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Abstract
Automated market making for crypto tokens is an extremely attractive and efficient 
way to establish decentralized exchanges. An inevitable prerequisite for this type 
of market is the willingness of participants to provide liquidity. Except in the case 
of two correlated pairs, providing liquidity is often sub-optimal. In fact, one often 
faces significant opportunity cost commonly referred to as impermanent loss. Pre-
vailing transaction fee levels, even with levered positions, are often insufficient to 
compensate for the opportunity costs incurred. Marketability and exchangeability 
are essential prerequisites for attributing value to many crypto tokens. Therefore, 
when issuing fiat tokens for the viability of intriguing business models, one ends up 
with the chicken-or-the-egg causality dilemma; how to achieve sustainable incen-
tives to the liquidity provision for an abstract good whose intrinsic value is defined 
solely by that liquidity system? This article derives and discusses useful formulas 
for the quantitative risk management in the context of automated market makers. In 
addition, order size and pool size-dependent transaction costs are proposed that may 
incentivize the desired level of liquidity.
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1 Introduction

Central limit order books (CLOBs) are not ideal for decentralized exchanges (DEXs), 
which run on blockchains. The gas fees tend to be prohibitively expensive for this 
setup which usually has an ongoing stream of adjustments by the market mak-
ers. Consequently, automated market makers (AMMs) are an important feature of 
DEXs. Currently, these are typically implemented as constant function market mak-
ers (CFMM), which calculate an invariant value from the two or more token ele-
ments in the DEX; see also Angeris et al. (2023), and Cartea et al. (2023) for mar-
ket maker designs beyond constant functions. CFMMs usually hold liquidity pools 
in the traded tokens, and these pools act as counterparties to anyone interacting with 
the DEX. Arbitrageurs would then make profitable follow-up trades, which reset the 
liquidity pools to the current market price. DEXs typically charge a transaction fee1 
of 0.15–0.35% on trades, and some or all of this fee ends up with the liquidity pro-
viders. In the Decentralized Finance (DeFi) summer of 2020, so-called yield farm-
ing became popular, and liquidity providers could earn additional returns by allocat-
ing newly created governance tokens; see Cousaert et al. (2022). This allocation can 
work to kick-start a project, but it is not a means which is medium-term sustainable, 
as the tokens will only retain value if their volume remains constrained. The most 
popular of these CFMMs is the constant product market maker (CPMM), which uses 
the product of the volumes of the two or more tokens involved as the invariant. The 
CPMM setup is simple; it is self-balancing through arbitrageurs, requires no active 
involvement from liquidity providers, and has low computational demands, making 
it suitable for a smart contract on a blockchain. However, it is not ideal either. It is 
capital intensive, exposes the liquidity providers to opportunity costs, and overall 
return-on-investments may range from fair to unacceptably bad once the yields from 
yield farming run out. The most commonly associated opportunity cost for CPMMs 
is called impermanent loss. This terminology can however be misleading as the cor-
responding loss rarely ever disappears in practice. Xu et al. (2023) therefore argues 
that the term divergence loss2 would be more accurate for a scientific context. To gen-
erate a solid framework to investigate these problems further, we derive the formulas 
which apply in this context and look at some aspects in detail; we focus mainly on 
CPMM. In the mathematical treatment, we ignore gas fees and disregard the possibil-
ity of so-called maximum/miner extractable value attacks (MEV attacks), which cor-
respond to a form of front running; see also Daian et al. (2020). Some aspects may be 
counterintuitive or tricky, although we basically only need elementary mathematics 
throughout the article. Topics covered include the following:

• We investigate in the Sects. 2.2 and 3.2 the impact of transaction cost as they are 
commonly implemented in DeFi applications.

1 This fee is sometimes also referred to as swap fee; e.g., see Xu and Xu (2022), Xu et al. (2023).
2 In this article, we stick to the term «impermanent loss» all the same.
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• We show in the Sect. 3.3 how to exploit arbitrage opportunities in unbalanced 
liquidity pools.

• We valuate in the Sect.  3.4 the hedging of the impermanent loss. We demon-
strate that hedging the impermanent loss may be quite expensive and that preva-
lent risk compensations for CPMMs are likely too low.

• We solve in the Sect. 3.8 an inverse problem such that one can rely on classical 
FX-rate dynamics in order to simulate consistent roll-forwards of liquidity pools. 
This is particularly relevant for risk management purposes. The publicly acces-
sible Jupyt er noteb ook illustrates an implementation in Python.

• We elaborate in the Sect. 3.9 that absolute hedging for flat inventories is not a 
feasible option for liquidity providing. The costs are comparable to hedging the 
impermanent loss.

• We propose in the Sect. 3.10 order size as well as pool size dependent transac-
tion cost, which may incentivize the desired levels of liquidity.

• We derive in the Sect. 3.11 the optimal trade execution for different situations.
• We tackle in the Sect. 3.12 an analytical argument of noise trades.
• In the appendix, we briefly look at variations of the CPMM framework, namely 

Uniswap v3, Balancer, and Flat Curve.

AMM is an emerging field of application and research. There are already a number 
of publications in this regard; e.g., see Mohan (2022) for a comprehensive introduc-
tion and further references. There are also numerous pertinent blogs. Some of our 
discussion points are treated in greater generality in Cartea et  al. (2022b). To the 
best of our knowledge, particularly the considerations of the Sects.  3.6–3.10 have 
not yet been addressed conclusively elsewhere.

