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Abstract Over the last two decades, many modeling and
optimization techniques have been developed for earth
observation satellite (EOS) scheduling problems, but few
of them show good generality to be engineered in real-
world applications. This study proposes a general modeling
and optimization technique for common and real-world
EOS scheduling cases; it includes a decoupled framework,
a general modeling method, and an easy-to-use algorithm
library. In this technique, a framework that decouples the
modeling, constraints, and optimization of EOS scheduling
problems is built. With this framework, the EOS scheduling
problems are appropriately modeled in a general manner,
where the executable opportunity, another format of the
well-known visible time window per EOS operation, is
viewed as a selectable resource to be optimized. On this
basis, 10 types of optimization algorithms, such as Tabu
search and genetic algorithm, and a parallel competitive
memetic algorithm, are developed. For simplified EOS
scheduling problems, the proposed technique shows better
performance in applicability and effectiveness than the
state-of-the-art algorithms. In addition, a complicatedly
constrained real-world benchmark exampled by a four-
EOS Chinese commercial constellation is provided, and
the technique is qualified and outperforms the in-use
scheduling system by more than 50%.
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1 Introduction

Recent decades have witnessed rapid developments in
satellite technology. In the areas of resource exploration,
environment protection, disaster warning, and military
applications, earth observation satellites (EOSs) play an
increasingly important role. Management agencies must
closely monitor the EOSs and appropriately schedule
their tasks (Du et al., 2021; Yang, 2021; He et al., 2022).
EOS scheduling has become the most troubling problem
for management agencies given that the numbers of
EOSs and tasks increase over the years.

The EOS scheduling problem is a combinational opti-
mization problem that selects and arranges appropriate
EOS tasks given a task set and certain constraints with
the objective of maximizing task profits. A general
modeling and optimization technique that can address
different EOS scheduling problems is necessary because
the EOSs of a management agency often differ in types
and constraints. Otherwise, different EOS scheduling
problems should be independently modeled and optimized
in different systems, resulting in a “one satellite, one
system” phenomenon. For example, China Center for
Resources Satellite Data and Application has many types
of EOSs, such as “Ziyuan”, “Gaofen”, and “Shijian”, and
the agency must operate a mass of systems every day to
independently schedule these EOSs, thereby increasing
the workload and restricting the advantages of multi-EOS
collaboration.

Although a number of modeling and optimization tech-
niques have been developed for EOS scheduling prob-
lems, few of them show good generality for real-world
applications mostly due to 1) over-simplified modeling of
EOS scheduling problems and 2) seldom general-purpose
development of EOS scheduling models and algorithms.
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First, many models in previous studies were over-simpli-
fied to classical combinational optimization models;
hence, they are unable to completely describe real-world
EOS scheduling problems. For example, inspired by the
vehicle routing problem (VRP) and orienteering problem
(OP), Cordeau and Laporte (2005) and Peng et al. (2019;
2020) modeled the EOSs, targets, and their visible time
windows (VTWs) as the vehicle (visitor), cities (vertices),
and time windows in the VRP (OP), respectively.
Inspired by the job-shop scheduling problem (JSP), Xiao
et al. (2019) modeled the tasks and EOSs as the jobs and
machines in the JSP, respectively. Although the VRP, OP,
and JSP models can describe the EOS scheduling problems
in an easy-to-understand manner, some simplifications in
those models were overused and can hardly fit real-world
applications. Those models simplified the decision
process in real-world EOS scheduling problems; typically,
only considered the EOS imaging scheduling but ignored,
greatly simplified, or separately considered the downlink
scheduling. The EOS imaging scheduling and downlink
scheduling are equally important and highly coupled, and
they must be simultaneously modeled. In addition, previous
models often over-simplified real-world constraints.
Although some simplifications are commonly used in
many combinational optimization problems, real-world
EOS scheduling problems are always strictly constrained;
one-second time or one-byte data that violate the
constraints are not allowed at all. Some well-designed
and outperforming EOS scheduling algorithms cannot be
transplanted or engineered for real-world use due to these
over-simplifications. For example, Peng et al. (2019)
proposed a dynamic programming (DP)-based local
search algorithm, but the operators were designed follow-
ing the first-in-first-out (FIFO) principle of an OP model
that only described the EOS imaging scheduling with a
few constraints. Peng et al. (2020) also proposed an exact
algorithm but could only address the further simplified
single-orbit EOS scheduling. In fact, the studied and
many other related EOSs are still scheduled by their orig-
inal systems without the proposed state-of-the-art algo-
rithms. Therefore, despite that the previous studies
brought many novel ideas, much further effort is still
required to overcome the over-simplifications to promote
model and algorithm applications to real-world EOS
scheduling problems.

The second factor that limits the generality of previous
modeling and optimization techniques for EOS scheduling
is the neglect of the common characteristics among EOS
scheduling problems, aiming for special cases rather than
for general purpose. In addition to the VRP, OP, and JSP
models mentioned above, some researchers modeled the
EOS scheduling as the constraint satisfaction problem
(CSP). For example, Jang et al. (2013), Wu et al. (2013),
and Wang et al. (2020) viewed the VTWs of each task as
the selectable resources and used decision variables to
determine the selected VIW per task. Furthermore,

different models were raised to address agile EOS
scheduling, where the task begin time within the selected
VTW should be determined given that the VTW becomes
much longer than the time required per task. For example,
Lemaitre et al. (2000), Liu et al. (2017), Chu et al. (2017),
and Mok et al. (2019) determined this additional begin
time as early as possible. Nag et al. (2018), He et al.
(2018), Zhu et al. (2019), Valicka et al. (2019), and Du
et al. (2020) adopted other decision variables or
discretized the VTW into shorter ones that match the time
required so that the sub-VTW selection can finally deter-
mine the begin time. A similarity can also be observed
among various modeling methods in previous studies; the
modeling was performed on the basis of EOS-task VTWs.
The VTWs not only function as constraints, but also
serve as important resources that represent the opportuni-
ties to execute tasks for certain EOSs in certain orbits.
Thereby, with the resource characteristics of the VITWs, a
general approach to support different real-world EOS
scheduling modeling can be sought.

