and executed on a PC with an Intel(R) Core (TM)
15-7200U CPU @ 2.5GHz, 4 Core(s), 24 GB memory,
and 4 Logical Processors.

Table 5 summarizes the optimization results obtained
from three algorithms as the fleet size mincreases from
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Table 4 Comparison between redundancy and spares inventory for Cases 6 to 10

Case Parameter X s T p q Agys Apart R(7) Cost (8)
6 B=15 0 11 6.771 1 4 0.9919 0.957 0.207 140,773
1 7 6.048 1 4 0.9901 0.226 0.264 146,835

B=33 0 15 3.728 2 2 0.9901 0.962 0.661 126,388

1 19 3.751 2 2 0.9901 0.590 0.656 135,599

p=45 0 10 3.262 3 1 0.9905 0.946 0.864 120,742

1 6 3.308 3 1 0.9901 0.180 0.856 126,407

7 1 -3 0 12 2.500 2 1 0.9910 0.964 0.882 115,023
Hp 1 9 2.433 2 1 0.9902 0.324 0.891 121,816

1 -6 0 15 3.728 2 2 0.9901 0.962 0.661 126,388

Hp 1 19 3.751 2 2 0.9901 0.590 0.656 135,599

1 12 0 17 5.090 2 3 0.9908 0.968 0.348 139,453

Hp 1 9 5.961 1 4 0.9906 0.327 0.184 146,719

8 1 -6 0 7 5.202 1 2 0.9914 0.926 0.324 112,741
Hq 1 0 5.202 1 2 0.9941 0.003 0.324 117,176

1 -2 0 15 3.728 2 2 0.9901 0.962 0.661 126,388

Hq 1 19 3.751 2 2 0.9901 0.590 0.656 135,599

1 —o4 0 32 2.679 3 2 0.9907 0.987 0.857 145,399

Hq 1 12 2.478 4 2 0.9903 0.434 0.885 154,906

9 cp = 240K 0 13 2.433 4 1 0.9902 0.963 0.891 115,728
1 11 2.456 4 1 0.9906 0.408 0.888 122,575

cp = 480K 0 15 3.728 2 2 0.9901 0.962 0.661 126,388

1 19 3.751 2 2 0.9901 0.590 0.656 135,599

cp =T720K 0 16 5.068 1 3 0.9902 0.963 0.353 134,223

1 21 4.934 1 3 0.9910 0.636 0.383 143,841

10 cqg =320K 0 16 5.068 1 3 0.9902 0.963 0.353 110,223
1 0 5.202 1 4 0.9919 0.001 0.324 117,176

cq = 640K 0 15 3.728 2 2 0.9901 0.962 0.661 126,388

1 19 3.751 2 2 0.9901 0.590 0.656 135,599

cg = 960K 0 32 2.679 3 1 0.9923 0.990 0.857 138,999

1 11 2.456 4 1 0.9906 0.408 0.888 148,175

10 to 200. In comparison to the PSO and GA, the BS
algorithm yields the lowest cost in 15 out of 20 cases.
However, for m = 60, PSO proves to be the best option,
with a cost lower than BS by $38.94. On the other hand,
for m =90, 110, 130, and 150, GA outperforms both BS
and PSO. Nevertheless, the cost difference between GA
and BS is relatively small, ranging from $1.01 to $2.69. It
is worth noting that in these cases, the values of x, s, p,
and ¢ are identical between GA and BS, and the only
difference is 7. Similarly, the values of x, s, p, and g are
identical between PSO and BS, and the only difference is
7. Furthermore, Table 5 demonstrates that both GA and
PSO tend to overestimate the system cost under a small
fleet, such as m = 10, 20, 30 and 40. For m > 110, the
cost difference among all three algorithms is less than

0.9%, suggesting that BS, GA, and PSO are capable of
converging to the lowest cost under a large fleet.