2  Constant function market maker (CFMM)

2.1  Notation

Notation Description

F(x, y) ≡ c Isoline(s) of the liquidity pool
f(x) Explicit solution y = f (x) of the implicit equation F(x, y) = c

xt > 0 Amount of the first token denoted by X (e.g., XTZ) at time t
yt > 0 Amount of the second token denoted by Y (e.g., YOU) at time t
ct = F(xt , yt) Available liquidity at time t

St =
Fx(xt, yt)

Fy(xt, yt)
= −f �(xt)

Implied spot FX-rate (e.g., XTZYOU) at time t, i.e., the value of 
1 token X denominated in Y

Sx
t
> 0 Value of 1 token X with respect to some numéraire (e.g., USD) at time t

S
y

t > 0 Value of 1 token Y with respect to the same numéraire at time t
0 ≤ 𝜅1 < 1 Transaction fee of the infrastructure provider
0 ≤ 𝜅2 < 1 Transaction fee of the liquidity pool
0 ≤ 𝜅 ∶= 𝜅1 + 𝜅2 < 1 Total transaction fees

https://colab.research.google.com/drive/1A3O2hUh-nTGVeYyhzr4b9K03iSqrIMRb?usp=drive_link
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XTZ is the native token of the Tezos  block chain. YOU is the governance token of 
the youve s ecosy stem. We use these two tokens to illustrate the two generic place-
holders X and Y; see also the schematic chart in the Fig. 1 for a better understanding. 
All quantities with a subscript t represent càdlàg stochastic processes in continuous 
time.

2.2  Methodology

There are no fees for posting or withdrawing liquidity. If one exchanges X for Y, or 
vice versa, via the liquidity pool, one basically does not leave the current isoline 
from the implicit function definition (modulo transaction fees). Generally speaking, 
one has to bear a transaction fee of, e.g., � = 0.35% (excluding gas fees). In fact, 
things are a bit more involved. On the one hand, the fee consists of a service fee, 
e.g., �1 = 0.10% that leaves the pool and rewards the liquidity pool provider. On 
the other hand, it consists of a �2 = 0.25% liquidity fee that remains in the pool and 
remunerates the liquidity providers. For illustration, e.g., see Plenty, Quipu swap.

Definition 1 Let us assume that a market participant initiates a swap at time t by 
posting Δx of X to the liquidity pool. In return, she receives −Δy(Δx) of Y (the sign 
is by convention), where Δy(Δx) < 0 solves the equation

One part of the transaction fees is paid implicitly to the pool by increasing the 
liquidity to the updated isoline

The residual part �1Δx is paid out to the infrastructure provider and leaves our con-
sideration. Analogously, if Δy of Y is posted to the liquidity pool for −Δx(Δy) of X 
in return, the corresponding equation reads

(1)F
(
x
pre
t + (1 − �)Δx, ypre + Δy(Δx)

) !
=F

(
x
pre
t , y

pre
t ).

(2)
c
post
t (Δx) ∶= F

(
x
post
t (Δx), y

post
t (Δx)

)
∶= F

(
x
pre
t + (1 − �1)Δx, y

pre
t + Δy(Δx)

)
.

(3)F
(
x
pre
t + Δx(Δy), ypre + (1 − �)Δy

) !
=F

(
x
pre
t , y

pre
t ).

Fig. 1  Overview of the liquidity 
pool with the posted amounts xt 
and yt . The setup involves three 
currencies (X, Y, and the numé-
raire) as well as three FX-rates

X xt yt Y
St

numéraire

Sx
t Sy

t

https://tezos.com/
https://app.youves.com/
https://plentydefi.com/
https://quipuswap.com/
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Similarly,

refers to as the updated liquidity level.

Fees are always paid in the posted currency that devaluates. As we shall see, 
the market impact of transactions is often much greater than the impact of com-
mon transaction costs. The superscripts «pre» and «post» indicate that a transac-
tion is taking place at this time instance. Alternatively, one could use another 
common notation xt– ∶= x

pre
t  and xt ∶= x

post
t .

2.3  Consistency of the FX rates

By absence of arbitrage (and by neglecting transaction costs for the sake of sim-
plicity), the parity Sx

t
= StS

y

t  must prevail. Any discrepancy can theoretically be 
exploited or constitutes an illiquidity premium. The spot FX-rate St changes with 
each swap. For the remainder of the article, we tacitly assume without loss of gen-
erality that the stochastic rate Sx

t
 is given exogenously and that it is not affected by 

swaps within the liquidity pool. Equivalently, the token X is comparatively liquid, 
and the size of the liquidity pool is negligible with respect to the total outstanding 
amount of X. Later on, we will need to distinguish two limiting cases depending 
on whether the CFMM is just a marketplace (Sect. 3.5) or the market (Sect. 3.6).

Assumption 2 We assume that (Sx
t
)t≥0 is independent of (yt)t≥0.

3  Constant product market maker (CPMM)

3.1  Model

Definition 3 F simply is the product of the two components, i.e.,

The involved isolines are hyperbolas. The spot FX-rate is given by

Definition 3 is a popular choice. There are various modifications, e.g., Uniswap v3 
(see the section A in the appendix) with leveraged positions, or Balancer (see the 
section B) involving n > 2 assets. With the standard approach, the FX rate changes 
instantaneously with every transaction. In the context of stable token pairs, other 
CFMM approaches with less susceptibility toward medium-sized transactions are 
more suitable, e.g., see the section C for an applicable alternative.

(4)c
post
t (Δy) ∶= F

(
x
post
t (Δy), y

post
t (Δy)

)
∶= F

(
x
pre
t + Δx(Δy), y

pre
t + (1 − �1)Δy

)

(5)F(x, y) ∶= xy.

