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Abstract Given that group technology can reduce the
changeover time of equipment, broaden the productivity,
and enhance the flexibility of manufacturing, especially
cellular manufacturing, group scheduling problems (GSPs)
have elicited considerable attention in the academic and
industry practical literature. There are two issues to be
solved in GSPs: One is how to allocate groups into the
production cells in view of major setup times between
groups and the other is how to schedule jobs in each group.
Although a number of studies on GSPs have been
published, few integrated reviews have been conducted so
far on considered problems with different constraints and
their optimization methods. To this end, this study hopes
to shorten the gap by reviewing the development of
research and analyzing these problems. All literature is
classified according to the number of objective functions,
number of machines, and optimization algorithms. The
classical mathematical models of single-machine, permu-
tation, and distributed flowshop GSPs based on adjacent
and position-based modeling methods, respectively, are
also formulated. Last but not least, outlooks are given for
outspread problems and problem algorithms for future
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1 Introduction

In cellular manufacturing, i.e., printed circuit boards
(PCBs), different PCB types can be classified into PCB
families. In the preparing stage, chips inserted on all the
PCBs in a family are preloaded on the insertion machines
(Schaller et al., 2000). If different PCB families need a
switchover, for the new family, the number of different
chips loaded on the machines has two cases to be consid-
ered: Chips common between families were not changed
to reduce the changeover time, and chips not common
between families should be changed. Thus, the
changeover time depends on the sequence. In this context,
the scheduling problem was a sequence-dependent group/
family scheduling problem for a pure flow line in cellular
manufacturing (Mahmoodi and Dooley, 1991; Logendran,
1992; Ruben et al., 1993; Yang and Liao, 1996; Logendran
et al., 2006b).

Based on this application scene, group technology is
proposed to broaden the productivity and enhance the
flexibility of manufacturing. Especially in the assembly
of PCBs of cellular manufacturing scheduling, the sets of
products yielded by each manufacturing cell are considered
job families. This is, jobs that have the same resources or
the similarity in designing or processing are grouped into
a family, forming a new scheduling problem, called the
group scheduling problem (GSP). Owing to group tech-
nology having the advantages of efficient, low-cost
production, and simple structure, it is clearly emerging as
one of the most important manufacturing modes in
modern enterprises, including Huawei Machine Company
Ltd., Foxconn Technology Group, and Zhongtong Bus
Holding Company Ltd. (Logendran, 1992). The difference
between the traditional flowshop scheduling problems
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(FSP) and GSP is that the former only considers how to
schedule jobs in the manufacturing cells; however, the
latter has two key issues to be solved, i.e., how to allocate
groups into the production cells in view of major setup
times between groups and how to schedule jobs in each
group. Thus, GSP is more complicated in property analysis
and algorithm designing than the traditional FSPs and has
important practical and theoretical significance.

Owing to the complexity of GSP, designing efficient
scheduling algorithms to improve the competitiveness for
responding to marketable changes is essential. Thus, the
model construction of GSP and its scheduling algorithms
have been simultaneously considered in the academic
field and manufacturing. GSPs are split into four types
according to the technological process or the technological
constraints in manufacturing: Single-machine GSPs,
parallel-machine GSPs, permutation flowshop GSPs
(PFGSPs), and distributed flowshop GSPs (DFGSPs). In
addition to these four types, some literature reviews the
related GSPs or group technology in other practical appli-
cations, such as networks and reconfigurable manufactur-
ing systems (RMSs). Zhang et al. (2019) designed a
framework for the reconfigurable digital twin system, in
which a multi-mode perception sensor group is considered
in the physical layer. Li et al. (2018) introduced a real-
time decentralized management framework where recon-
figurable machines are grouped to form reconfigurable
manufacturing lines. Tang et al. (2022b) proposed a deep
reinforcement learning (RL) approach to solve RMS
scheduling. They adopted a group of deep RL agents to
find a dynamic control policy and embedded these agents
with a shared value decomposition network. For the
modeling of RMS architecture, Gu (2022) built a discrete-
time Markov chain model to perform an exact analysis
for two-stage-one-buffer systems.

For the literature survey, we consult online journal
websites, i.e., Elsevier, Taylor & Francis, and Springer,
using the corresponding keywords. A detailed search has
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been done on Web of Science and Scopus, using the
following keywords: Group technology, group flowshop
scheduling, flowshop group scheduling, job shop group
scheduling, group scheduling, and group production
scheduling. We also benefited from the recent survey of
Neufeld et al. (2016), which considers all publications
until 2015. We tried to cover all group manufacturing
scheduling studies belonging to the last decade. By
retrieving from Elsevier, Taylor & Francis, and Springer,
we find 109 articles that are closely related to GSPs.
Figure 1 gives the number of publications per year since
1990. It can be observed that the number of papers on
GSPs is relatively small before 2010 (i.e., between 1990
and 2009). Clearly, the articles about GSPs have
increased since 2010, suggesting that the problems have
become a hot topic in the related fields. Figure 2 shows
the number of papers published in each journal, and
Fig. 3 displays a word cloud diagram showing the distri-
bution of the papers in the journals. The majority of
research in group scheduling is published in International
Journal of Production Research, Computers & Industrial
Engineering, and International Journal of Production
Economics.

Although many studies on GSPs have been published,
few integrated reviews on considered problems with
different constraints and their optimization methods have
been conducted so far. To this end, first, the literature is
classified, according to the characteristic of the workshop
configuration, into two aspects, i.e., single- and parallel-
machine GSPs and flowshop GSPs (FGSPs), in which all
literature is further classified according to the number of
objective functions, the number of machines, and the
optimization algorithms. Then, the classical mathematical
models of single-machine GSPs, and permutation and
distributed FGSPs based on adjacent and position-based
modeling methods, respectively, are formulated. Finally,
we summarize and analyze them, and state several future
research trends. This study hopes to shorten the gap by
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reviewing the development of research and analyzing the
above problems.

The remainder of this paper is organized as follows.
Section 2 reviews some existing literature that solves the
related problems. In Section 3, notations, mathematical
models, and existing benchmark instances are stated.
Section 4 analyses research survey results. Section 5
gives future research trends.

2 Literature review

The GSPs existing in cellular manufacturing have been
described by many researchers. According to the
constraints of technological process, the two main cate-
gories of GSPs have been investigated respectively. In
addition, some intelligent optimization algorithms for
solving discrete scheduling problems similar to group
scheduling ones have been also elaborated, which can
help the readers refer to the intelligent optimization algo-
rithms to solve GSPs better.

2.1 Single- and parallel-machine GSPs

The following describes the definition of the classical
single GSP (Janiak and Kovalyov, 1995): n jobs are
processed on a single machine. Jobs are classified into g
groups or families according to the group technology. For
jobs from the same group, they must be processed unin-
terruptedly and no setup time exists between any two
adjacent jobs. However, a setup time exists between the
different groups (Biskup, 1999).

The single-machine group scheduling is a sub-question
of GSPs and has been widely used in industrial produc-
tion. Yazdani Sabouni and Logendran (2013a) analyzed
the application of the PCB problem and developed a
branch-and-bound algorithm based on the lower-bounding
(LB) structure. Janiak and Kovalyov (1995) defined the
quality of the solution from several aspects for the single-
machine GSP and demonstrated that the considered prob-
lem is polynomially solvable. In this work, for the tradi-
tional single-machine GSP, the processing time and setup
time are constant. In real production activities, the times
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of processing and setup always change because of the
deteriorating jobs and learning effect. According to the
case, the processing time of the linear decreasing and
increasing functions are studied, and the problem is
proved to be polynomially solvable in both cases (Wang
et al., 2007; 2009). After that, Wang and Wang (2014)
analyzed the relation between the processing time and
setup time by a time linear function. Liu et al. (2010)
studied the deteriorating jobs and grouping technology
separately, proposed the two-agent scheduling problems,
and optimized the total completion time and maximum
cost, respectively.