7 Applications to systems with multiple
redundant subsystems

In this section we extend the application of Model RMIA
to series-parallel systems each comprised of four k -out-
of-n subsystems (i.e., N =4). Table 6 provides the
parameter values of individual subsystems. The target
system availability is set at 0.99, indicating that the avail-
ability of each subsystem should be approximately 0.997.
First, Algorithms 1 and 2 are used to find the optimal
solutions for each subsystem with A ;, = 0.997. Then,
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Table 5 Comparisons of BS, GA and PSO results (underscores are the lowest)

m X s p q T Asys Cost Cost Diff (%) Algorithm
10 0 2 1 1 4.063 0.9900 191,147.79 0.000 BS
0 2 2 2 5.210 0.9952 302,831.52 58.428 GA
0 2 2 2 5.209 0.9952 302,831.52 36.880 PSO
20 0 7 1 1 3.795 0.9903 138,598.13 0.000 BS
0 3 2 2 4.959 0.9900 189,764.39 36.917 GA
0 3 2 2 4.957 0.9900 189,764.54 36.917 PSO
30 0 9 2 1 3.170 0.9911 135,742.37 0.000 BS
0 5 2 2 4.386 0.9900 152,922.17 12.656 GA
0 5 2 2 4.374 0.9902 152,927.02 12.660 PSO
40 0 21 1 2 4.510 0.9909 129,934.56 0.000 BS
0 8 2 2 3.998 0.9900 135,191.86 4.046 GA
0 8 2 2 3.974 0.9906 135,209.85 4.060 PSO
50 0 15 2 2 3.706 0.9901 126,407.38 0.000 BS
0 16 2 2 3.829 0.9900 126,717.73 0.246 GA
0 16 2 2 3.774 0.9926 126,770.23 0.287 PSO
60 0 15 3 2 3.349 0.9914 126,344.98 0.031 BS
0 13 2 3 4.270 0.9900 127,384.86 0.854 GA
0 15 3 2 3.372 0.9905 126,306.04 0.000 PSO
70 0 30 2 3 4.161 0.9903 125,154.35 0.000 BS
0 13 3 3 3.865 0.9900 126,991.05 1.468 GA
0 32 2 3 4.141 0.9948 125,780.55 0.500 PSO
80 0 22 3 3 3.706 0.9901 123,073.06 0.000 BS
0 22 2 4 4.523 0.9900 124,541.17 1.193 GA
0 23 3 3 3.775 0.9901 123,269.10 0.159 PSO
90 0 21 4 3 3.488 0.9906 123,109.26 0.001 BS
0 21 4 3 3.488 0.9900 123,107.83 0.000 GA
0 21 4 3 3.477 0.9909 123,123.63 0.013 PSO
100 0 38 3 4 4.018 0.9914 123,057.65 0.000 BS
0 17 3 5 4.376 0.9900 124,731.38 1.360 GA
0 39 3 4 3.980 0.9907 123,299.45 0.196 PSO
110 0 29 4 4 4.465 0.9903 121,513.23 0.001 BS
0 29 4 4 3.745 0.9900 121,512.23 0.000 GA
0 29 4 4 3.713 0.9917 121,545.98 0.028 PSO
120 0 26 5 4 3.527 0.9901 121,363.67 0.000 BS
0 24 4 5 4.025 0.9900 121,838.51 0.391 GA
0 26 5 4 3.492 0.9917 121,408.94 0.037 PSO
130 0 25 6 4 3.349 0.9903 121,614.60 0.002 BS
0 25 6 4 3.349 0.9900 121,611.91 0.000 GA
0 22 5 5 3.760 0.9907 121,811.97 0.165 PSO
140 0 35 5 5 3.743 0.9901 120,495.55 0.000 BS
0 35 5 5 3.740 0.9900 120,496.74 0.001 GA
0 37 5 5 3.744 0.9937 120,800.53 0.253 PSO
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(Continued)

m x s p q T Asys Cost Cost Diff (%) Algorithm
150 0 31 6 5 3.559 0.9903 120,307.38 0.001 BS