(6)St =
Fx(xt, yt)

Fy(xt, yt)
=

yt

xt
.
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3.2  Dynamics of the liquidity pool

3.2.1  Case of posting X

If one intends to withdraw the target amount Δy ∈ (0, y
pre
t ) of Y, then the required 

posting of X amounts to 

Generally, posting Δx > 0 of X leads in the liquidity pool to an outflow of

in Y. On the isolated level of the liquidity pool, X devaluates while Y appreciates. 
The realized FX rate of the trade amounts to

The subsequent state of the liquidity pool consists of the components

S̃t(Δx) ∈
(
S
post
t (Δx), S

pre
t

)
 holds, provided that the posted amount is sufficiently 

large, namely

compare (9) and (12). Otherwise, it even holds �St(Δx) ≤ S
post
t (Δx) < S

pre
t  . If � = 0 , 

then S̃t(Δx) is the geometric mean of Spostt (Δx) and Spret .

3.2.2  Case of posting Y

If one intends to withdraw the target amount Δx ∈ (0, x
pre
t ) of X, then the required 

posting of Y amounts to 

(7)Δx(Δy) =
x
pre

t Δy

(1 − �)(y
pre

t − Δy)
.

(8)Δy(Δx) =
x
pre
t y

pre
t

x
pre
t + (1 − 𝜅)Δx

− y
pre
t = −

(1 − 𝜅)y
pre
t Δx

x
pre
t + (1 − 𝜅)Δx

< 0

(9)�St(Δx) =
||Δy(Δx)||

Δx
=

(1 − 𝜅)y
pre
t

x
pre
t + (1 − 𝜅)Δx

< S
pre
t .

(10)x
post
t (Δx) = x

pre
t + (1 − 𝜅1)Δx > x

pre
t ,

(11)y
post
t (Δx) = y

pre
t + Δy(Δx) =

x
pre
t y

pre
t

x
pre
t + (1 − 𝜅)Δx

< y
pre
t ,

(12)S
post
t (Δx) =

x
pre
t y

pre
t(

x
pre
t + (1 − 𝜅1)Δx

)(
x
pre
t + (1 − 𝜅)Δx

) < S
pre
t .

(13)Δx
!

>
𝜅

(1 − 𝜅1)(1 − 𝜅)
x
pre
t ;
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Generally, posting Δy > 0 of Y leads in the liquidity pool to an outflow of

in X. On the isolated level of the liquidity pool, X appreciates while Y depreciates. 
The realized FX rate amounts to

The subsequent state of the liquidity pool consists of the components

S̃t(Δy) ∈
(
S
pre
t , S

post
t (Δy)

)
 holds, provided that the posted amount is sufficiently 

large. Again,

compare (16) and (19). Otherwise, it even holds �St(Δx) ≥ S
post
t (Δx) > S

pre
t  . If � = 0 , 

then S̃t(Δy) is the geometric mean of Spret  and Spostt (Δy).

3.3  Arbitrage

Both sides of the liquidity pool must have the same economic value at all times, i.e., 
Sx
t
x
pre
t

!
=S

y

t y
pre
t  . Otherwise, at least if the discrepancy is sufficiently large, it can be 

exploited in terms of a roundtrip, ceteris paribus. There is usually a narrow no arbi-
trage corridor, whose boundaries can be determined explicitly without further ado.

Theorem 4 (Maximal Arbitrage Opportunity) Let us consider a CPMM of Defini-
tion 3 and set

(14)Δy(Δx) =
y
pre

t Δx

(1 − �)(x
pre

t − Δx)
.

(15)Δx(Δy) =
x
pre
t y

pre
t

y
pre
t + (1 − 𝜅)Δy

− x
pre
t = −

(1 − 𝜅)x
pre
t Δy

y
pre
t + (1 − 𝜅)Δy

< 0

(16)�St(Δy) =
Δy

||Δx(Δy)||
=

y
pre
t + (1 − 𝜅)Δy

(1 − 𝜅)x
pre
t

> S
pre
t .

(17)x
post
t (Δy) = x

pre
t + Δx(Δy) =

x
pre
t y

pre
t

y
pre
t + (1 − 𝜅)Δy

< x
pre
t ,

(18)y
post
t (Δy) = y

pre
t + (1 − 𝜅1)Δy > y

pre
t ,

(19)S
post
t (Δy) =

(
y
pre
t + (1 − 𝜅1)Δy

)(
y
pre
t + (1 − 𝜅)Δy

)

x
pre
t y

pre
t

> S
pre
t .

(20)Δy
!

>
𝜅

(1 − 𝜅1)(1 − 𝜅)
y
pre
t ;
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1. If it holds Sx
t
x
pre
t < S

y

t y
pre
t , then posting 

where DΔx ∶=
(
sx

pre

t (2 − 𝜅1 − 𝜅)
)2

− 4
(
s(1 − 𝜅1)(1 − 𝜅)

)(
s(x

pre

t )2 − x
pre

t y
pre

t

)
> 0, 

initiates the optimal arbitrage opportunity, provided that 

is satisfied.
2. If it holds Sx

t
x
pre
t > S

y

t y
pre
t , then posting 

where DΔy ∶=
(
y
pre
t (2 − 𝜅1 − 𝜅)

)2
− 4

(
(1 − 𝜅1)(1 − 𝜅)

)(
(y

pre
t )2 − sx

pre
t y

pre
t

)
> 0, 

initiates the optimal arbitrage opportunity, provided that 

is satisfied.