Considering the learning effect in actual production,
Lee and Wu (2009) proposed a novel learning model of
group scheduling. On this basis, the same problem is
expanded according to the actual production, and the
problem is proved by a solvable polynomial in this situa-
tion (Yang and Yang, 2010; Yang, 2011). Bai et al. (2012)
studied degradation and learning effects with minimal
makespan. Kuo (2012) considered learning effects in
different situations and designed two polynomial time
algorithms (PTAs) to solve different objectives. Low and
Lin (2012) considered a past-sequence-dependent (PSD)
setup time and a learning effect in the GSP of the single
machine. Pan et al. (2014) combined forgetting and learn-
ing effects and added preventive maintenance (PM) plans
for their study, and constructed a new mathematical
model. According to the characteristic of the problem, the
authors also developed the search algorithm for the
model. Zhang et al. (2018) designed some novel models
based on position-dependent processing times and

employed a polynomial-time algorithm.

Combined with the actual conditions of the factory, the
delivery date of the factory is also a factor worth consid-
ering. Li et al. (2011) added an expiration date assignment
target. Lu et al. (2014) set release date minimization as
the goal of optimization. Keshavarz et al. (2015b) studied
the single-machine scheduling problem with minimal
total weighted earliness and tardiness. In this work, a
branch-and-bound algorithm based on Lagrangian is
employed to optimize the above objective. Li and Zhao
(2015) considered the multiple due windows assignment
constraint and minimized the two objectives, i.e., the due
windows related costs and total of earliness and tardiness.
Yue et al. (2016) optimized multiple objectives such as
makespan and total weighted delay time and proposed an
improved hybrid Pareto artificial bee colony (HPABC)
algorithm. Nie et al. (2007) designed a prefix-gene ex-
pression programming algorithm to optimize the earliness
and tardiness penalties. To balance the conflict relation
between setup time decreasing and delivery satisfaction,
a variable heuristic search and look-ahead constraint
propagation method was employed (Jiang et al., 2013).

In addition to the makespan, tardiness time, and earliness
time, the resources allocated have been researched. Yan
and Zhao (2007) considered three resource consumptions
of the single-machine GSPs with continuous resources
and constructed three mathematical models. Zhu et al.
(2011) considered the learning effect and resource alloca-
tion in single-machine GSP. In this work, the functions
with learning effect and two resource allocation have
verified that the problems remain polynomially solvable.
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Huang et al. (2011) have added resource-constrained
constraints considering learning effects and degradation
and set the objective to minimize total resources and
makespan. Two different questions with different objec-
tives have also been optimized under resource constraints
(Huang and Wang, 2014). For the single-machine GSP
with deteriorating jobs, learning effect and resource allo-
cation, the solvability of the problem in polynomial time
is proved by Yin et al. (2014). Wang and Liu (2014)
considered two objectives about total weighted value of
maximum completion time and maximum cost and
adopted a PTA. Yang et al. (2008b) discussed characteri-
zations of the optimal schedules and presented the optimal
allocation methods.

These papers are summarized in Table 1. For simplifi-
cation, the two objectives of makespan and the total
completion time are abbreviated to M&TCT, the objective
of weighted sum of makespan and total resource cost is
abbreviated to WMTRC, and the weighted sum of total
completion time and total resource cost is WTCTTRC for
short. SPT and LPT refer to the smallest and longest

Table 1 Single- and parallel-machine GSPs
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normal processing time first rule, respectively.

In conclusion, the single- and parallel-machine GSPs
are solved by using the heuristic and accurate algorithms,
i.e., PTA, SPT, LPT, and branch-and-bound algorithm
based on Lagrangian, for the small instances. For the
large instances, meta-heuristic approaches, i.e., search
algorithm, genetic algorithm (GA), and HPABC, are used
most commonly to find approximately optimal solutions.
For the single- and parallel-machine GSPs, the number of
machines in stages is small. The heuristics or constructive
heuristics are considered to solve the above problems
because they require significantly lower computation
complexity and can obtain good solutions in a short time.
However, for the multi-stage or m-machine FSPs, the
single heuristic cannot effectively optimize these prob-
lems. Thus, developing intelligent optimization algorithms
is still needed.

2.2 Flowshop GSPs

The traditional FGSP is an important FSP in manufacturing

Reference Objective Algorithm Model
Single objective Multi-objective Heuristic Meta-heuristic
Wang et al. (2007) M&TCT PTA
Wang et al. (2009) Makespan v
Lee and Wu (2009) M&TCT PTA \
Liu et al. (2010) First agent: Total completion time PTA
Second agent: Maximum cost
Yang and Yang (2010) Total completion time SPT PTA v
Lietal. (2011) Cost function O(n logn) time unified v
optimization algorithm
Zhu et al. (2011) WMTRC and WTCTTRC PTA v
Huang et al. (2011) WMTRC v
Yang (2011) M&TCT SPT, LPT PTA y
Bai et al. (2012) M&TCT N
Low and Lin (2012) M&TCT SPT N
Kuo (2012) M&TCT PTA N
Yazdani Sabouni and Makespan Branch-and-bound algorithm
Logendran (2013a)
Huang and Wang (2014) Makespan and resource N
consumption
Wang and Wang (2014) Makespan v
Pan et al. (2014) Makespan Search algorithm, GA N
Wang and Liu (2014) Total weighted completion time PTA
and maximum cost
Yin et al. (2014) WMTRC PTA y
Lu et al. (2014) Makespan PTA N
Keshavarz et al. (2015b) Sum of earliness and Local search Branch-and-bound algorithm v
tardiness penalties algorithms based on Lagrangian
Yue et al. (2016) Makespan and the total weighted HPABC v
tardiness time
Zhang et al. (2018) M&TCT PTA N
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fields. FGSP has been verified to be a non-deterministic
polynomial (NP)-hard problem (Schaller et al., 2000) that
has been extensively studied by many researchers
(Yoshida et al., 1977; Schaller, 2001; Logendran et al.,
2005). The definition of FGSP is given as follows: A
collection of n jobs must pass through all predetermined
m stages. At each stage, there is a machine to handle the
upcoming job. All jobs should process on all the
machines with the same path. Before processing, each job
has its own assigned, affiliated family or group g. The
sequence-dependent setup times between different families
are considered at all machines. Notably, there is no setup
time between jobs belonging to the same family, or this
time is included in the job’s processing time. In addition,
the jobs from different families cannot be intermingled
with each other. In other words, if the affiliated family of
one job is assigned and determined, no matter what
scheduling methods and algorithms are used, the jobs of
this family cannot be separated and put into other fami-
lies. Moreover, all jobs are available at time zero and
before starting to be processed on the machine. Up to
now, the FGSP has emerged in many real-world prob-
lems, such as airplane engine blades (Schaller, 2001),
label sticker manufacturing (Li, 1997), furniture produc-
tion (Lin and Liao, 2003), bridge construction (Wilson
et al.,, 2004), electronics manufacturing (Yang et al.,
2008a), automotive paint and body shops (Gelogullari
and Logendran, 2010), metal parts punch (Salmasi et al.,
2010), and thin film transistor (TFT)-liquid crystal
display (LCD) (van der Zee, 2013). Therefore, the study
of FGSP has not only academic significance but also
practical application value.