0 31 6 5 3.558 0.9900 120,305.60 0.000 GA

0 28 5 6 3.930 0.9902 120,556.70 0.209 PSO
160 0 29 7 5 3.393 0.9904 120,459.42 0.000 BS

0 25 5 7 4.104 0.9900 121,176.29 0.595 GA

0 26 6 6 3.716 0.9907 120,636.36 0.147 PSO
170 0 40 6 6 3.706 0.9915 119,746.86 0.000 BS

0 29 8 5 3.288 0.9900 120,812.72 0.890 GA

0 42 6 6 3.669 0.9915 120,039.51 0.244 PSO
180 0 36 7 6 3572 0.9918 119,613.35 0.000 BS

0 44 8 5 3.258 0.9900 120,155.51 0.453 GA

0 39 7 6 3.502 0.9943 120,061.78 0.375 PSO
190 0 33 8 6 3.438 0.9900 119,650.11 0.000 BS

0 30 7 7 3.732 0.9900 119,782.91 0.111 GA

0 34 8 6 3.444 0.9916 119,752.30 0.085 PSO
200 0 42 6 8 4.024 0.9903 119,390.37 0.000 BS

0 42 6 8 4019 0.9900 119,391.56 0.001 GA

0 29 8 7 3.600 0.9901 119,991.31 0.503 PSO

Table 6 Reliability and cost data for series-parallel system (n/a=not
applicable)

Subsystem i=1 i=2 i=3 i=4 Unit

a 0.25 0.3 0.35 0.4 failure/year
B 1.5 2.5 3 35 n/a

k 10 7 5 3 item
Mimax 13 10 7 5 item

ts 12 18 24 30 hour
#Lp 6 9 12 15 day

#iq 12 14 18 21 day
CLRU 60,000 90,000 110,000 130,000 $/item
Cu 3,000 5,000 6,000 7,500 $/item
Cy 4,500 7,500 9,500 11,250 $/item

Ch 12,000 18,000 22,000 26,000  $/item/year
Cp 250,000 320,000 375,000 420,000 $/server
Cq 350,000 384,000 494,000 630,000 $/server
Ymin> Ymax 0.5,2 0.5,2 0.5,2 0.5,2 n/a

Algorithm 3 utilizes neighborhood exploration to optimize
the overall problem with A,;, = 0.99.

The results under different fleet sizes are summarized
in Table 7. The following observations can be made: first,
as expected, the system cost decreases as m increases
from 10 to 100. Specifically, the cost is $776,664 for

m =10, and $610,007 for m =100, down by 21.5%.
Secondly, Subsystem 1 opts for redundancy for m =10
and 20. However, as m becomes larger, redundancy is no
longer the preferred option. Subsystems 2 and 3, on the
other hand, prefer to install one redundant component
regardless of the fleet size. For Subsystem 4, redundancy
is never the option regardless of the fleet size. This is
because the unit cost of the LRU for Subsystem 4 is the
highest among the four subsystems, and only 3 working
units are required, compared to 5, 7 and 10 for the other
subsystems. Consequently, the marginal cost of using one
redundant unit is considerably higher for Subsystem 4.

8 Conclusions

This study proposes a joint redundancy-maintenance-
inventory allocation model to minimize the annualized
system cost while achieving the desired reliability and
availability targets during the lifetime period. This model
is the first of its kind in bringing together the decisions of
reliability-redundancy, preventive maintenance, and spare
parts logistics. Two parallel Erlang-C queues are utilized
to characterize the decentralized repair and renewal shops,
respectively. The demand for fleet spare parts is modeled
as a superimposed renewal process, consisting of proactive
and failure placement streams. To solve the redundancy-
maintenance-inventory allocation model, a bisection
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Table 7 The solution for systems with four redundant subsystems
m 10 20 30 40 50 60 70 80 90 100
Cost 776,664 701,735 666,538 645,222 634,393 627,222 627,411 619,270 612,960 610,007
Asys 0.99001 0.99001 0.99001 0.99000 0.99001 0.99000 0.99000 0.99000 0.99001 0.99000
X1 1 1 0 0 0 0 0 0 0 0
X2 1 1 1 1 1 1 1 1 1 1
X3 1 1 1 1 1 1 1 1 1 1
X4 0 0 0 0 0 0 0 0 0 0
S1 5 7 15 17 17 19 25 29 32 34
52 3 6 10 13 16 19 14 16 18 20
] 4 8 8 12 16 20 23 20 23 25
S4 4 8 16 15 15 18 19 25 26 26
71 3.033 4.044 5.416 5.416 5.416 5.416 5.416 5.416 5.416 5.416
2 2.810 3.372 3.667 3.845 4.022 4.141 3.224 3.342 3.460 3.519
73 2.398 2.781 2.679 2.322 2.526 2.653 2.730 2.424 2.526 2.602
T4 2.272 2.564 2.497 2.699 2.834 2.497 3.104 2.969 2.654 2.744
P1 1 1 1 1 1 1 1 1 2 2
P2 1 1 1 1 1 1 3 3 3 3
p3 1 1 2 3 3 3 3 5 5 5
P4 1 1 1 1 1 2 1 1 2 2
q1 1 2 3 4 5 6 7 8 8 9
92 1 2 3 4 5 6 6 7 8 9
93 1 2 3 3 4 5 6 6 7 8
q4 1 2 2 3 4 4 6 6 6 7