In addition, for long-term EOS management, some
other real-world requirements and expectations from
EOS management agencies should be considered. For
example, the constraints with respect to a certain EOS
may be changed over time, and new optimization algo-
rithms may be developed. Certainly, using only one algo-
rithm throughout the 10-year or 20-year lifetime of an
EOS is impractical. Thus, an ideal modeling and opti-
mization technique for real-world EOS scheduling prob-
lems should be appropriately structured to update
constraints and algorithms. An algorithm library that
continually absorbs the algorithms for EOS scheduling
also makes sense; it could contribute to incremental algo-
rithm studies and feasible algorithm applications (Du
et al., 2022). Lastly, recent developments in computer
hardware have motivated many algorithmic studies in a
parallel and competitive manner, where computing
resources can be fully used. For EOS management agen-
cies, the use of algorithms that leave many computer
threads unused in real-world applications is ineffective.

With these motivations, a general modeling and opti-
mization technique for real-world EOS scheduling prob-
lems is developed. In this technique, a framework that
decouples the modeling, constraints, and optimization of
EOS scheduling problems is built, and the relationships
among them are explained. Then, the EOS scheduling
problems are appropriately modeled in a general manner,
where the executable opportunity (EO), another format of
the VTW per EOS operation, is viewed as a selectable
resource to be optimized. On this basis, 10 types of opti-
mization algorithms, as well as a parallel competitive
memetic algorithm (PC-MA), are developed. The tech-
nique is then examined on four EOS scheduling cases,
including three simplified benchmarks and a real-world
dataset exampled by a famous four-EOS Chinese
commercial constellation called SuperView-1. The
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developed technique shows good performance in applica-
bility and effectiveness in these case studies.

2 Framework

Prior to structuring the framework of the general modeling
and optimization technique for EOS scheduling problems,
a premise about the role of this technique should be
claimed. The acknowledged four components of a schedu-
ling problem, including tasks, resources, constraints, and
the objective, should be provided because the technique
is a special tool only for scheduling, as shown in Fig. 1.
Other issues that occur in EOS management, such as task
generation and resource provision, are not studied here.

| Requirement collection |

v v
| Tasks generation | ‘ EOS resources provision |
I I
v
| Constraints and objective determination |
¥

EOS scheduling with the
general modeling and optimization technique
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| Instruction compilation of scheduling results |

¥

| Instruction upload to EOSs |

Fig. 1 Role of the general modeling and optimization technique
in a brief EOS management flow.
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In other words, the data inputs of the general modeling
and optimization technique must contain those components
of an EOS scheduling problem, and the outputs are the
organized tasks and resources that satisfy the constraints
with the optimized objective as much as possible.

To appropriately address the general modeling and
optimization technique for EOS scheduling problems,
an overall framework that decouples the modeling,
constraints, and optimization is structured, as shown in
Fig. 2. Contrary to the integrated organization in previous
studies and engineering systems, the modeling,
constraints, and optimization of EOS scheduling problems
are independently organized here. More details are
explained as follows.

* Modeling. With the inputs of an EOS scheduling
problem, this process appropriately formats the real-
world problem data and determines the decision variables
for combinational optimization. The real-world problem
contains a large amount of data about tasks and resources
(such as EOSs, payloads, orbits, and tracking stations),
thereby causing difficulties in the modeling process. As
shown in Fig. 2, the inputted tasks and resources are
generally modeled with appropriate decision variables,
where all the data are instantiated and interlinked. This
process presents real-world EOS scheduling solutions
with instanced data and will be introduced in Section 3.1.
Furthermore, the solutions are encoded into a numerical
format, which will be introduced in Section 3.2. It can be
seen in the figure that the numerical solution presentation
and neighborhood structures function as the interfaces
from real-world problem data to freely access data in the
optimization loop.
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Fig. 2 Framework of the general modeling and optimization technique for EOS scheduling problems.
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* Constraints. The constraints report the feasibility and
objective of a given solution; they are the important criteria
for optimization algorithms. As shown in Section 3.3,
some constraints can be preprocessed, such as the visibil-
ity-related EOS limits and user requirements. If any
resource certainly violates the constraints when selected,
then it is directly filtered and never selected. In addition,
non-preprocessable constraints affected by different
combinations of tasks and resources remain in optimiza-
tion. Hence, an interface that reports these constraints is
provided here using the model that has free access to the
problem data. The objective function is also viewed as a
constraint. The objective function can be viewed as the
softest one that must be satisfied as much as possible
given that the constraints may have different priorities,
such as the hard ones that must be satisfied and some soft
ones that can be violated in certain degrees.

» Optimization algorithms. Based on the solution and
neighborhood structures, an optimization algorithm can
modify (the values of) decision variables and reproduce
neighboring solutions. This approach can evaluate the
reproduction and work iteratively with feedback from the
constraints and objective function. Thus, as shown in
Fig. 2, a closed optimization loop is structured in the
decoupled framework. An algorithm library that includes
10 types of algorithms is presented in Section 4.2, pro-
viding convenience to EOS management agencies. In
addition, a PC-MA is designed to further strengthen the
optimization ability, and it is introduced in Section 4.3.

With this framework, the decoupled modeling,
constraints, and optimization algorithms can be flexibly
configured as EOS management agencies, addressing
various types of EOS scheduling problems that differ in
EOS types and constraints in a general manner.

3 Modeling method

The modeling method determines the applicability as an
important methodology in the decoupled framework. In
this section, EOS scheduling problems are described in a
general manner initially. Then, the model encoding with
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appropriate decision variables is provided. Moreover, real-
world constraints that should be considered are introduced
and cataloged.

3.1 Problem description

The EOS scheduling problem is a type of combinational
optimization problem, which selects and arranges appro-
priate EOS tasks given a task set and certain constraints
with the objective of maximizing task profits. In this
regard, the first step of problem description is to describe
the EOS tasks.