As far as we know, at present, in the literature on solving
FGSPs, the optimization objectives of the problems are
generally classified into two types: Single- and multi-
objective optimization. Between them, more studies have
been made on optimizing single-objective FGSP, i.e.,
makespan and total flow time. Heuristics methods are
used to generate good initialization solutions based on the
rule of problems (Radharamanan, 1986; Allison, 1990;
Mahmoodi et al., 1990; Logendran and Nudtasomboon,
1991; Logendran et al., 1995; Frazier, 1996; Yang, 2002;
Salmasi and Logendran, 2008; Villadiego et al., 2012;
Bozorgirad and Logendran, 2016). However, for the
medium- and large-scale GSP, the performance of heuris-
tics is low. Thus, heuristics methods are embedded into
intelligent algorithms to enhance the quality of the initial-
ization solution. For the makespan criterion, Salmasi et al.
(2011) and Keshavarz and Salmasi (2013) constructed the
mathematical model of the FGSP, then presented a hybrid
ant colony optimization (HACO) algorithm. In these
studies, a mathematical model based on an LB technique
was adopted to estimate the property of the HACO. In
another study (Yang and Chern, 2000), a transportation
time is considered, and a PTA is employed to solve GSP
with makespan. Keshavarz et al. (2015a) adopted a

metaheuristic algorithm based on the memetic algorithm
for GSP, and the results showed that the average percent-
age difference of the proposed algorithm is 6.03%. To
decrease the costs of manufacturers, the role of the kitting
staff must be eliminated. In another work (Yazdani
Sabouni and Logendran, 2013b), the external setup time
is considered for the next board group and required to be
performed by the machine operator.

For minimizing the total flow time of job sequence,
Hajinejad et al. (2011) suggested a particle swarm opti-
mization (PSO) algorithm with an encoding scheme
based on ranked order value to convert the particle position
value to the job and group permutations. Costa et al.
(2014) proposed a hybrid metaheuristic algorithm to opti-
mize the total flowshop criterion of flowshop sequence-
dependent GSP. Later, Mendes et al. (2013) developed a
hybrid heuristic based on variable neighborhood descent
(VND) and iterated local search (ILS) metaheuristic to
solve the FGSP by minimizing the total flow time. For
the same objective, Keshavarz and Salmasi (2014) devel-
oped the hybrid genetic (HG) algorithm and LB method
according to the strong NP-hard of FGSP to find a better
scheduling sequence. Based on the traditional characteris-
tics of the FGSP, Khamseh et al. (2015) extended and
integrated this problem to be a flexible FGSP with
sequence-dependent setups. In this literature, two meta-
heuristics, i.e., simulated annealing (SA) and GA are
designed to optimize the makespan value.

Zolfaghari and Liang (1999) designed a hybrid algorithm
based on Tabu search (TS) and SA approach to solve the
group scheduling and machining speed selection prob-
lems. Next, Cho and Ahn (2003) addressed an HG algo-
rithm to solve the group scheduling with sequence-depen-
dent setup time. Liou and Liu (2010), Liou et al. (2013)
and Liou and Hsieh (2015) presented PSO and hybrid
algorithms to solve GSP, respectively. For flexible flow-
shop sequence-dependent GSP, some intelligence algo-
rithms, i.e., TS and imperialist competitive algorithm, are
developed (Logendran et al., 2006a; Karimi et al., 2011;
Shahvari et al., 2012). In recent years, as the research
progresses, more complex problems and algorithms have
been gradually proposed. Zandieh and Hashemi (2015)
considered the stochastic breakdowns’ assumptions that
make a dynamic nature in the hybrid flexible FGSP and
used the GA to optimize the expected average values of
completion times. Neufeld et al. (2015) presented two
levels of strategies, in which the job sequence is generated
with minimal inserted machine idle times rather than
makespan, and a significant solution can be obtained by
using a scheduling method. Adressi et al. (2016) simulta-
neously considered the no-wait conditions and random
breakdown of machines in flexible FGSP and proposed
the GA and SA algorithms to optimize the makespan.
Behjat and Salmasi (2017) presented a mixed integer
linear mathematical model of the no-wait FGSP and
developed some meta-heuristics based on the PSO
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algorithm and VND structures for solving this problem.
Feng et al. (2019) designed a new mixed integer linear
programming (MILP) model by combining PM and flexi-
ble FGSP. The work contains the relaxation of group
technology assumptions, the setup times between different
families, and the integration of PM and group. In addition,
for the no-wait condition, Lin and Ying (2019) used an
efficient meta-heuristic to solve the FGSP in a reasonable
computational time, and the comparison results have
demonstrated that the proposed algorithm is superior to
those of state-of-the-art meta-heuristic algorithms.

For the FGSP with round-trip transportation time
between machines, Yuan et al. (2021) proposed the MILP
model and designed a co-evolutionary discrete differential
evolution algorithm (CDDEA) to optimize the makespan
of the scheduling sequence. Subsequently, other
constraints are considered in the FGSP. Costa et al. (2020)
considered the blocking constraints and developed an
original meta-heuristic approach to solve the blocking
FGSP by minimizing the makespan. Then, Yuan et al.
(2020a) considered the blocking constraint and trans-
portation times of jobs in FGSP and constructed an MILP
model. To solve this model, the authors presented a co-
evolutionary GA (CGA). From the experimental results,
it can be seen that the constraints considered in GSP are
becoming more and more complex than those in the tradi-
tional FSPs. Furthermore, the GSP has been extended to
distributed environments. Pan et al. (2022) designed an
MILP model of the distributed FGSP, a cooperative co-
evolutionary algorithm (CCEA) with a reinitialization
scheme and a collaboration model to optimize the
makespan. The above research shows that many
constraints are gradually considered in the problem to
make it more in line with real-world conditions. For the
same DFGSP, Wang et al. (2022) constructed the mathe-
matical model and designed an effective two-stage iterated
greedy (TIG) algorithm to address the problem. In this
study, a novel reconstruction mechanism is developed to
explore the most valuable search space to save the evalu-
ation efforts. The proposed TIG shows a superior perfor-
mance by experimental results.

For minimizing the multi-objective FGSP and related
problems, many researchers have also carried out in-
depth research. Considering the hybrid flexible flowshop,
Karimi et al. (2010) presented a multi-phase method to
minimize the makespan and total weighted tardiness,
simultaneously. Zandieh and Karimi (2011) developed a
multi-population GA to search the Pareto optimal solution
to minimize the makespan and total weighted tardiness.
To increase the customers’ satisfaction and decrease the
producer’s cost, Bozorgirad and Logendran (2013) mini-
mized the total weighted tardiness, the work-in-process
(WIP) inventory, and the total weighted completion time
of the hybrid FGSP with parallel machines. Notably, all
the machines and jobs may not be available at time 0. The
MILP model of the hybrid FGSP is also designed for

small-size problems. Finally, four efficient methods
based on TS are designed for solving these problems. Qin
et al. (2016) researched the FSP with learning and group
effects based on position-dependent and optimized four
objectives: Total completion time, total weighted comple-
tion time, maximum lateness, and makespan. Feng et al.
(2018) considered the imperfect PM in the flexible FGSP
and developed a machine-level model and a system-level
model to record the machine reliability evolution and to
obtain the plan of PM, respectively. Then, for minimizing
the weighted earliness and tardiness of the FGSP,
Keshavarz et al. (2019) presented an MILP model and
designed a hybrid algorithm based on the PSO algorithm
with timing and LB method to solve the FGSP. He et al.
(2021) utilized a greedy CCEA with a greedy energy-
saving strategy and random mutation operator to optimize
the makespan, total flow time, and total energy consump-
tion, simultaneously. The above research indicates that
with the increase of optimization objectives, the problems
are becoming increasingly complex. Designing an effec-
tive evolutionary optimization algorithm can effectively
solve such problems (Tavakkoli-Moghaddam et al., 2010;
Taghavi-fard et al., 2011; Gholipour-Kanani et al., 2011;
Lu and Logendran, 2013).