Proof 

1. For the regulation, we aim at bringing the liquidity pool back into its equilibrium 
state sxpostt = y

post
t  by posting Δx > 0 . This leaves us with the Eq. 

 This quadratic equation in Δx can be rearranged into the standard form 

 It has the two well-defined solutions 

(21)s ∶=
Sx
t

S
y

t

.

(22)Δx =
−sx

pre
t (2 − �1 − �) +

√
DΔx

2s(1 − �1)(1 − �)
,

(23)s <
(1 − 𝜅1)(1 − 𝜅)

(1 + 𝜅2)

y
pre
t

x
pre
t

(24)Δy =
−y

pre
t (2 − �1 − �) +

√
DΔy

2(1 − �1)(1 − �)
,

(25)s >
(1 + 𝜅2)

(1 − 𝜅1)(1 − 𝜅)

y
pre
t

x
pre
t

(26)Sx
t

(
x
pre
t + (1 − �1)Δx

) !
= S

y

t

x
pre
t y

pre
t

x
pre
t + (1 − �)Δx

.

(27)
0 = s(1 − 𝜅1)(1 − 𝜅)

�������������������

>0

[Δx]2 + sx
pre
t (2 − 𝜅1 − 𝜅)

�������������������

>0

Δx + s
(
x
pre
t

)2
− x

pre
t y

pre
t

���������������������

<0

.

(28)Δx1,2 =
−sx

pre
t (2 − 𝜅1 − 𝜅) ±

√
DΔx

2s(1 − 𝜅1)(1 − 𝜅)
≷ 0;
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solely Δx1 is economically meaningful. Δx2 < −x
pre
t  is not feasible economi-

cally since we cannot withdraw more than the available amounts from the 
liquidity pool. Δx1 vanishes for s = S

pre
t  . It needs to be noted that the net value 

−Sx
t
Δx1 − S

y

tΔy(Δx1) with respect to the numéraire is not necessarily posi-
tive. Hence, whether there is an arbitrage opportunity or not must be examined 
carefully by checking the validity of (13), which is satisfied exactly3 under the 
requirement (23).

2. Similarly, we need to establish the parity 

The same procedure as above yields 

 with the two solutions 

 again, solely Δy1 is economically meaningful. Δy1 vanishes for Spostt = S
pre
t  . The 

validity of the condition (20) must be verified just as well, which is equivalent to 
the requirement (25).

This concludes the proof.   ◻

In the absence of transaction fees, the involved quantities simplify considerably, 
and the two cases unite in one formula. We leave the elementary adjustments of the 
proof to the knowledgeable reader.

Corollary 5 (Maximal Arbitrage Opportunity in the Absence of Transaction 
Costs) Let us consider the setting of Theorem 4 with � = 0. In either case, eligible 
swapping4 

has an economic value of

(29)Sx
t

x
pre
t y

pre
t

y
pre
t + (1 − �)Δy

!
=S

y

t

(
y
pre
t + (1 − �1)Δy

)
.

(30)
0 = (1 − 𝜅1)(1 − 𝜅)

�����������������

>0

[Δy]2 + y
pre
t (2 − 𝜅1 − 𝜅)
�����������������

>0

Δy + (y
pre
t )2 − S

post
t x

pre
t y

pre
t

�������������������������

<0

(31)Δy1,2 =
−y

pre
t (2 − 𝜅1 − 𝜅) ±

√
DΔy

2(1 − 𝜅1)(1 − 𝜅)
≷ 0;

(32)Δx = −x
pre
t +

√
x
pre
t y

pre
t

s
against Δy = −y

pre
t +

√
sx

pre
t y

pre
t

3 Algebraically, one would have to impose additionally the requirement s
!

> 0 . However, s ≤ 0 is not rea-
sonable in our setting anyway.
4 More precisely, this involves posting the positive quantity to the pool and getting the absolute value of 
the negative quantity in return.
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with respect to the numéraire. For s ≠ S
pre
t , one can exploit an arbitrage opportunity 

indeed. It vanishes if and only if s = S
pre
t .

3.4  Impermanent loss without transaction cost

For easier understanding, let us temporarily assume � = 0 ; the general case is treated 
subsequently in the Sects. 3.5 and 3.6. If the intrinsic FX-rate St remained constant, 
then one could earn transaction cost from providing liquidity without adverse cir-
cumstances. If the FX rate changes in either direction, one has to bear substantial 
opportunity costs. Let us assume that we provided xt and yt to the liquidity pool at 
time t, which was worth

with respect to the numéraire. If the FX-rate at time t + Δt changed to St+Δt , then 
arbitrageurs would have rebalanced the amounts to

Therefore, the opportunity cost would amount to

(33)−Sx
t
Δx1 − S

y

tΔy1 =

(√
Sxt x

pre
t −

√
S
y

t y
pre
t

)2

≥ 0

(34)Sx
t
xt + S

y

t yt = Sx
t

(
xt + St

−1yt
)
= 2Sx

t
xt

(35)xt+Δt =

�
ct

St+Δt
, yt+Δt =

√
ctSt+Δt.