To satisfy the real-world requirements in EOS schedul-
ing, an EOS task is described into three general opera-
tions, as shown in Fig. 3: 1) The imaging operation,
which aims to image the required target by the payload(s)
equipped on the EOS. This operation is singled out
because it can be completed by an EOS independently,
without simultaneous data communication with ground
stations. 2) The downlink operation, which aims to build
simultaneous data communication between the EOS and
tracking stations, including ground-based stations and the
relay satellites that function as space-based stations.
3) The memory-erasing operation, which is required by
many real-world EOSs to erase the memory prior to the
imaging operation required by common instruction
templates. The downlink and memory-erasing operations
were seldom considered in previous studies, but they are
relatively important in real-world EOS scheduling and
are fully considered in this study.

Different EOS working modes can be deduced with the
combination of the three operations. For example, in
view of an EOS and tracking station, different operation
combinations and the corresponding EOS working modes
are shown in Figs. 4(a) and 4(b), respectively. These
working modes result in different downlink durations,
constraints, or objectives, but they were seldom distin-
guished in previous studies.

The advantage of this description can be further
observed in the following relationship among the real-
world problem data in EOS scheduling, as shown in
Fig. 5. In this figure, all the problem data are divided into
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Fig. 3 Generally described EOS operations per task in EOS scheduling problems.
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(b) Timeline view of a tracking station.
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Fig. 5 Relationship among real-world problem data in EOS scheduling problems.

a task class and a resource class, the two components of a
scheduling problem.

* Task class. The described imaging, downlink, and
memory-erasing operations are involved. Then, some
constant properties, such as the required imaging time
and memory occupation per task, are also involved and
remain unchanged throughout the scheduling process.
Some other variables also depend on the constant proper-
ties, as well as the combinations of imaging and downlink
operations, such as the EOS working mode, task imaging
begin time, and downlink duration. These variables are
updated by the given functions and used when required in
the scheduling process.

* Resource class. The payload is the most direct
resource that supports executing EOS tasks, such as the
camera, battery, memory, and antenna. Then, the EOS
and tracking station are required to carry those payloads,
and they are cataloged to the platform class. The VIW
usually functioned as an abstract resource in previous
studies. Thus, a time window class that instantiates a time
slot, including the imaging and downlink VTW, the EOS
orbit that provides these VITWs, and the date when the
scheduling is performed, is provided. Nonetheless, the
begin time of an imaging or downlink operation within its
VTW cannot be determined because the VIW becomes
much longer. Herein, the VIW is further discretized into
sub-VTWs that exactly match an imaging or downlink
operation. For example, given a five-second imaging
operation with a ten-second VTW, the VTW can be

discretized into six five-second sub-VTWs, as shown in
Fig. 6. In this study, the discretized sub-VTW is called
EO.
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| EO 5 |
| EO 6 |

Pls»%lsﬂ+ls+ls*‘+ls+‘<7 Ss 4>‘

Fig. 6 Discretization from a ten-second VIW into the five-
second EOs.

In Fig. 5, a single-selection relationship between the
imaging, downlink, or memory-erasing operation and its
EOs appears. Once an EO is selected, all real-world prob-
lem data, such as the VITW that contains this EO, the
EOS that provides this VTW, and the payloads carried by
this EOS, can thereby be accessed. In this manner, the
EO is viewed as a selectable resource per EOS operation
so that the real-world EOS scheduling is generally
modeled as a combinational optimization problem.
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3.2 Model encoding

With this general description and problem data relation-
ship, the next step is to appropriately present and encode
an EOS scheduling solution. The solution presentation
should be clear to access problem data and beneficial for
algorithmic developments. In this subsection, the model
encoding is explained by a three-task EOS scheduling
example, as shown in Fig. 7.

The selected EO performs as the instanced decision
variable in the EOS scheduling problem because the
problem data relationship has shown selectable EOs for
the imaging, downlink, and memory-erasing operations
per task. The three-task example shown in Fig. 7(a) indi-
cates two and three selectable EOs for the imaging and
downlink operations per task, respectively. Here, Task 1
selects the first EOs (colored in blue) for its imaging and
downlink operations and erases the memory prior to
imaging. Task 2 selects the second EOs for imaging and
downlink and the null for memory-erasing (will not erase
the memory). Task 3 does not select any EO for imaging
or downlink and does not erase the memory. In this
approach, an EOS scheduling solution (regardless of
constraints here) can be clearly presented, and all the real-
world problem data can be accessed from the selected
EOs given the data relationship in Fig. 5.

Moreover, the instanced model presentation can be
encoded by the normalized numbers ranging from 0 to 1,
as shown in Fig. 7(b). Each [0, 1) number in the figure
indicates a normalized index (from 0) of the selected EO
from all the EOs and a null element. For example, 0/3
and 1/3 represent the first and second in three (two EOs
and a null element), respectively, and 0/4 and 1/4 indicate
the first and second in four (three EOs and a null
element), respectively. If the number is set to 1, then the
null element, but none of the EO, is selected. In this
approach, neighboring solutions can be easily produced
via a [0, 1) random-number-generation function in the
programming procedure; hence, those [0, 1) numbers can
effectively function as numerical decision variables and

(@) Imaging operations Downlink operations

easily encoded, cloned, and modified by algorithms in the
optimization process.

In general, an n-task EOS scheduling solution can be
simply represented by an n % 3 decision matrix D = [dj],
where:

* d; is the first decision variable that determines the [0, 1)
normalized index of the selected EO for the imaging
operation of the ith task.

* d; is the second decision variable that determines the
[0, 1) normalized index of the selected EO for the downlink
operation of the ith task.

* d;3 1s the third decision variable that determines the [0, 1)
normalized index of the selected EO for the memory-
erasing operation of the ith task.

Suppose that m; EOs are available for the imaging,
downlink, and memory-erasing operations of the ith task
when j equals 1, 2, and 3, respectively. The [0, 1) normal-
ization and denormalization between the dj; and the EO
selection index x; (ranging from 0 to my;) can be
expressed by Egs. (1) and (2), respectively. Herein, the
normalization unifies the ranges of different decision
variables so that the proposed general-purpose algorithms
and neighborhood operator can be conveniently
performed without out-of-range risks. In this approach,
decision matrix D with [0, 1) variables can work as an
interface between the optimization model and algorithms
so that they can be decoupled appropriately.