Apart from the above constraints considered in GSP,
blocking, unrelated parallel machines, skilled workforce
assignment, failure rate threshold, due windows, and
limited buffers are also considered in GSP (Logendran
and Sriskandarajah, 1993; Behnamian et al., 2010; Soli-
manpur and Elmi, 2011; Costa et al., 2014; Neufeld et al.,
2015). Zheng et al. (2014) assumed that the buffers
between adjacent machines are limited and established a
mathematical model of an FGSP with limited buffers. In
this work, a hybrid differential evolution algorithm by
combining differential evolution with TS is designed to
minimize the total flow time. When the number of buffers
is zero in the FSP, the problem becomes a blocking flow-
shop scheduling one. Yuan et al. (2020b) researched a
two-stage FGSP with a special blocking constraint. Based
on the blocking feature, the authors established an MILP
model with makespan and proposed a co-evolutionary
estimation of distributed algorithm. For the unrelated
parallel machines in hybrid flowshop GSP (HFGSP), the
coding and decoding of solutions are critical. In Yuan
et al. (2022), job scheduling within each group and assign-
ment of jobs at each stage were uniformly coded. A
decoding method was designed by utilizing the strategies
of load balancing and improved first-come-first-served
methods. Song et al. (2020) studied the group scheduling
of optimal setup uncorrelated parallel machine based on a
genetic TS algorithm. Owing to natural decay and
machining wear, the equipment cannot always be in good
processing condition. The failure rate of machines should
be considered in group production scheduling model.
Liao et al. (2017) presented a hybrid maintenance strategy
that combined PM and minimal repair, in which failure
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rate threshold and unexpected failure were considered to
perform PM and minimal repair, respectively, based on
machine usage. In addition, for the dynamic GSPs, some
literature proposed robust metaheuristics.

In our review, most papers have been identified focusing
on the building models and solutions to the FGSPs. Table 2
summarizes these papers. The above literature analysis
indicates that the optimization objectives are mainly
makespan, the total flow time, and the total weighted
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tardiness. However, in practical production, we do not
only consider economic indicators, such as makespan,
tardiness time, or earliness time, but also consider envi-
ronmental protection, energy consumption, or energy
consumption cost indicators from a sustainable manufac-
turing point of view. Thus, expending much effort to
optimize the energy costs and reduce the energy
consumption costs by reasonably scheduling sequence is
necessary.

Table 2 Flowshop group scheduling problems

Reference Objective Algorithm Model
Single objective Multi-objective Heuristic Meta-heuristic
Baker (1990) Makespan Johnson’s rule S
Schaller (2001) Makespan Branch-and-bound algorithm S
Yang (2002) Makespan Branch-and-bound algorithm
Zandieh et al. (2009) Makespan and CPU time SA and GA
Salmasi et al. (2010) Total flow time HACO S
Karimi et al. (2010) Makespan and total weighted Multi-phase GA N
tardiness
Hajinejad et al. (2011) Total flow time PSO
Salmasi et al. (2011) Makespan HACO \
Zandieh and Karimi (2011) Makespan and total weighted Multi-population GA N
tardiness
Bozorgirad and Logendran Total weighted completion time TS \
(2013) and total weighted tardiness
Mendes et al. (2013) Total flow time VND and ILS
Keshavarz and Salmasi Total completion time Hybrid GA \/
(2014)
Keshavarz et al. (2015a) Total completion time Memetic algorithm N
Khamseh et al. (2015) Makespan SA and GA
Zandieh and Hashemi (2015) The expected average GA
of completion times
Neufeld et al. (2015) Makespan Nawaz—Enscore-Ham \
(NEH)
Qin et al. (2016) M&TCT, total weighted GA and quantum differential <
completion time, maximum evolutionary algorithm
lateness
Adressi et al. (2016) Maximum completion SA and GA
time
Costa et al. (2017) Makespan Hybrid GA
Behjat and Salmasi (2017) Total completion time NEH, SPT PSO and variable \
neighborhood search
Feng et al. (2018) PM cost, repair cost, job SA embedded GA \
tardiness cost
Rossit et al. (2018) Makespan, economic objective, Hybrid algorithm
due date
Keshavarz et al. (2019) Total weighted PSO \/
earliness and tardiness
Feng et al. (2019) Makespan GA <
Liu (2020) Total flow time Constructive heuristics
Costa et al. (2020) Makespan Parallel self-adaptive GA N
Yuan et al. (2020a) Makespan CGA <
Yuan et al. (2021) Makespan CDDEA J
Wang et al. (2022) Total tardiness Earliest due date (EDD), TIG algorithm \

smallest overall slack
time (OSL)
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2.3 Intelligent optimization algorithms for solving discrete
scheduling problems

Many intelligent optimization algorithms are used for
solving discrete scheduling problems. In addition to the
aforementioned intelligent optimization algorithms, such
as artificial bee colony (ABC), GA, SA, ant colony opti-
mization (ACO), PSO, memetic algorithm, and differential
evolution algorithm, some more recent studies about
intelligent optimization algorithms for solving discrete
scheduling problems have been published. These algo-
rithms can help readers refer and learn, and design or
propose a new hybrid algorithm for solving GSPs.

For distributed FSPs, Zhao et al. (2022) proposed a
constructive heuristic and a water wave optimization
algorithm with problem-specific knowledge, in which
four local search methods of the variable neighborhood
search strategy were presented to improve the performance
of the algorithm. Yang and Li (2022) employed a knowl-
edge-driven constructive heuristic to minimize the maxi-
mum assembly completion time, in which three different
types of neighborhood knowledge were improved. Shao
et al. (2021) proposed an efficient iterated greedy (IG)
algorithm in which an improved NEH heuristic and a
problem-specific knowledge-based destruction-construc-
tion were used to explore the solution space. Hamzaday1
(2020) developed an effective benders decomposition
algorithm that consists of the hybridization of NEH2 en
and local search algorithm. Tang et al. (2022a) also
adopted a hybrid teaching-learning-based optimization
algorithm to solve the distributed sand-casting job shop
scheduling problem. This algorithm used a TS based on
the critical path to increase the number of teachers in the
dynamic teacher group.

Population-based intelligent optimization algorithms
have good diversity and are used to solve discrete schedul-
ing problems. Guo et al. (2021) designed a bi-population
immune algorithm to optimize the weapon transportation
support scheduling problem. In this work, a population-
based forward/backward scheduling technique, local
search strategy, and a chaotic catastrophe operator are
embedded. Fernandez-Viagas and Costa (2021) proposed
a population-based constructive heuristic based on a
beam search strategy to solve the single-machine
scheduling problem with sequence-dependent setup times
and release times. Chen et al. (2021) developed a popula-
tion perturbation and elimination strategy-based GA to
optimize the multi-satellite tracking telemetry and
command scheduling problem.

The RL method has been used to intelligently adjust
some parameters or design selection strategy in intelligent
optimization algorithms. Chen et al. (2020) proposed a
self-learning GA integrated RL to solve the flexible job
shop scheduling problem. In this algorithm, a Q-learning
algorithm is considered the learning method at a later
evolutionary stage. Koksal et al. (2021) adopted three

RL-enabled evolutionary algorithms, i.e., RL-enabled GA,
RL-enabled ACO, and RL-enabled PSO, to optimize the
integrated school bus routing and scheduling problem.
Under the RL framework, Ren et al. (2021) mapped the
various information of the FSP and the optimal scheduling
rules into states and actions of RL, respectively. The
authors trained a neural network to establish the mapping
between states and actions. For the distributed assembly
no-idle FSP, Zhao et al. (2021) designed an RL mechanism
in the propagation phase of water wave optimization
algorithm to balance the exploration and exploitation of
the proposed algorithm. Recently, Chen et al. (2022)
developed a distributed RL algorithm to solve a multi-
wave firefighting scheduling problem. In this proposed
algorithm, a local Q-function is designed to find the optimal
solution.