search algorithm that combines neighborhood exploration
is developed. The numerical experiments provide several
important insights. First, redundancy is preferred over
spare parts when the fleet size is small, inventory holding
costs are high, replacement time is extended, or
extremely high system availability, such as 0.999, is
required. Second, there is no monotonic correlation
between spares inventory level, parts availability, and
system availability in the joint allocation model. Third,
both the spares inventory and the system cost decrease as
the Weibull shape parameter increase, suggesting that age-
based replacement becomes more cost-effective for items
with a concentrated lifetime distribution.

In the future, the redundancy-maintenance-inventory
model can be expanded in several directions. For exam-
ple, with the increasing use of prognostics and health
management systems, condition-based maintenance can
be integrated into the joint allocation model. This will
help prevent and reduce random failures, thereby improv-
ing spares provisioning efficiency. Additionally, multi-
class queues can be employed to model repair and
renewal tasks in a centralized facility. However, this may
require theoretical advancements as current multi-class
queueing models become computationally burdensome
when dealing with multiple servers.
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Appendix A: Notation of model parameters

Table A1 Model parameters

Notation Definition

a,B Weibull scale and shape parameters, respectively

Ap Part demand rate of a single-item system in planned replacement
A4 Part demand rate of a single-item system in failure replacement
Am Aggregate part demand rate of a fleet of single-item systems
AFp Aggregate part demand rate of a fleet in planned replacement
AFg Aggregate part demand rate of a fleet in failure replacement

AF Aggregate part demand rate of a fleet, and Ar = Ar, + Apq
Pp>Pg  Part renewing and repair traffic intensity rate, respectively

0 Capital recovery factor of system

(2] Capital recovery factor of spare part or LRU

0 Percentage of mean time between failures of LRU

H Number of returned items during parts turn-around time

HpsHg  Part renewing rate and repair rate, respectively
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Notation Definition

Tmins Tmax The lower and upper limit of maintenance intervals

Ymin> Ymax Minimum and maximum percentage of MTBF for LRU

CLRU Unit cost for a spare part or LRU

Ch Unit holding cost per year

CusCy Cost for renewing and repairing a part, respectively
Cp> Cq Cost for operating a renewing and repairing server, respectively
k The minimum number of required working item in a system
m System fleet size or installed base

Nmax Maximum number of components a system can install
tATT Average part turn-around time

tp Part renewing turn-around time

tq Part repair turn-around time

ts Hands-on time for replacing a part

B(g) Probability for a part waiting in a repair shop

C(p) Probability for a part waiting in a renewing shop

A Availability of a single-item system

AR Auvailability of a k-out-of-n redundant system

Anmin Target or desired system availability

Agys Actual system availability

Apart Actual parts availability

f@ Probability density functions of the LRU lifetime
R() Reliability function of the LRU

F(1) Cumulative distribution function of the LRU lifetime
0 Steady-state inventory on-order, a random variable

T, Mean downtime in a planned replacement

T, Mean downtime in a failure replacement

T Mean-time-between-failures of the LRU

N Number of redundant subsystems in a system

Appendix B: The range of decision variables

Th range of the decision variables is analyzed to reduce
the search space of Model RMIA. For a given subsystem,
the upper limit of x is governed by Constraint (21),
namely x < n,,, — k. Hence the effort below is focused on
7,5, pandgq.
B.1. The range of T