X;

d.= —7
Yomy+ 1

I<ign, j=1,2,3, (1)

x; = floor(d; - (m;+1)), 1<i<n, j=1,2,3. (2

The model encoding in this subsection shows how to
program the general modeling for real-world EOS
scheduling problems. Notably, in cases of the over-
simplified EOS scheduling problems that only consider
imaging operations in previous studies, no downlink or
memory-erasing operation exists; decision variables dj
and dj; can be fixed to 1 and never work. The solution

Memory-erasing operations

EO (b)

0/3 0/4 0/2

Memory-erasing
EO D=[d;]= | 13 1/4 12

2/3 3/4 172
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Fig. 7 Model encoding example for real-world EOS scheduling problems. (a) Instanced decision variable presentation. (b) Numerical

decision variable presentation by a decision matrix.
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presented here is not always feasible; hence, the
constraints should report the feasibility and objective
value of a given solution and offer important criteria for
optimization algorithms.

3.3 Constraints and the objective

For EOS scheduling problems, the constraints function as
areporter between the solution and optimization algorithms
with the decoupled framework for the general modeling
and technique. Real-world EOS scheduling problems
have various demands, requirements, limits, and prefer-
ences from EOS management agencies and users, which
are considered in formats of constraints. For better use
and incremental management of the various constraints,
an elementary catalog is provided and explained in this
subsection, as shown in Table 1.

Initially, the constraints are divided into the preprocess-
able and non-preprocessable catalogs to perform appro-
priate preprocessing prior to optimization. As shown in
the model encoding, the preprocessing serves to filter the
EOs that certainly violate the constraints, which should
always be satisfied in optimization. Hereby, only the visi-
bility-related constraints that affect the EOs are prepro-
cessable. The visibility-related constraints also differ
remarkably, and the table shows some typical examples.
In real-world applications, EOS users often make require-
ments in real-world problems; for example, the task must
be completed in a time slot by the required EOSs or
tracking stations and in a special imaging angle. They can
still be viewed as visibility-related constraints and can
therefore be preprocessed by filtering the EOs. Here,
according to the definition of the EO in Section 3.1, the
selected EOs for imaging, downlink, or memory-erasing
operations certainly satisfy the visibility constraint. The
[0, 1) normalized decision variable dj; in Section 3.2 can
appropriately determine the EO selection. Thus, this

Table 1 Elementary constraint catalog of EOS scheduling problems

constraint can be addressed as long as decision variable
d;; ranges according to Constraint (3) as follows:

0<d;<1, 1<i<n, j=1,23. 3)

The remaining constraints cannot be preprocessed
because they will be affected by different EO combina-
tions. Hence, they determine the feasibility of a given
solution and offer important criteria for optimization
algorithms. As shown in Table 1, these constraints are
further divided into logicality, sequence, transition,
memory, and EOS protection, according to the real-world
practice in EOS scheduling problems. These constraints
are applicable to most real-world EOSs. However, some
differences are observed in special cases. More details
about the listed constraints can be accessed from the
benchmark of a famous four-EOS Chinese commercial
constellation called SuperView-1, which is discussed in
Section 5.

A satellite scheduling solution can be judged as feasible
or not according to the constraints listed in the table. As
shown in Fig. 8, with the input of decision matrix D = [d;]
that represents a scheduling solution of satellite imaging,
downlink, and memory-erasing operations, the constraint
check module initially works. It checks the non-prepro-
cessable constraints shown in Table 1 one by one and
outputs whether all the constraints are satisfied (true or
false). If some constraints are unsatisfied in this proce-
dure, then the conflicting tasks related to the unsatisfied
constraints are output, thereby assisting in the deconflicting
operation required by certain algorithms. In addition, an
objective calculation module works on decision matrix D.
It calculates the objective function value of the scheduling
solution to quantitatively evaluate its performance. Here,
the objective function of the satellite scheduling problem
includes the total profits of the successfully scheduled
tasks in the solution represented by D, similar to those in
many combinational optimization problems.

Explanation

The VTWs caused by EOS-task locations

The VTWs caused by EOS-task frequential matches

The VTWs caused by the abilities of EOSs, tracking stations, and their payloads
The VTWs caused by task requirements

The VTWs caused by other factors (sun, clouds, and latitudes)

An imaging or downlink operation can be executed once at most

An imaging and downlink operation must be paired per task
A downlink operation under certain EOS working modes must be executed within the VTW

Some imaging and downlink operations must be executed in ordered sequences

Transition time is required between the executed operations per EOS

Transition time is required between the executed operations per tracking station
Transition time is required between the imaging and downlink operations per task

Catalog Sub-catalog

Preprocessable constraints Visibility

Non-preprocessable constraints Logicality
Sequence
Transition
Memory

The stored data in the EOS memory cannot exceed the limit

The stored data must be downloaded prior to memory-erasing

EOS protection

Working frequency and time limits for EOS cameras per orbit and/or day

Working frequency and time limits for EOS antennas per orbit and/or day
Maneuver frequency and time limits for EOSs per orbit and/or day
Continuous maneuver frequency and time limits for EOSs per orbit
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Fig. 8 Procedure of the model that judges the satellite schedul-
ing solution as feasible or not and evaluates its objective value.

4 Algorithm library

With the decoupled modeling and optimization frame-
work, the algorithm library is built to collect well-known
and outperforming algorithms that can address benchmark
and real-world cases. In this section, the general operators
that reproduce neighboring solutions are provided. Then,
10 types of commonly used algorithms are collected. In
addition, a PC-MA that hybridizes local search and
evolutionary algorithm (EA) metaheuristics is designed.

4.1 Neighborhoods

The algorithmic design has various types of neighborhood
structures and operators, but they often lack the generality
in common use for EOS scheduling problems. Hence, the
type of operator required should be determined. On the
one hand, it must match the decision matrix as shown in
the general modeling manner. On the other hand, it
should function as a component to construct any complex
operator further required for the algorithmic development.
In this regard, two elementary operators are provided for
local search and EAs, as shown in Figs. 9(a) and 9(b),
respectively.