Estimation of distribution algorithm (EDA) is also
applied to solve the discrete scheduling problem and
shows superiority. Wu et al. (2021) proposed a path
relinking to enhance EDA to address the direct acyclic
graph task scheduling problem. They considered path
relinking-based knowledge as a local search strategy. To
improve the performance of EDA, Zhang et al. (2022b)
designed a novel matrix-cube-based EDA to optimize the
makespan criterion of the blocking FSP with sequence-
dependent setup times. Zhou et al. (2021) employed an
improved EDA including a ranking and selection method
to perform project scheduling. The experiment results
demonstrated that the improved EDA obtains 23% higher
expected makespan values for practical cases.

For the multi-objective flowshop scheduling optimiza-
tion problems, Zhang et al. (2022a) proposed an automatic
multi-objective evolutionary algorithm. In this algorithm,
an automated algorithm design philosophy is used. Wu
and Cao (2022) considered the energy consumption of a
re-entrant hybrid FSP (HFSP) and developed an
improved multi-objective evolutionary algorithm based
on decomposition. For the multi-objective distributed
assembly permutation FSP, Huang et al. (2022) employed
a two-phase evolutionary algorithm. The first phase
adopts a two-population structure to minimize the two
objectives. The second phase adopts two new crossover
operators to improve performance of the proposed algo-
rithm. Considering the device dynamic reconfiguration
processes, Wang et al. (2021) simultaneously optimized
the makespan and the whole device’s energy consumption
and proposed a multi-objective whale optimization algo-
rithm to address the above problem.

3 Notations, mathematical models, and
existing benchmark instances

For optimizing the GSPs, the mathematical models of
different types of GSP should be constructed. Specifically,
the MILP should be considered one of the best mathematical
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models. Therefore, this paper formulated the common
mathematical models of single-machine GSP, PFGSP, and
distributed PFGSP (DPFGSP), respectively, according to
the previous classifications. The minimal objective function
of these problems is the makespan. The Gurobi optimizer
has the capacity of finding optimal solutions within the
acceptable CPU time for small problems. The following
mathematical models can help the readers understand and
solve the corresponding problems.

3.1 Notations

In this section, all notations and decision variables of the
following three mathematical models are given. The opti-
mization objective of all the mathematical models consid-
ered in this paper is minimizing maximal complete time
(or makespan), i.e., Minimize C,,,.

Parameters:

L Number of cellulars.

Ll Index of cellulars, [, I' € {1, 2, ..., L}.

M Number of machines in flowshop or in each
cellular for DPFGSP.

m Index of machines.

F Number of families or groups.

4Lf Index of families, f, /' €{0, 1, ..., F}. 0 is the
index of dummy family, which expresses the
start and end of the family sequence on each
machine. In this paper, dummy family is used in
all models.

J Number of jobs.

JJ Index of jobs, j, j €10, 1, ..., J}. 0 is the index
of dummy job, which expresses the beginning
and finishing of the scheduling sequence in a
family.

oy Set of jobs in family f.

J; Number of jobs in family f, Y7, J, = J.

r Index of positions of the family sequence,
refl, 2, .., F}.
k Index of positions of the job sequence in family

foke(l,2, .., J).

Dljm Processing time of job j on machine m.

Sty s, Setup time from family f to f” on machine m, in
which st ,, is an initial setup time when f” is
assigned to the first position on machine m.

Pl jx  Processing time of the kth scheduled job j in
family f (single-machine GSP).

st;, Setup time of the rth scheduled family f (single-
machine GSP).

h Sufficiently large positive number.

Decision variables:
C..x  Makespan of scheduling sequence.
Uy, Binary decision variable, 1 represents that the

family f is assigned to the rth position in the
family sequence, 0 otherwise.

Vi,ik Binary decision variable, 1 if the job j in family
f 1is assigned to the kth position of the job

sequence in family f, 0 otherwise.

Cjm Completion time of job j on machine m.

Xr.p Binary decision variable, 1 and 0 represent that
the family f’ is and is not a direct successor of f,
respectively.

Vi Binary decision variable, 1 and 0 represent that
the job j is and is not a direct successor of the
job j which belongs to the same family with j’,
respectively.

Wy Binary decision variable, 1 and O represent that

the family f is and is not allocated to cellular /,

respectively.

Binary decision variable, 1 represents that the

family f is the 7th scheduled family in cellular /,

0 otherwise.

’
uf Lr

3.2 Single-machine group scheduling problem

The basic assumptions about the single-machine GSPs
are listed as follows:

(1) There are families processed on the machine. Each
family consists of multiple jobs, and each job can be
processed on the machine for one time.

(2) Family preemption is not permitted.

(3) Setup time is sequence-dependent.

(4) The jobs in the same family are not separated and
mixed with the jobs belonging to other families.

(5) The processing of a job is not allowed to be inter-
rupted.

The mathematical model of single-machine GSP is
subjected to constraint sets (1)—(5).

F
Yu, =1,Vre{l, 2, ..., F}, (1)
f=1
F
Zuf,r = 1’ er {1$ 2, weey F}$ (2)
r=1
v =L VYfell, 2, ., F},Vke{l, 2, ..., J;}, (3)
Jeawy
s
Sviu=LVfel{l,2, .., F},Vjell, 2, ., J}, 4)
k=1
F F Jy
Cmax = Z Z st},ruf,r + Z Z Z pt},j,kvf.j,k' (5)

f=1r=1 f=1 jews k=1

Constraint (1) represents that any position of the family
sequence can be assigned to no more than one family
simultaneously. Constraint (2) guarantees that any family



416

can be allocated to a location of the family sequence
simultaneously. Constraint (3) represents that any location
of the job sequence in family f can be assigned to no
more than one job from family f simultaneously.
Constraint (4) guarantees that any job of family f is allo-
cated to one location of the job sequence in family f
simultaneously. In addition, constraints (3) and (4) deter-
mine that the jobs of the same family are not divided and
mixed with the ones belonging to other families.
Constraint (5) calculates makespan.

The following is a specific example of single-machine
GSP. Let F=4, J=8, o, =11, 2}, o, =1{3, 4}, w; =1{5},
and w, = {6, 7, 8}. Table 3 shows the processing times of
jobs at different positions and Table 4 shows the setup
times of groups at different positions.

We adopt the Gurobi solver to obtain an optimal solution
for this example, i.e., the group sequence is (1, 4, 3, 2),
and the job sequence in each group is (2, 1), (6, 7, 8), (5),
and (4, 3), respectively. The Gantt chart of the optimal
solution is given in Fig. 4.

3.3 Permutation flowshop group scheduling problem

The following gives the basic assumptions of PFGSP:

(1) A set of J jobs are grouped into F families and
processed on M machines without preemption.

(2) Each job is uninterruptedly processed on one machine
at most, and each machine processes one job at most.

Table 3 Processing times of jobs at different positions
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(3) The storage between the adjacent machines is
unlimited.

(4) Family preemption is not allowed, and neither are
job preemption nor part preemption.

(5) The setup times of each family on the machine only
rely on its direct preceding family.

(6) The setup times of each job from the same family is
not required.

(7) The jobs belonging to the same family are not
divided and mixed with the jobs in other families.

To comprehensively understand PFGSP, this paper
constructs two types of mathematical models based on
adjacent and position-based modeling methods, respec-
tively.

3.3.1
method

Mathematical models based on adjacent modeling

The mathematical model of PFGSP based on the adjacent
modeling method is subjected to constraint sets (6)—(14).