The maintenance interval 7 is correlated with MTBF
denoted as T. For Weibull distribution, T = (1/a)['(1+
1/B). Figure B1 plots the Weibull reliability R () in three
cases: T =0.5T, T, and 2T . When f increases from 1 to
6, we find that R(0.57) increases from 0.61 to 1, and
R(2T) decreases from 0.14 to 0. If 7 = 2T, the chance of
making a proactive replacement is only 0.09. Hence 7
should not exceed 2T . Otherwise, over 91% of replace-
ments are due to failures. Thus the range of t shall fall in

7=0.5 MTBF

1.0

0.8
_06f =1 MTBF
=
H 0.4 boee®®®™"

02

— 2 MTBF
O 1 1 1

1.5 20 25 3.0 35 40 45 50 55 6.0
B

Fig. Bl Weibull reliability for 7 = 0.5, 1 and 2MTBF

0.
1.0

(0,2T]. Note that the reliability curves in Fig. Bl are
independent to the scale parameter «.
B.2. The range of ¢ and p
The Erlang-C queue is stable if and only if the repair
traffic intensity rate p, = A,/ (qu,) < 1. This implies that:
Ary

q>—.
Hq

(B1)

The value of A, depends on the maintenance interval
T € [Tuin» Tmax)- The lower limit of Ar, occurs at 7= 7.
For m systems each with k-out-of-n configuration, the
aggregate failure replacement rate is given as
m(k + x)F(Tmin)

Jo"R@dr

Substituting Eq. (B2) into Eq. (B1) yields the lower
limit for g as follows:

" /lF,q (Tmin) “
qL = - k
Hq

/lF.q(Tmin) = (BZ)

(B3)

where [a] represents the smallest integer greater than a.
Similarly, the upper limit of ¢ is found at T = 7. That is:

y= {Mw, (B4)
Hq
where
m(k + x)F (T )
/lF max = S N BS
o(Tinax) RO (BS)

The derivation of lower limit of p is similar to ¢, and
the results are given below. The fleet generates the smallest
proactive replacements when 7 = 7,,,,, and its rate is

m(k + X)R(Tpnar)
App(Toax) = i+ (B6)
JiUR@dr
Hence the lower limit of p is obtained by
/l 5 )(Tmax)
pL= {— w (B7)
Hp
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Similarly, when T = 7,;,, the fleet generates the largest
proactive replacements, and the rate is

(k+ X)MRT
/lF,p(Tmin) = Tomin (Bg)
ST R(n)dt
Thus the upper limit of p is given as
/l min
pu = {ﬂ} (B9)
o

B.3. The range of s

Since the lower limit of s is zero, we just need to find
its upper limit. Given x, 7, p, and ¢, the value of s
increases with A,;,. According to Eq. (17), the redundant
system availability must satisfy the following condition

k+x

ki A(1-A)"" > A, (B10)

A\

where A is the smallest component availability given in
Eq. (16). After the re-arrangement, Eq. (16) becomes:

s et t,+(1=AY[R@)dt
yE s ( RO , (B11)
=0 J! Tarr
where
k+x)t
1= A (R (7)1, F (7)) = T+ Darr. (B12)

JoR(@dr

Based on Eq. (B11) the upper limit for s can be derived
using the procedure as follows.

Step 1: For given 7 € [Ty, T, €Stimate the q;, qu, pr
and p, according to Egs. (B3), (B4), (B7), and (B9),
respectively.

Step 2: Compute the values of B(q,), B(qy), C(p.), and
C (py) based on Egs. (5) and (7), respectively.

Step 3: Based on Eq. (9), compute ¢,;+ for 7 = 7, and
T = Toa, T€Spectively.

Step 4: Based on Eq. (B12), compute u for 7 = 7, and
T = Toa, TeSpectively.

Step 5: Find s(7,;,) and s(7,,) that satisfy Eq. (B11)
with respect to T = T, and T = T,

Step 6: choose Sy, = Max{s(Tun), S(Tmax)} as the upper
limit of s.

The rationality of this 6-step procedure is that the upper
limit of s occurs when p and ¢ are in their lower limit
either at 7 = 7, Or T = T, If p Or ¢ is above their lower
limit, ¢, deceases and u becomes smaller. Hence less
amounts of spare parts are needed to meet A,
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