Fig. 2  This chart is generated with the reference points xt = 125.00 , Sx
t
= 4.00 , yt = 156.25 , and 

S
y

t = 3.20 . It indicates the shape of the impermanent loss. The blue line would depict the value of the 
vanilla portfolio with respect to movements of Syt  , ceteris paribus, if one held xt and yt in a wallet. The 
orange line represents the corresponding value of the liquidity pool, if it is regulated by arbitrageurs. The 
discrepancy between these two curves is the impermanent loss
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which perfectly offsets the gain of the arbitrageurs; see (33). The Fig. 2 depicts the 
shape of the impermanent loss qualitatively. Note that the impermanent loss is sym-
metric in the sense that it basically only depends on the relative performance of 
St+Δt with respect to St . It exceeds the revalued liquidity pool outside of the range 
St(2 ±

√
3
�2

≈ [0.07St, 14St].
Theoretically, as proposed by Fukasawa et al. (2023), the impermanent loss could 

be hedged (but typically at significant cost). By the general Carr-Madan-formula (see 
Carr & Madan, 1999), it holds for any g ∶ (0,∞) ⟶ ℝ subject to sufficient regularity

For the impermanent loss measured in X, it holds at St =
yt

xt

Thus, the impermanent loss with respect to some fixed maturity T > t (e.g., one 
year) can perfectly be replicated in X through a continuum of European put and call 
options. More precisely, it entails

Furthermore, its economic value can be assessed by approximating the continuum 
using Riemann sums. For volatilities of St beyond 100% and 150% (as often observed 
with crypto currencies), it typically exceeds 10% and 25% respectively of the liquid-
ity pool value over a target horizon of 1y; these estimates can be easily replicated 

(36)

Sx
t+Δt

(
xt+Δt + St+Δt

−1yt+Δt
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

rebalanced liquidity pool

− Sx
t+Δt

(
xt + St+Δt

−1yt
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

vanilla portfolio

= −Sx
t+Δt

xt

(
1 −

√
St

St+Δt

)2

,

(37)
g(x) = g(x0) + g�(x0)(x − x0) +

∫

x0

0

g��(k)max{k − x, 0} dk

+
∫

∞

x0

g��(k)max{x − k, 0} dk.

(38)�X(s) =

�
√
xt −

�
yt

s

�2

�X(St) = 0,

(39)�s�
X(s) =

√
xtyt

s3
−

yt

s2
�s�

X(St) = 0,

(40)�ss�
X(s) = −

3

2

√
xtyt

s5
+

2yt

s3
.

(41)

�X(ST ) =
∫

St

0

(
−

3

2

√
xtyt

k5
+

2yt

k3

)
max{k − ST , 0} dk

+
∫

∞

St

(
−

3

2

√
xtyt

k5
+

2yt

k3

)
max{ST − k, 0} dk.
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using the Black-Scholes-Merton formulas (see Black & Scholes, 1973, Merton, 
1974) and are also integrated in the Jupyt er noteb ook. If � = 0.35% , this is equiva-
lent to a roughly 28- and 70-fold circulation respectively of the entire liquidity pool 
(before liquidity fees are earned at all). For many crypto token pairs, this impedi-
ment is simply not realistic. This finding is corroborated by Loesch et al. (2021) and 
Cohen et al. (2023). The former examines empirically the encountered impermanent 
loss for Uniswap v3 (see the section A in the appendix). The latter relies on agent-
based simulations.

3.5  Liquidity pool dynamics in the case 1: a marketplace

Consistently, both Sx
t
 and Syt  remain unaffected by transactions and are given exog-

enously. On the one hand, St (one monetary unit of X denominated in Y) can be 
inferred from Sx

t
 and Syt  by absence of arbitrage; see Theorem 4. On the other hand, 

St can be inferred from the state and the dynamics of the CPMM. Discrepancies in 
the FX rate from the two sources can be attributed to asset illiquidity. In the follow-
ing, we derive several useful quantities of pool dynamics that depend exclusively on 
independent input parameters, namely

0. Initial state of the liquidity pool in equilibrium:

x. Swap Δx > 0 against the other token:

(42)Sx
t
, S

y

t , x
pre
t , � = �1 + �2, contribution: either Δx or Δy.

(43)x
pre
t with accounting value Sx

t
x
pre
t

(44)y
pre
t =

Sx
t
x
pre
t

S
y

t

with accounting value S
y

t y
pre
t = Sx

t
x
pre
t

(45)c
pre
t = x

pre
t y

pre
t =

Sx
t
(x

pre
t )2

S
y

t

(46)FX-rate of the liquidity pool: S
pre
t =

y
pre
t

x
pre
t

=
Sx
t

S
y

t

(47)
Accounting value of the liquidity pool: V

pre
t = Sx

t
x
pre
t + S

y

t y
pre
t

= 2Sx
t
x
pre
t

(48)Δy(Δx) =
−Sx

t
x
pre
t (1 − 𝜅)Δx

S
y

t

(
x
pre
t + (1 − 𝜅)Δx

) < 0 leave the liquidity pool

https://colab.research.google.com/drive/1A3O2hUh-nTGVeYyhzr4b9K03iSqrIMRb?usp=drive_link


585Digital Finance (2024) 6:573–604 

(49)FX-rate of the transaction: S̃t(Δx) =
Sx
t
(1 − �)x

pre
t

S
y

t

(
x
pre
t + (1 − �)Δx

)

(50)
Subsequent state of the liquidity pool after the transaction:

x
post
t (Δx) = x

pre
t + (1 − �1)Δx

(51)y
post
t (Δx) =

Sx
t

(
x
pre
t

)2
S
y

t

(
x
pre
t + (1 − �)Δx

)

(52)

c
post
t (Δx)=

x
pre
t + (1 − �1)Δx

x
pre
t + (1 − �)Δx

c
pre
t

=
x
pre
t + (1 − �1)Δx

x
pre
t + (1 − �)Δx

Sx
t

(
x
pre
t

)2
S
y

t

(53)

S
post
t (Δx)=

c
pre
t(

x
pre
t + (1 − �1)Δx

)(
x
pre
t + (1 − �)Δx

)