* Move operator produces a [0, 1] random number and
replaces a (random) number in the decision matrix. The
produced number can always be denormalized and
rounded to an EO selection index for the imaging, down-
link, and memory-erasing operations per task, as shown
in Eq. (2). Notably, if two near numbers in a move operator
are denormalized to the same index, then the operator is
re-performed. In addition, it can function as the single-
point mutation operator in an EA. Furthermore, any solu-
tion can be reproduced from another with a set of move
operators; hence, this operator is qualified for complex
algorithmic development.

@  [os5 033 1 | (05 033 1 |
pD=| 1 067 o0 I:> D= 1 033 o0
0 0 0 0 0 0

® o5 033 1| (05 o067 1]
D= 1 067 0 l{b D,=| 05 033 0
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D’=| 05 033 0 D/=| 1 067 0
0 0 0 05 1 0

Fig. 9 Operators to reproduce neighboring solutions. (a) Move
operator. (b) Crossover operator.

* Crossover operator swaps a (random) section of
matched row vectors in two decision matrices and repro-
duces two new matrices. This operator is special for EAs,
which exchanges the EO selection of some tasks. It can
also be viewed as a set of designated move operators.
Four independent solutions are obtained after this opera-
tor, including two parents and two offspring, and the
selection(s) are determined by the metaheuristics or rules
in algorithms.

Here, the move and crossover operators are likely to
generate infeasible solutions, especially in the satellite
scheduling problems with strong constrains. When a
move operation on the current solution generates a lower-
objective or infeasible solution, the solution is abandoned
and a new move operation is performed on the last solu-
tion. When a crossover operator generates infeasible solu-
tions, a simple deconflicting operator is performed on the
solutions, canceling conflicting tasks in the priority-
ascending order. Many lower-objective solutions are
obtained by the deconflicting operation and the move
operation, and the roulette operation is used for solution
selection.

4.2 Common algorithms

Despite that many outperforming algorithms have been
developed for EOS scheduling problems, few of them
show good generality for real-world applications because
their specific operators, neighborhoods, or solution
presentations are affected by over-simplifications. In fact,
engineering practice shows that some simple local search
and EA metaheuristics, such as Tabu search, simulated
annealing (SA), and genetic algorithm (GA), can solve
the real-world problems effectively. Therefore, with the
objectives of easy use and real-world application of the
proposed general modeling and optimization technique,
three catalogs including 10 common algorithms based on
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general operators are in this subsection.

* Rules: First-in-first-service that selects the first EOs
of imaging and downlink operations per task that satisfy
the constraints. In addition, the EOS memory is not
erased until the related constraints are violated. It is a
common and easy-to-implement algorithm used in real-
world EOS scheduling systems, and it is collected into
the library initially and examined in experiments.

* Local search algorithms: 1) Hill climbing, which
accepts non-decreasing solutions once found. 2) Tabu
search, which runs hill climbing in inner loops and
records local optima with an FIFO Tabu list for solution
filter and escape. 3) SA, which runs hill climbing and
accepts decreasing solutions based on an annealing prob-
ability. 4) Late acceptance (LA), which runs hill climbing
and accepts the solutions that outperform certain history
solutions. 5) Tabu SA (TSA), which adds a Tabu list to
the SA for solution filter. 6) Tabu LA (TLA), which adds
a Tabu list to the LA for solution filter.

* EAs: 1) GA, which iteratively performs crossover
and mutation operators among the solution population
and reserves better offspring for the next generation.
2) Tabu GA (TGA), which adds a Tabu list to the GA for
offspring filter per generation. 3) Annealing GA (AGA),
which adds an annealing probability to the GA for
offspring filter per generation.

These algorithms are well-known; thus, their pseudocode
is not explained here. Any solution that violates the
constraints cannot be accepted in these algorithms, and
no other special or problem-dependent operator is
designed. Among these algorithms, the first-in-first-
service rule, TLA, and AGA play as competitors in the
case studies in Section 5.

4.3 Parallel competitive memetic algorithm

Although some well-known and easy-to-use algorithms
have been provided, common local search and EAs may
underperform in terms of exploration and exploitation,
respectively. A high-performance algorithm that can
address real-world EOS scheduling problems is also
required to further strengthen the optimization ability of
the proposed general modeling and optimization tech-
nique.

The algorithm hybridization often works effectively,
and the advanced computer hardware motivates algorith-
mic developments based on parallelism and competition.
Thus, a PC-MA is adopted in this subsection. As shown
in Fig. 10, parallelism, competition, and evolution are the
keywords in this algorithm, and the flow chart that
matches these keywords is explained as follows.

* Input and initialization: Given the required parame-
ters, the main computer thread is enabled, and an initial
population presented by decision matrices is generated.
The best solutions in the population are inputted into the
follow-up local search algorithms.

* Inner phase 1: Parallelism: In a parallel manner,
each thread probably (randomly at first) runs a local
search algorithm based on its probability, and the recently
obtained solutions are recorded. After the local search
optimization, those threads are suspended, and they amal-
gamate their recently obtained solutions into a population
set.

* Inner phase 2: Competition: Local search algorithms
are graded according to the number of solutions in the
population they obtained. When more solutions are
obtained by the algorithms, their grades are high, and the
probability that they will be used in the next-round paral-
lelism is great.

* Inner phase 3: Evolution: Based on the obtained
population, the evolution is performed to explore better
solutions. Subsequently, the reproduced best solutions are
selected and re-inputted into the local search algorithms
in the next-round parallelism.

* Output: When the total computing time is satisfied,
the best-found solution is output.

The advantages of the algorithm can also be stated in
terms of its three keywords.

The parallelism leads to optimization acceleration and
diversity. On the one hand, parallel algorithms can
certainly perform much more searching within the same
running time. On the other hand, those algorithms obtain
diverse solutions in different searching trajectories. The
diversity is also required by the follow-up evolution strat-
egy. In addition, parallelism results in an easy-to-expand
algorithm, and a new competitor that adopts other meta-
heuristics, operators, or parameters can easily join by
enabling a new thread. In addition to other software-
based acceleration techniques, parallelism is a hardware-
based approach that can effectively use the algorithm.
The algorithm can offer good potentials because computing
resources become easily accessible in the current society
and in all types of large scheduling systems.