F

> xp=1,¥fe(l, 2, .., F}, (6)
=0

F

> xp=1Vfe(l,2, .., F}, (7
1=0.12f

Y oy, =LYfel(l,2 .. F},Vjie{O}Uw, (8)

J 0oy, j#]

Group Job  Position in group || Group Job Position in group _/E(O,U%,#j,yj’j, =1L Vf €ll, 2, .. F}, e o) Ve ©)
1 2 1 2 3
w1 1 4 3 w3 5 2 CimZ Cim+Dlim+ iy —1)-h,Vfell, 2, ..., F}, (10)
2 5 6 wy 6 3 4 2 Vi, j €ws j £ J, Vme(l, 2, ..., M},
w2 3 3 2 7 4 2 3
4 2 4 8 4 5 1 Cm 2 Cim+ Sty p+ Plyw+ (X = 1),
Vf, ffell,2, .. F}, f£f.Vjew, V] €aw,, (1)
Table 4 The setup times of groups at different positions Vmell, 2, .., M},
Group Position on machine
1 2 3 4 Cim = Sty + Plim+ (X0 —1)-h, Yf' €{1, 2, ..., F},
@1 3 3 2 4 Vj€w,, Yme(l, 2, .., M}, (12)
[20) 5 7 2 1
3 5 3 3 5 Cime1 Z Cim + Pl Yj€LL, 2, .., T}, (13)
4 2 1 4 3 Ymefl, 2, .., M—1},
i | oa [ e | a PR
Setup tlime @) @ @s e

0 2 4 6 8 10 12

6 18 20 22 24 26 28

Time

Fig. 4 Gantt chart for the optimal solution to the example problem of single-machine GSP.
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Co = Ciats Vi €41, 2, ..oy ). (14)

The model adopts sequence-based variables with two
dummy families and two dummy jobs in each family.
The family scheduling sequence begins from a dummy
family and finishes up with another one. The job schedul-
ing sequence in each family begins with a dummy job
and finishes up with another one.

Constraints (6) and (7) ensure that each family, including
two dummy families, has only one direct predecessor and
direct successor in the family sequence. Constraints (8)
and (9) enforce that each job in the same family f,
including two dummy jobs, has only one direct successor
and predecessor. In addition, constraints (8) and (9)
determine that the jobs from the same family are not
separated and mixed with the jobs belonging to other
families. In constraint (10), for job j and its direct successor
J on machine m, when j and j/ come from the same
family, c;,, is greater than or equal to that of j plus pt; .
Otherwise, when j and j' come from two different families
f and f’, respectively, st;, ,, should be added to c; ,,, as
shown in constraint (11). When the jobs belonging to the
first family are processed on machine m, st ., is consid-
ered by constraint (12). In addition, constraints (10), (11)
and (12) eliminate subtours. Constraint (13) defines that
the completion time of a job in a machine is larger than or
equal to the processing time in the same machine plus its
completion time in the previous machine. The makespan
is defined by constraint (14).

3.3.2 Mathematical models based on position-based
modeling method

The mathematical model of PFGSP based on the position-
based modeling method is subjected to constraint sets
(15)—(23).

F
Su,=1,Yre{l, 2, .., F}, (15)
f=1

F
Su,=1,Yfe(l, 2, ..., F}, (16)
r=1

Svu=1Yfe(l,2, .. F},Vke(l,2, ... J,}, (I17)

Jewy

Jy
Sviu=1LVYfell, 2, .., F},Vje{l, 2, ., J}, (18)
k=1

Cj’,m >Cj,m—i_ptj’,m+(Vf,j,k+Vf,j’,k+1 _2)h’ er {1’ 29 eeey F}s

Vi€w,Vj €w,, Ymell, 2, ..., M},

(19)
Vke(l,2,...J,—1},

Cypm 2 Cim+ Sty pr oy + DUy + (uf,,+uf,,,+1 +Vyig, Ve — 4) -h,

Vi, fell, 2, ., F}, f#f,Vj€ew, Vi €wy,

(20)
Vme(l,2, .. My, ¥re(l, 2, ., F—1},

Cim = Sto o+ Plim + (Upy +Vp 1 =2) - Iy

Vi ell, 2, ..., F}, Vj€w, 21
Vmell, 2, ..., M},

Cime1 = Cim+ Plimet, Y] E€ALL, 2, ..., J},

jam+1 im T Plime1s V] { } 22)
Vme{l, 2, ..., M—1},

Cowe > Coars Vi €1, 2, ..oy J}. 23)

Constraint (15) shows that any position of the family
sequence can be assigned one family simultaneously.
Constraint (16) guarantees that any family can be allo-
cated to a position of the family sequence simultaneously.
Constraint (17) represents that any position of the
job sequence in family f can be assigned one job from
family f simultaneously. Constraint (18) guarantees that
any job from family f can be allocated to a position of
the job sequence in family f simultaneously. In addition,
constraints (17) and (18) determine that the jobs in the
same family are not divided and mixed with the jobs
belonging to other families. For jobs j and j' that are
from the same family f on machine m, if they are put
into the kth and (k+ 1)th position of the job sequence in
family f, respectively, c;,, is not less than c¢;,, plus pt; ,,
ensured by constraint (19). In constraint (20), for families
f and f’ on machine m, if they are put into the rth and
(r+ 1)th position of the family sequence, respectively, the
completion time of the last job j in the family f on
machine m is not less than the completion time of the
first job j' in the family f” on machine m plus pt;,, and
family setup time st;,,,. When the jobs belonging to the
first family are processed on machine m, st ,, is consid-
ered by constraint (21). In addition, constraints (19), (20),
and (21) eliminate subtours. Constraint (22) defines that
the completion time of a job in a machine is larger than or
equal to the processing time in the same machine plus its
completion time in the previous machine. The makespan
is defined by constraint (23).

We consider an example of PFGSP with F =4, M =2,
J=8, 0 ={1, 2}, w, =1{3, 4}, w; = {5}, and w, = {6, 7, 8}.
The processing times and the family setup times are
shown in Tables 5 and 6, respectively.

We adopt the Gurobi solver to obtain an optimal solu-
tion for the above example, i.e., the group sequence
is (4, 1, 3, 2), and the job sequence in each group is
6, 8,7), (2, 1), (5), and (4, 3), respectively. The Gantt
chart of the optimal solution is given in Fig. 5.
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Table 5 Processing times of jobs on machines M; and M;
Group Job Machine
M, M,

] 1 4 4

2 2 3
w2 3 3 2

4 4 4
w3 5 2 3
[on 6 3 4

7 4 2

8 4 5
Table 6 Setup times of groups on machines M, and M,
Group M, M

w1 [0 w3 [on w1 [0 w3 [on

wo 4 4 3 2 5 4 3 4
w] 5 2 2 - 7 1 4
w2 5 - 5 3 4 - 3 5
3 2 2 4 2 1 - 3
w4 2 3 3 - 3 4 2

3.4 Distributed permutation flowshop group scheduling
problem

The definition of the basic assumptions about the
DPFGSP is listed as follows:

(1) There is a set of [, same factories or cellulars, and
each factory or cellular has a flowshop technological
process with A/ machines.

(2) All J jobs are grouped into F families, each of
which can be processed at any of the cellulars.

(3) The storage between the adjacent machines is
unlimited.

(4) Family preemption is not allowed, and neither are
job preemption nor part preemption.

(5) The setup time of each family only relies on its
direct preceding family.

(6) The setup time of each job from one family is not
needed.

(7) A job can be uninterruptedly processed on at most
one machine, and a machine can process most one job at
a time.
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(8) The jobs from the same family are not divided and
mixed with the jobs belonging to other families.

To comprehensively understand DPFGSP, this paper
also constructs two types of mathematical models based
on adjacent and position-based modeling methods,
respectively.