=
Sx
t
(x

pre
t )2

S
y

t

(
x
pre
t + (1 − �1)Δx

)(
x
pre
t + (1 − �)Δx

)

(54)

V
post
t (Δx) = Sx

t

(
x
pre
t + (1 − 𝜅1)Δx

)
+ S

y

t

c
pre
t

x
pre
t + (1 − 𝜅)Δx

= Sx
t

(
x
pre
t + (1 − 𝜅1)Δx

)
+

Sx
t
(x

pre
t )2

x
pre
t + (1 − 𝜅)Δx

> V
pre
t

(55)

Return on capital:

rt(Δx) =

Sx
t
(1 − �1)Δx + S

y

t y
pre
t

(
x
pre
t

x
pre
t + (1 − �)Δx

− 1

)

Sxt x
pre
t + S

y

t y
pre
t

=
Δx

(
�2x

pre
t + (1 − �1)(1 − �)Δx

)

2x
pre
t

(
x
pre
t + (1 − �)Δx

)
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y. Swap Δy > 0 against the other token:

(56)

Return on transaction volume:

r̃t(Δx) =

Sx
t
(1 − �1)Δx + S

y

t y
pre
t

(
x
pre
t

x
pre
t + (1 − �)Δx

− 1

)

−S
y

tΔy(Δx)

=
Sx
t
(1 − �1)x

pre
t + Sx

t
(1 − �1)(1 − �)Δx − S

y

t (1 − �)y
pre
t

Sxt (1 − �)x
pre
t

(57)Δx(Δy) =
−S

y

t (1 − 𝜅)x
pre
t Δy

Sxt x
pre
t + S

y

t (1 − 𝜅)Δy
< 0 leave the liquidity pool

(58)FX-rate of the transaction: S̃t(Δy) =
Sx
t
x
pre
t + S

y

t (1 − �)Δy

S
y

t (1 − �)x
pre
t

(59)

Subsequent state of the liquidity pool after the transaction:

x
post
t (Δy) =

Sx
t
(x

pre
t )2

Sxt x
pre
t + S

y

t (1 − �)Δy

(60)y
post
t (Δy) =

Sx
t
x
pre
t

S
y

t

+ (1 − �1)Δy

(61)

c
post
t (Δy)=

Sx
t
x
pre
t + S

y

t (1 − �1)Δy

Sxt x
pre
t + S

y

t (1 − �)Δy
c
pre
t

=
Sx
t
x
pre
t + S

y

t (1 − �1)Δy

Sxt x
pre
t + S

y

t (1 − �)Δy

Sx
t

(
x
pre
t

)2
S
y

t

(62)

S
post
t (Δy) =

(
y
pre
t + (1 − �1)Δy

)(
y
pre
t + (1 − �)Δy

)

c
pre
t

=

(
Sx
t
x
pre
t + S

y

t (1 − �1)Δy
)(
Sx
t
x
pre
t + S

y

t (1 − �)Δy
)

Sxt S
y

t (x
pre
t )2

(63)

V
post
t (Δy) = Sx

t

c
pre
t

y
pre
t + (1 − 𝜅)Δy

+ S
y

t

(
y
pre
t + (1 − 𝜅1)Δy

)

=
(Sx

t
x
pre
t )2

Sxt x
pre
t + S

y

t (1 − 𝜅)Δy
+
(
Sx
t
x
pre
t + S

y

t (1 − 𝜅1)Δy
)
> V

pre
t
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It needs to be noted that this market situation is somewhat pathological as it opens 
arbitrage opportunities after every excursion of St from the parity, ceteris paribus; 
see the Sect.  3.3. The liquidity pool can be regarded as immediate counterparty, 
whereas arbitrageurs assume the role of delayed counterparties who earn the slip-
page. Moreover, with respect to the numéraire, there is no impermanent loss in this 
comparatively small marketplace even in the absence of transaction cost; see (54) 
and (63). Neither X nor Y require the implicit rate St for valuation purposes.

3.6  Liquidity pool dynamics in the case 2: the market

Without loss of generality, let us assume that the CPMM is the only marketplace where 
Y can be bought and sold against X, whereas X is a comparatively liquid token. Consist-
ently, Sx

t
 remains unaffected by the transaction and St is implied by the CPMM. Thus, 

S
y

t  can be inferred by absence of arbitrage; see Theorem 4. On the one hand, buying 
and holding a crypto currency pair is a frictionless trading strategy which is far more 
promising than providing liquidity (since one does not incur an impermanent loss). On 
the other hand, a token without liquidity has no value. Therefore, one needs to come 
up with a risk management solution to incentivize liquidity. Apparently, this is not an 
easy task; we present a viable proposal in the Sect. 3.10. We proceed similarly as in the 
previous section. This time, the independent input parameters for the model comprise

0. Initial state of the liquidity pool in equilibrium:

(64)

Return on capital:

rt(Δy) =

Sx
t
x
pre
t

(
y
pre
t

y
pre
t + (1 − �)Δy

− 1

)
+ S

y

t (1 − �1)Δy

Sxt x
pre
t + S

y

t y
pre
t

=
S
y

tΔy
(
Sx
t
�2x

pre
t + S

y

t (1 − �1)(1 − �)Δy
)

2Sxt x
pre
t

(
Sxt x

pre
t + S

y

t (1 − �)Δy
)

(65)

Return on transaction volume:

r̃t(Δy) =

Sx
t
x
pre
t

(
y
pre
t

y
pre
t + (1 − �)Δy

− 1

)
+ S

y

t (1 − �1)Δy

−SxtΔx(Δy)

=
−Sx

t
(1 − �)x

pre
t + S

y

t (1 − �1)(1 − �)Δy + S
y

t (1 − �1)y
pre
t

S
y

t (1 − �)x
pre
t

(66)Sx
t
, x

pre
t , y

pre
t , � = �1 + �2, contribution: either Δx or Δy.