The competition leads to adaptivity because the outper-
forming algorithms and operators are selected and
performed more frequently over time, whereas the under-
performing ones are eliminated.

The evolution strengthens the exploration ability. Local
search (Tabu search and SA) and EAs (GA and particle
swarm optimization) often outperform in exploitation and
exploration, respectively. Thus, the evolution performed
along with local search optimization assists in escaping
from local optima and explores a large solution space.
Different from the commonly used memetic algorithms
(MAs) that originate from Moscato (1989), which often
adopt EAs to generate solutions in the main loop and
perform local search to improve them, the proposed MA
adopts local search to generate solutions in the main loop
and performs EAs to improve them. In other words,
it combines the EA and local search but still maintains
the local search optimization ability in the strictly
constrained solution space and the local search
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Fig. 10 Flow chart of the PC-MA.

computational complexity. Therefore, it can not only
extend the advantages of traditional MAs, but also show
better performance in addressing the strictly constrained
and time-limited EOS scheduling problems by more
general local search loops.

The algorithm library, which includes 10 types of
common algorithms and the PC-MA, is built in the
proposed general modeling and optimization technique.
In the next section, the technique is examined on different
EOS scheduling cases, and the algorithm performance is
shown.

5 Case studies

Four different cases, including a new benchmark, are
introduced in this section to examine the applicability and
effectiveness of the general modeling and optimization
technique for EOS scheduling problems in this study. In
comparison with state-of-the-art algorithms, the experi-
mental results of these cases are then presented and
discussed.

5.1 Experiment setup
Four experiment cases that differ in EOSs, constraints,
characteristics, and problem size are provided as follows.

* Case 1: A simplified EOS scheduling problem that
only considers EOS imaging operations with time-depen-
dent transition time (Liu et al., 2017). In this case, the
simplification indicates that only imaging operations are
required to be scheduled and only one EOS is involved.
This case is highlighted in two aspects: 1) the transition
time between two EOS operations is time-dependent, and
2) the VTW is much longer than the time required per
task. Thus, additional begin time determination is
required. As a result, exact algorithms, such as linear
programming, were proven ineffective. Thus, Liu et al.
(2017) designed an adaptive large neighborhood search
(ALNS) algorithm. Herein, only the subcases about
regional (rather than worldwide) tasks are used because
the worldwide tasks were proven to be easily scheduled
in this case.

* Case 2: An extension of Case 1 with an additional
time-dependent objective function. To address this
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problem, Peng et al. (2019) designed a bidirectional
dynamic programming-based iterated local search (BDP-
ILS) algorithm, where the iterated local search (ILS) and
DP optimize the VITW and the begin time per task,
respectively. Although Peng et al. (2019) discussed the
importance of this time-dependent objective due to imaging
qualities, some real-world EOSs, such as SuperView-1,
would rather view the imaging qualities as a type of visi-
bility constraint. Therefore, the time-dependent objective
is used only here and not considered in the following real-
world experiments.

* Case 3: A well-known satellite range scheduling
benchmark (Air Force Office of Scientific Research,
2003) provided by US Air Force Satellite Control
Network (AFSCN). It can also be viewed as an EOS
scheduling problem that only considers downlink opera-
tions. In this problem, on the one hand, the VTW of a low-
orbit satellite equals the time required per task; on the
other hand, that of a high-orbit satellite is much longer,
and thus, additional begin time determination is required.
To address this problem, Luo et al. (2017) designed a
quick conflict-resolution heuristic and obtained the best-
known results in this benchmark.

* Case 4: A real-world EOS scheduling problem that
considers imaging, downlink, and memory-erasing opera-
tions with differentiated constraints. Different from the
simplified data, this case was provided by the real-world
management agencies with the following real-world char-
acteristics: 1) real data of a famous four-EOS Chinese
commercial constellation called SuperView-1, 2) downlink
and memory-erasing requirements that were often over-
simplified in previous studies, 3) complicated constraints
that differ in EOSs and tasks, and 4) subcases for single-
EOS, multi-EOS, single-day, and multi-day. The dataset
was provided by the SuperView-1 management agency
for public studies. It can be accessed at github.com/
duyonghaol5/Benchmark-for-SuperView-1.git, ~ where
more constraint details are also available.

As shown in Table 2, Cases 1 and 2 only consider
satellite imaging, and Case 3 only considers the downlink.
In other words, Cases 1-3 simplify the real-world satellite
scheduling problem (similar to Case 4) because they
ignore the imaging or downlink operation. Thus, when
applying the decision model proposed in Section 3.1 to
Cases 1-3, the decision variable that determines the
ignored imaging, downlink, or memory-erasing operation
should be disused or set constantly 0.

Table 2 Four EOS scheduling cases to be studied

705

With these cases, the proposed general modeling and
optimization technique is examined in comparison with
the state-of-the-art algorithms in the next subsection. A
four-thread PC-MA that runs Tabu search, SA, LA, and
TLA was used. Moreover, three competitive algorithms
in the algorithm library were selected for experiments,
including the first-in-first-service (rule), AGA, and TLA.
The TLA and AGA were selected to show intensive
comparison on local search and evolutionary abilities,
respectively, due to the hybridization characteristic of
local search and EAs in MA.

The experiments were conducted by Java 1.8.0, using
an Intel (R) Core (TM) 17-7600U CPU at 2.80 GHz on
Windows 10 with 8 GB RAM and four threads. The Tabu
and late length in those algorithms were set to 10% and
100% of the task number per subcase, respectively. The
selection and mutation probabilities in the evolution were
set to 70% and 30%, respectively. The evolution in the
PC-MA was performed every 12 seconds. All experiments
were run 10 times except for those using the rule; the
average results are listed in the following tables. The
computing time for Cases 1 and 2 was set identical to that
in the literature. The time for Case 3 was set to 1 minute,
and that for Case 4 was set to 1 minute per EOS per day.
The performance standard to compare different algorithms
in each subcase is their highest average value obtained
(marked in bold in the table). However, in each case, the
performance standard to compare algorithms is the num-
ber of the highest solutions obtained among subcases.