34.1
method

Mathematical models based on adjacent modeling

The mathematical model of DPFGSP based on the adjacent
modeling method is subjected to constraint sets (24)—
(35).

F
> xp=1,¥f€e(l,2, .., F}, 24)
F=0.f#f
r
> xp=1,Vf€ll, 2, .., F}, (25)
1=0f
F
> Yoy <L, (26)
fr=1
F
2 X< L, 27
f=1
F F
2 Xop = 2 X0, (28)
f=1 f=1
> viy =1L, ¥fell, 2, .., F},Vje{0}Uw;, (29)
JEOay, j#j
> Yy =LVYfell, 2, ..., F},Vj€{0}Uw; (30)
Jjeloay, j£
CimZ Cimt+Plim+ iy —1)-h, Vfell, 2, ..., F}, 31
Vj€aw, Vj €wp, Yme(l, 2, ..., M},
cj’,m > Cj,m + Stf,f’,m + ptj’,m + (xf,f’ - 1) : h’
Y, fell,2, ., F}, f£f,Vjew, Vj €w,, (32)

Vme(l, 2, ..., M},

M, ] R [ | o [T s ] 4 [h
My T [ e | m | Tl o 1 Tl | iu i ]
KSetup time @4 @ @3 @,
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Time

Fig. 5 Gantt chart for the optimal solution to the example problem of PFGSP.
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Cj,m > St(),f’,m +ptj,m + (xo,f’ - 1) 'h’ Vf/ € {19 25 eeey F},

Vj€w,, Ymell, 2, ..., M}, (33)

Cj,nH—l > c/m +ptj,m+1’ v.] € {ls 2’ ceey J}, (34)
Vmell, 2, .., M—1},

Cowe > Coans Vi €11, 2, .y T} (35)

The above model adopts sequence-based variables with
less than or equal to 7, dummy families and two dummy
jobs in each family. The family begins with a dummy
family and finishes up with another dummy one. The
remaining dummy families divide the family sequence
into some subsequences. Each subsequence is for one
cellular. The job sequence in each family begins with a
dummy job and finishes up with another dummy one.

Constraints (24) and (25) ensure that each family has
only one direct successor and predecessor in the family
sequence. Constraints (26) and (27) guarantee that the
dummy family is a direct predecessor and successor of
the families less than or equal to [ times, separately.
Constraint (28) ensures that the dummy family has the
same number of direct predecessors and successors in the
family sequence. Constraints (29) and (30) enforce that
each job in the family f, including two dummy jobs,
have only one direct successor and predecessor. In addi-
tion, in constraints (29) and (30), the jobs in the same
family are not divided and mixed with the jobs belonging
to other families. In constraint (31), for job j and its
direct successor j/ on machine m, when j and j/ come
from the same family, ¢;,, is not less than c;, plus pt; .
Otherwise, when j and j' come from different families f
and f, respectively, c;,, should add st ,, as shown in
constraint (32). When the jobs belonging to the first
family are processed on machine m, st ,, is considered
by constraint (33). In addition, constraints (31), (32), and
(33) eliminate subtours. Constraint (34) defines that the
completion time of a job in a machine is larger than or
equal to the processing time in the same machine plus its
completion time in the previous machine. The makespan
is defined by constraint (35).

3.4.2 Mathematical models based on position-based
modeling method

The mathematical model of DPFGSP based on the posi-
tion-based modeling method is subjected to constraint
sets (36)—(46).

~

wy =1, Yfe(l,2, .., F}, (36)
1

I

F
Yup,, <1, VIe(l, 2, .., L}, Vre{l, 2, .. F}, (37)
f=1
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S, =wi, Y €{1, 2, oy FY, VIE(L, 2, oy L}, (38)
r=1
F F
Sul, 2, Ve, 2, o L), Yredl, 2, o F—1),
f=1 f=1

(39

Svu=1Vfe(l,2, ... F},Yke{l,2, ... J,}, (40)

Js
va,j,k = 17 vfe {17 27 eeey F}’ vje {17 29 seey Jj}7 (41)
k=1

Crn 2 Cim+ Plin+ (Vpju+ Vyjun —2) - b,

Vfell, 2, ., F), Vj€wp Vf €y, (42)

Yme(l, 2, ... M}, Vke(l,2, ... J,—1},

Crm Z Cim* Sty p o+ Plipm + (u_lf,l,r+u_;”’.1,r+l TVrga Ve = 4) -h,
Y, frell, 2, .., F}, f#f,Vlel{l, 2, .., L}, Ve w,,

Vi €w,, ¥mell, 2, ... M}, ¥ref{l, 2, .., F—1},

(43)
Cim Z Slo.pm+ Plim + (”}gu V= 2) h,
Vfrell, 2, .., F},Vle{l, 2, ..., L}, (44)
Vi€w,, ¥me(l, 2, .., M},
cj,m+l > Cj,m+ptj,m+l7 VJE {19 29 seey J}7 (45)
Vme({l, 2, .. M—1)},
Cox =0, YjE(L, 2, ..., J}. (46)

Constraint (36) is that each family is allocated exactly
to a cellular. Constraint (37) represents that any position
of the family sequence can be assigned no more than one
family in a cellular simultaneously. Constraint (38)
enforces that any family assigned to the cellular / can be
put into one position of the family sequence in the cellular
[ simultaneously. Constraint (39) guarantees that families
must be put into the positions of the family sequence in
sequential order. Constraint (40) represents that any posi-
tion of the job sequence in family f can be assigned no
more than one job from family f simultaneously.
Constraint (41) guarantees that any job from family f is
put into one position of the job sequence in family f
simultaneously. In addition, constraints (40) and (41)
determine that the jobs belonging to the same family are
not divided and mixed with the jobs from other families.
For jobs j and j from the same family f on machine
m, if they are put into the kth and (k+ 1)th position of
the job sequence in family f, respectively, c; , is not less
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than c;,, plus pt; ,,, ensured by constraint (42). For families
f and f’ on machine m in cellular /, if they are put into
the rth and (r+ 1)th position of the family sequence,
respectively, the completion time of the last job j in the
family f on machine m is not less than the completion
time of the first job j’ in the family f’ on machine m plus
pt;,, and st ., as shown in constraint (43). When the
first job in the first family is processed on machine m in
cellular /, st ,, is considered by constraint (44). In addi-
tion, constraints (42), (43), and (44) eliminate subtours.
Constraint (45) defines that the completion time of a job
in a machine is larger than or equal to the processing time
in the same machine plus its completion time in the previ-
ous machine. The makespan is defined by constraint (46).
On the basis of the previous example of PFGSP, we let
L =2, which gives us the example of the DPFGSP. We
adopt the Gurobi solver to obtain an optimal solution for
the example, i.e., the group sequences for the two factories
are (2, 3) and (4, 1), respectively, and the job sequence
in each group is (3, 4), (5), (6, 8, 7), and (1, 2). The
Gantt chart of the optimal solution is given in Fig. 6.

3.5 Existing benchmark instance

To verify the property of the proposed algorithms, the
benchmark instances of GSPs are necessary. Generally,
three different types of scale instances are considered:
Small, medium, and large. The numbers of jobs,
machines, and groups are set according to the scale of the
test instances, i.e., n ={8, 10, 20, 40, 60, 90, 100, 150},
m={2,4, 6, 10}, and g={3, 4, 5, 10, 20, 50}. For the
distributed GSPs, the number of factories or cellulars, L,
is {2, 3,4,5,6, 7}. These values can lead to different
scale combinations. For each combination, several
instances with the same scale and different values of
processing time can be obtained. The processing times of
jobs on a machine have been generated randomly in the
range [1, 10] or [1, 20]. The setup times between families
have been randomly drawn in the range [1, 20], [10, 50],
or [1, 100]. For the ratio of mean group setup time to
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mean job processing time, Schaller et al. (2000) subdivided
it into three ratios, i.e., 2:1, 5:1, and 10:1. These ratio
values can be regarded as a factor when generating different
test instances. However, for the cellular scheduling prob-
lems, a gap exists between the simulation data and the
practical production data. Thus, we should continue to
develop benchmark instances by considering different
material flows and the model of real-world cellular manu-
facturing systems.