(67)x
pre
t with accounting value Sx

t
x
pre
t
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 x. Swap Δx > 0 against the other token:

(68)
y
pre
t with accounting value S

y,pre
t y

pre
t = Sx

t
x
pre
t , where

S
y,pre
t = Sx

t
(S

pre
t )−1

(69)c
pre
t = x

pre
t y

pre
t

(70)FX-rate of the liquidity pool: S
pre
t =

y
pre
t

x
pre
t

(71)
Accounting value of the liquidity pool: V

pre
t = Sx

t
x
pre
t + S

y,pre
t y

pre
t

= 2Sx
t
x
pre
t

(72)Δy(Δx) =
−y

pre
t (1 − 𝜅)Δx

x
pre
t + (1 − 𝜅)Δx

< 0 leave the liquidity pool

(73)FX-rate of the transaction: S̃t(Δx) =
(1 − �)y

pre
t

x
pre
t + (1 − �)Δx

(74)
Subsequent state of the liquidity pool after the transaction:

x
post
t (Δx) = x

pre
t + (1 − �1)Δx

(75)y
post
t (Δx) =

x
pre
t y

pre
t

x
pre
t + (1 − �)Δx

(76)c
post
t (Δx) =

x
pre
t + (1 − �1)Δx

x
pre
t + (1 − �)Δx

x
pre
t y

pre
t

(77)

S
post
t (Δx) =

c
pre
t(

x
pre
t + (1 − �1)Δx

)(
x
pre
t + (1 − �)Δx

)

=
x
pre
t y

pre
t(

x
pre
t + (1 − �1)Δx

)(
x
pre
t + (1 − �)Δx

)

(78)
V
post
t (Δx) = Sx

t

(
x
pre
t + (1 − �1)Δx

)
+ S

y,post
t (Δx)

c
pre
t

x
pre
t + (1 − �)Δx

= 2Sx
t

(
x
pre
t + (1 − �1)Δx

)Δx→∞

⟶ ∞
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 y. Swap Δy > 0 against the other token:

(79)Return on capital: rt(Δx) =
(1 − �1)Δx

x
pre
t

(80)

Return on transaction volume:

r̃t(Δx) =
2Sx

t

(
x
pre
t + (1 − �1)Δx

)
− 2Sx

t
x
pre
t

−S
y,pre
t Δy(Δx)

=
2(1 − �1)x

pre
t + 2(1 − �1)(1 − �)Δx

(1 − �)x
pre
t

(81)Δx(Δy) =
−x

pre
t (1 − 𝜅)Δy

y
pre
t + (1 − 𝜅)Δy

< 0 leave the liquidity pool

(82)FX-rate of the transaction: S̃t(Δy) =
y
pre
t + (1 − �)Δy

x
pre
t (1 − �)

(83)

Subsequent state of the liquidity pool after the transaction:

x
post
t (Δy) =

x
pre
t y

pre
t

y
pre
t + (1 − �)Δy

(84)y
post
t (Δy) = y

pre
t + (1 − �1)Δy

(85)c
post
t (Δy) =

y
pre
t + (1 − �1)Δy

y
pre
t + (1 − �)Δy

x
pre
t y

pre
t

(86)

S
post
t (Δy) = S

post
t =

(
y
pre
t + (1 − �1)Δy

)(
y
pre
t + (1 − �)Δy

)

c
pre
t

=

(
y
pre
t + (1 − �1)Δy

)(
y
pre
t + (1 − �)Δy

)

x
pre
t y

pre
t

(87)

V
post
t (Δy) = Sx

t

c
pre
t

y
pre
t + (1 − �)Δy

+ S
y,post
t

(
y
pre
t + (1 − �1)Δy

)

=
2Sx

t
x
pre
t y

pre
t

y
pre
t + (1 − �)Δy

Δx→∞

⟶ 0
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The simplicity of r̃t(Δy) in Eq. (89) is remarkable.

3.7  Market capitalization versus sale value

Firstly, let us assume that one holds Δy > 0 of Y. The accounting value of the holding 
amounts to 

In turn, by (81), if one wants to dispose of this holding, the realized sale value 
denominated in the numéraire amounts to 

Secondly, let us assume that one holds a fraction � ∈ [0, 1] of the liquidity pool. The 
accounting value of the holding amounts to Vt = 2�Sx

t
x
pre
t  . In turn, the sale value 

can be calculated by withdrawing �xpret  and �ypret —leading to a new liquidity of 
c
post
t = (1 − �)2x

pre
t y

pre
t —and swapping Δy = �y

pre
t  against

With respect to the numéraire, this leaves us with

For � = 0 , the illiquidity premium reduces to �2Sx
t
x
pre
t .

(88)Return on capital: rt(Δy) = −
(1 − �)Δy

y
pre
t + (1 − �)Δy

(89)

Return on transaction volume:

r̃t(Δy) =

2Sx
t
x
pre
t y

pre
t

y
pre
t + (1 − �)Δy

− 2Sx
t
x
pre
t

−SxtΔx(Δy)
= −2

(90)Vt = S
y

tΔy = Sx
t
St

−1Δy = Sx
t

x
pre

t

y
pre

t

Δy.