5.2 Experimental results

The experimental results of Case 1 are presented in
Table 3, where the best results among the algorithms are
marked in bold. The table shows that the PC-MA outper-
forms the state-of-the-art ALNS (Liu et al., 2017) in all
subcases, especially when the task number is greater than
200. In addition, the TLA shows good performance, but
the AGA does not work effectively. The underperformance
of the AGA should be attributed to the common
crossover operators that often violate the constraints in
EOS scheduling problems within limited computing time.

Hereby, the general modeling and optimization tech-
nique developed in this study is applicable and effective
in addressing this problem. ALNS attempted to consider
the begin time within the VTW to be as early as possible
by iterative constraint checking to address the issue of a

Case EOS operations State-of-the-art Task number
Case 1 Imaging ALNS (Liu et al., 2017) 50-400
Case 2 Imaging BDP-ILS (Peng et al., 2019) 100-600
Case 3 Downlink Conlflict-resolution heuristic (Luo et al., 2017) 297-322
Case 4 Imaging, downlink, and memory-erasing Seldom studied 56-1267
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Table 3 Experimental results of Case 1

Subcase Rule AGA TLA PC-MA ALNS
50 270.0 270.0 270.0 270.0 269.0
100 443.0 506.2 556.5 568.8 543.0
150 575.0 661.5 767.0 781.9 716.0
200 584.0 711.2 813.6 853.0 705.0
250 753.0 843.3 951.1 1017.9 813.0
300 809.0 855.8 986.3 1061.3 749.0
350 752.0 858.1 967.4 1066.3 841.0
400 793.0 875.7 1001.4 1133.7 739.0
Outperform 1/8 1/8 1/8 8/8 0/8

longer VTW than the time required per task in this prob-
lem. However, this process could be time-consuming and
inefficient given the same computing time. In addition,
the commonly used rule underperforms, even though it is
the most easy-to-implement and understandable algorithm
with regard to human experience. Therefore, the technique
that adopts metaheuristic algorithms is necessary to
displace the traditional rules in real-world EOS scheduling
systems.

The experimental results of Case 2 are presented in
Table 4. In the table, the PC-MA outperforms the state-
of-the-art BDP-ILS (Peng et al., 2019) when the task
number is 100 or 400 and slightly underperforms when
the number is 200, 300, or 500. The BDP-ILS employs
DP to determine the begin time within the VTW per task.
Thus, it can output the optimal solution given VTWs, but
it also requires considerable time. In the same computing
time, the MA can perform many direct searches in a
parallel manner and can show competitive performance.
However, when the number reaches 600, which is relatively
large for EOS scheduling problems, the MA does not
show competitive performance. In spite of this condition,
the easy-to-use PC-MA is qualified for addressing Case 2
with a common task number. Other competitors, such as
TLA and AGA, can also solve the problem in certain
degrees, and they serve as easy-to-use tools available in
the algorithm library for the general modeling and opti-
mization technique in this study.

Table 4 Experimental results of Case 2

Subcase Rule AGA TLA PC-MA  BDP-ILS
100 291.0 420.7 489.5 494.0 491.1
200 396.0 621.2 725.7 741.4 747.6
300 409.0 671.1 811.1 833.8 854.9
400 475.0 904.1 1009.1 1060.7 1053.2
500 497.0 1012.9 1081.8 1149.9 1153.7
600 589.0 921.4 1128.2 1195.6 1260.1
Outperform 0/6 0/6 0/6 2/6 4/6

The experiment results of Case 3 are shown in Table 5.
The table shows that the PC-MA, TLA, and the state-of-
the-art conflict-resolution heuristic (Luo et al., 2017)
show similar performance in addressing this EOS range
scheduling problem. The results in the literature are the
best-known in this benchmark, and the PC-MA
approaches the best in Days 1, 2, 3, and 4 and reaches the
best in Days 5, 6, and 7. Hence, the proposed technique
presents competitive performance in addressing this
benchmark. Despite that the state-of-the-art conflict-reso-
lution heuristic can output the results in a few seconds, it
cannot show good adaptability to other EOS scheduling
problems due to its simplification, complex implementa-
tion, and special operators. Therefore, the proposed tech-
nique also outperforms in terms of applicability, which is
required in real-world EOS scheduling problems.

Table 5 Experimental results of Case 3

Subcase Rule AGA TLA PC-MA Conflict-resolution
Day 1 269.0 309.5 3132 3149 316.0

Day 2 262.0 292.6 296.1 298.6 299.0

Day 3 264.0 300.2 306.1 308.0 309.0

Day 4 265.0 306.6 3129 3152 316.0

Day 5 255.0 295.8 300.0  303.0 303.0

Day 6 239.0 287.7 291.0  294.0 294.0

Day 7 257.0 290.0 293.0 293.0 293.0
Outperform 0/7 0/7 177 3/7 77

The experiment results of Case 4 include two versions:
1) results only constrained by VTWs and transition time
given that previous studies often over-simplified other
constraints except the two, and 2) results with all real-
world constraints, as shown in Tables 6 and 7, respec-
tively. In both versions of Case 4, the PC-MA outperforms
other competitors in most subcases. Other competitors,
such as TLA and AGA, can also address this problem.
The first-in-first-service rule is one of the in-use algorithms
in the SuperView-1 scheduling system. Hence, the appli-
cation of the proposed general modeling and optimization
technique results in a considerable improvement of over
50%. In addition, by comparing Tables 6 and 7, a great
objective difference can be observed, indicating that the
most considered constraints and real-world ones lead to
relatively different results. Therefore, the importance of
real-world modeling and constraints should receive more
attention in future studies; otherwise, the well-designed
and outperforming algorithms may lose value in real-
world applications.