4 Research survey results

This paper analyzed the reviewed literature in terms of
GSPs having single and multiple objective functions,
solution algorithms used, and their mathematical models
to clearly understand the existing research gaps and
provide suggestions for researchers. A total of 109 papers
on GSPs have been reviewed. The statistic proportions of
papers with respect to the objective functions, the number
of objective functions, solving algorithms, and the pro-
duction environment are displayed in Fig. 7, respectively.

The makespan (completion time) is the most widely
studied single-objective optimization function, followed
by total flow time, tardiness time, earliness time, and
others. As shown in Figs. 7(a) and 7(b), most papers
studied a single objective of GSP (89%), in which 83%
of papers optimized the makespan objective, followed
by other objectives (i.e., costs and eliminating the role
of the kitting staff, 8%), total flow time (7%), and total
completion time (2%).

To optimize GSPs, some algorithms are proposed.
Solving algorithms are categorized into four categories:
Exact methods, heuristics, metaheuristics, and hybrid
algorithms. Exact algorithms mainly include PTA, branch-
and-bound, MILP, and bounded dynamic programming.
The heuristics refer to SPT, LPT, NEH, and EDD. Meta-
heuristics are GA, 1G, SA, PSO, VND, ACO, and EDA.
Owing to the complex nature of GSPs, hybrid algorithms
are often adopted by integrating local search strategies.
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n Setuptime @ ‘ . ' T . ' ‘
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Time
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Fig. 6 Gantt chart for the optimal solution to the example problem of DPFGSP.
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Fig. 7 Statistic proportion of papers based on (a) the objective functions; (b) the number of objective functions; (c) the solving methods;

(d) the production environment.

The local search strategies are very important for the
discrete GSPs. Most of the hybrid algorithms used local
search to disturb the current solutions. The local search
strategies as part of the hybrid algorithms have been
effective to generate solutions with high quality in
reasonable computational time. The static proportion of
each category is reported in Fig. 7(c), in which the
proportion of hybrid algorithms and metaheuristics is
67%. For large-scale test instances, the exact algorithms
and heuristics cannot obtain an optimal solution within
the acceptable CPU time.

As mentioned in Section 2, the scheduling problem in
cellular manufacturing systems, called the cell scheduling
problem, is generally modeled similar to the FGSP.
However, the cell scheduling problem has some distinct
characteristics, i.e., job shop cells, single-stage cells,
parallel-machine cells, and flowshop cells. As shown in
Fig. 7(d), 45% of the published papers considered the
flowshop production environment, and 27% of the papers
addressed a single machine. A total of 4% of the papers
have addressed the RMS, and only 2% of the papers have
addressed job shop and parallel machine production envi-
ronment, respectively. The flowshop production technol-
ogy exists extensively in cellular manufacturing and
provides a simple and flexible production structure.

5 Conclusions and further research
directions

Group scheduling is the key to the cellular manufacturing
system and has attracted much concern. Owing to the
production constraints and the large scale that exists
extensively in cellular manufacturing, the existing
scheduling models and algorithms are facing challenges.
However, the emergence of the heuristic, intelligence
optimization, and hybrid algorithms have resulted in
breakthroughs and provided diversified optimization
methods. In these ways, some feasible optimal solutions
or scheduling schemes are obtained. The main contribu-
tions of this paper are as follows.

(1) This paper reviews and classifies 109 papers that
deal with the GSPs in single and parallel machines, flow-
shop, RMSs, and job shop scheduling production envi-
ronments. In general, completion time-based criteria are
the most studied performance measures, being a target of
83% of the papers. Regarding the approaches or algo-
rithms, 67% of the papers adopted hybrid algorithms and
metaheuristics due to the complex nature of GSPs. In
addition, this paper summarized the constraints, namely,
blocking, unrelated parallel machines, skilled workforce
assignment, failure rate threshold, due windows, and
limited buffers, that can be considered in GSP.
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(2) The classical mathematical models and optimization
algorithms are reviewed. For optimizing the GSPs, the
mathematical models of different types of GSP should be
constructed. Specifically, MILP should be considered one
of the best mathematical models. Thus, our paper formu-
lates the common mathematical models of single-
machine GSP, PFGSP, and DPFGSP, respectively.
Furthermore, to comprehensively understand PFGSP and
DPFGSP, our paper constructs two types of mathematical
models based on adjacent and position-based modeling
methods, respectively. The proposed mathematical
models can help readers understand and solve the corre-
sponding problems.

However, related research still has insufficiencies and
needs to be further explored in problems and algorithm
fields. Based on the analysis of reviewed literature,
further research directions are as follows.

(1) Research directions of problems

The existing papers mainly do research on PFGSPs.
However, the practice production environments have
many constraints. First, due to a large number of enterprises
gradually turning to multi-regional cooperation under the
influence of globalization, distributed scheduling has
become a trend (Han et al., 2022). In this context, the
DPFGSP has attracted the attention of academics and
becomes an urgent problem to be solved. Second, for
some factories, more than one parallel machine can
increase the productivity and flexibility of the scheduling
process, called the HFSP (Qin et al., 2022b; 2022c¢). In
this case, if the group technology is considered in HFSP,
a new problem is proposed, namely the HFGSP (Qin
et al., 2022a). Considering its practical significance,
group technology should be considered in manufacturing.
Apart from the above-mentioned distribution and parallel
machine constraints, the no-idle, no-wait, blocking, and
their combination should be considered to meet real-life
production constraints. In addition, few research has been
done on multi-objective optimization with economic
objectives, energy consumption, machine load balance,
and delaying the due date. These problems and their
mathematical models (single and multi-objective) have
not yet been well studied. Thus, constructing the mathe-
matical models by considering these constraints and
objectives is necessary.

(2) Research directions of problem algorithms

The existing algorithms can solve the GSPs for small,
medium, and large instances. However, some issues or
insufficiencies still remain. First, the algorithms lack the
theoretical analysis to verify their property. Second, the
time complexity of hybrid algorithms and metaheuristic
is high for large instances. Third, different algorithms
lack cooperation with each other. Based on the analysis,
adding the theoretical analysis based on the characteristics
of problems is necessary. The researcher can analyze the
features of the GSPs with different constraints by using
CPLEX or Gurobi and observe the scheduling scheme or

solution allocation under the case of different constraints.
For the second issue, to reduce the time complexity of the
whole algorithm, one approach is to propose a quick
evaluating method or calculation of the objective function
(Pan et al., 2022). However, designing simple evolution
operators, local search, and neighborhood search is
necessary. To enhance the performance of the optimization
algorithm, a hybrid algorithm should be considered by
the combination of heuristic, swarm intelligence, IG algo-
rithm, or RL, in which the cooperating mechanism, the
associated knowledge, adaptively adjusted search opera-
tions, and parameter settings should be designed. In addi-
tion, for the multi-objective optimization algorithms, a
good selection strategy and a good evaluation indicator
are critical.

In short, as production technology requires, the need
for group scheduling patterns will increase even more to
save cost and time. Given the analyses in this paper, the
practical production constraints, the corresponding math-
ematical models, and optimization algorithms will be
considered in the future. In addition, dynamic or uncertain
factors such as machine breakdowns, changing due dates,
urgent insertion orders, and uncertain job processing
times would be noteworthy. The problems and algorithms
in group scheduling can be comprehensively developed
and enhanced.
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