Furthermore, to show how the parallelism and competi-
tion work in the PC-MA, the mean grades (percent of the
solutions obtained in the population) of the used parallel
local search algorithms per 20% optimization process are
shown in Fig. 11 in terms of the largest-scale subcases in
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Table6 Experimental results of Case 4 (only with VTWs and transition
time constraints)

Table 7 Experimental results of Case 4 (with all constraints)

EOS Date Rule AGA TLA PC-MA
1 Apr. 12 110.0 1123 113.0 113.0
1 Apr. 12,13 185.0 189.2 189.8 190.0
2 Apr. 12 143.0 146.3 148.0 148.0
3 Apr. 12 55.0 55.0 55.0 55.0
4 Apr. 12 129.0 134.4 136.8 137.0
1,2,3,4 Apr. 13 331.0 337.4 344.6 3449
1,2,3,4 Apr. 14 262.0 271.3 272.0 272.0
1,2,3,4 Apr. 13, 14 593.0 603.0 614.2 616.7
1,2,3,4 Apr. 16 515.0 533.8 560.4 571.6
1,2,3,4 Apr. 17 598.0 634.5 667.3 681.0
1,2,3,4 Apr. 16, 17 1113.0 1159.7 1231.5 1246.9
Outperform 1/11 1/11 4/11 11/11
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EOS Date Rule AGA TLA PC-MA
1 Apr. 12 35.0 69.0 77.9 79.4
1 Apr. 12,13 67.0 95.6 99.8 108.4
2 Apr. 12 29.0 72.7 84.0 86.6
3 Apr. 12 30.0 47.8 51.3 533
4 Apr. 12 29.0 73.6 81.1 85.5
1,2,3,4 Apr. 13 113.0 219.2 253.9 260.4
1,2,3,4 Apr. 14 96.0 193.4 232.1 241.0
1,2,3,4 Apr. 13, 14 182.0 405.0 446.2 491.8
1,2,3,4 Apr. 16 234.0 251.7 283.6 296.2
1,2,3,4 Apr. 17 239.0 275.9 308.5 331.0
1,2,3,4 Apr. 16, 17 357.0 455.6 534.0 544.3
Outperform 0/11 0/11 0/11 11/11
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Fig. 11 Mean parallel-algorithm grades per 20% optimization process in the PC-MA. (a) Subcase 400 in Case 1. (b) Subcase 600 in
Case 2. (c) Subcase Day 1 in Case 3. (d) Subcase Apr. 16, 17 with all the constraints in Case 4.

Cases 1, 2, 3, and 4. As the figure shows, four parallel
algorithms were initially graded by 0.25 but differ
remarkably with the optimization given that the probabil-
ities of those algorithms were modified according to their

grades over time. Herein, the TLA (marked in red) often
performed well, whereas the Tabu search (marked in
black) often underperformed but still made some contri-
butions. In other words, although some algorithms cannot
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show full-time good performance, they can still assist in
exploring solutions and increasing solution diversity in
the PC-MA. Therefore, the PC-MA can show competitive
performance in comparison with the state-of-the-art algo-
rithms in different cases.

6 Discussion

After the experiments, the type of EOS scheduling tech-
nique required is discussed in this section. Previous studies
often offered a “simplified model with complicated algo-
rithms”, namely, the problem was over-simplified and
solved by a specifically designed algorithm. However,
their real-world application effects are unsatisfactory due
to the great difference between the simplified and real-
world problems. Therefore, EOS management agencies
would rather accept a “real-world model with simple
algorithms”. As a result, real-world modeling and
constraints are stressed in this study.

Another highlight of the proposed technique is the
decoupled framework for general real-world applications.
The decoupling leads to 1) system compatibility for
different EOSs, 2) integrability for multiple EOSs, and
3) extensibility for further algorithm and model update.
However, the proposed technique cannot be used to
effectively address all types of EOS scheduling problems,
but the operation-based modeling idea for EOS scheduling
can be a general-purpose approach. Hereby, in addition to
the EOS scheduling studied, the proposed general model-
ing and optimization technique can be applied to other
satellite scheduling problems, as shown in Table 8. In
fact, the real-world scheduling problems shown in
Table 8 have been addressed based on the proposed
technique.

Table 8 Ideas of modeling other satellite scheduling problems using
the proposed technique

Other satellite scheduling problem Satellite operation contained

per task

Satellite range scheduling Downlink

Relay satellite scheduling Downlink and memory-

erasing

Time synchronization scheduling of Downlink

navigation satellites
Inter-link scheduling of navigation satellites Inter-link (divided in

timeslots)

Some necessary characteristics should be involved in
the benchmark dataset for EOS scheduling studies: 1) the
reality, which ensures that the modeling and optimization
techniques for benchmarks are also applicable for real-
world use; 2) the representativeness, which reflects the
most troubling issues to EOS management agencies; and
3) the oversubscription, which raises the scheduling
necessity and difficulty in this problem. The new bench-
mark exampled by the Chinese commercial EOSs

effectively addresses these characteristics. Thus, it can
provide a good reference to future studies of EOS
scheduling problems.

7 Conclusions

General modeling and optimization techniques are
urgently required by EOS management agencies to
perform flexible, differentiated, and efficient management
of EOSs and tracking stations. However, previous tech-
niques cannot show excellent generality to be engineered
in real-world applications. In the proposed general tech-
nique, a framework that decouples the modeling,
constraints, and optimization of EOS scheduling problems
is built. Then, the EOS scheduling problems are appropri-
ately modeled in a general modeling manner. Moreover,
more than 10 types of optimization algorithms, including
a PC-MA, are developed. In cases of the simplified and
real-world EOS scheduling problems, the developed tech-
nique shows good performance in applicability and effec-
tiveness.

The contributions of this study include 1) the general
technique for modeling and optimizing real-world EOS
scheduling problems and 2) the new benchmark exampled
by real-world EOSs. With this technique, different EOSs,
such as optical, electronic, and radar EOSs, no longer
require a mess of independent scheduling systems. Future
work based on this technique includes a system develop-
ment for more than 60 EOSs. In addition to the proposed
multi-thread PC-MA, more outperforming algorithms
with satisfactory time and resource consumption will be
studied and transplanted in the technique for real-world
use.
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