(91)
Ṽt = Sx

t

x
pre
t (1 − �)Δy

y
pre
t + (1 − �)Δy

= Vt −

(
1 −

(1 − �)y
pre
t

y
pre
t + (1 − �)Δy

)
Vt

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

illiquidity premium

.

(92)Δx(Δy) =
(1 − �)(1 − �)�x

pre
t

1 − ��

.

(93)
Ṽt =

�(2 − � − �)

1 − ��

Sx
t
x
pre
t = 2�Sx

t
x
pre
t

⏟⏟⏟

=Vt

−
�(� + � − 2��)

1 − ��

Sx
t
x
pre
t

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

illiquidity premium

.
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3.8  Model‑independent simulation and the inverse problem

For a given initial state of a liquidity pool, one can simulate arbitrary5 non-negative 
paths of Sx

t
 , Syt  and St together with stochastic trading instances � ⊂ [0,∞) over a 

predefined time horizon. From this, one derives the associated càdlàg step function 
S
⌟

t ∶= Smax{ti∈� |ti≤t} ; see the Fig. 3 for an illustration. For each trading instance, one 
can utilize the Eqs. (28) or (31) respectively (depending on whether the updated 
S
post
t ∶= S

⌟

t  is larger or smaller than Spret ∶= S
⌟

t– ) and back out the unique swap 
(Δx,Δy) that caused this FX-rate shift. With this approach, one easily obtains empir-
ically a rich class of consistent roll-forwards of a liquidity pool including all indi-
vidual transactions. Notably, the approach works regardless of the model choice for 
the FX-rates and the trading instances. To this end, the following reparametrization 
of the inverse problem may be useful: Let p ∈ (0,∞) and Spostt = pS

pre
t  . Let us intro-

duce the auxiliary quantity

Note that �(0, 0, p) =
√
p

p
− 1 and �(�1, �2, 1) = 0 . Then, one can retrieve the posted 

amounts

as well as the revaluation of the liquidity pool

The formulas (95) and (96) highlight a certain symmetry in both directions of FX 
movements. One obtains the updated accounting value of the liquidity pool through 
interest-like compounding and discounting respectively.  See the Jupyt er noteb ook 
for a readily available implementation of the simulation framework in Python  as 
well as the Fig. 4.

3.9  Absolute hedge

Issuers of the token Y desire a suitable asset liquidity. Therefore, it is worth look-
ing at whether an absolute hedge (i.e., keeping the economic value of the inventory 
flat) can be achieved in a CPMM at reasonable cost. Unfortunately, this is not the 
case. Hedging the significant downside risk at the cost of discarding upside potential 

(94)�(�1, �2, p) ∶=
−p(2 − 2�1 − �2) +

√
p2�2

2 + 4p(1 − �1)(1 − �1 − �2)

2p(1 − �1)(1 − �1 − �2)
.

(95)
{

Δx(p) = 𝜉

(
𝜅1, 𝜅2, p

)
x
pre
t if p ≤ 1,

Δy(p) = 𝜉

(
𝜅1, 𝜅2, p

−1
)
y
pre
t if p > 1,

(96)V
post
t (p) =

⎧⎪⎨⎪⎩

2Sx
t
x
pre
t

�
1 + (1 − 𝜅1)𝜉(𝜅1, 𝜅2, p)

�
if p ≤ 1,

2Sx
t
x
pre
t�

1 + (1 − 𝜅)𝜉(𝜅1, 𝜅2, p
−1)

� if p > 1.

5 The framework is open to any common model class.

https://colab.research.google.com/drive/1A3O2hUh-nTGVeYyhzr4b9K03iSqrIMRb?usp=drive_link
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6 In the notation, we omit the dependence on xpret  and ypret  respectively.

comes at the same cost as hedging the impermanent loss. For illustration, we ignore 
transaction cost and measure everything with respect to X. We intend to replicate

where st =
xt

yt
 . Consistently, it holds

The Carr–Madan–formula corroborates that absolute hedges for CPMM are hardly 
feasible. Indeed,

By the put-call-parity, the short position of the flat delta hedge (consisting of yt long 
at-the-money  puts and yt short at-the-money  calls) comes at almost no cost. The 
continuum of European options has the same value as hedging the impermanent 
loss; see (41). Funding this significant value requires a lot of noise trading.

3.10  Break‑even transaction cost

With automated market making as outlined in the Case 2, one encounters significant 
opportunity cost. Since we cannot accurately predict the fees earned out of noise trad-
ing, we need to come up with a different source of income that offsets the incurred 
impermanent loss. Whereas �1 is determined externally (e.g., 0.10% of the trade vol-
ume plus gas), we can implement order size and pool size dependent6 �2(Δx) and 
�2(Δy) respectively; the higher the relative transaction volume, the higher the illiquid-
ity fee to be borne. We need to distinguish the two cases of posting X and Y. We 
derive the minimal �2 such that providing liquidity is at arm’s length with the vanilla 

(97)
h(s) ∶= xt + styt

⏟⏟⏟

flat position

−

�
xt + syt
⏟⏟⏟

vanilla portfolio

−

�√
xt −

√
syt

�2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

impermanent loss

�
,

(98)h(s) = (st − s)yt +

�√
xt −

√
syt

�2

h(st) = 0,

(99)�sh(s) = −

√
xtyt

s
�sh(st) = −yt,

(100)�ssh(s) =
1

2

√
xtyt

s3
.

(101)
h(sT ) = −yt(sT − st) +

∫

st

0

1

2

√
xtyt

k3∕2
max{k − sT , 0} dk

+
∫

∞

st

1

2

√
xtyt

k3∕2
max{sT − k, 0} dk.
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portfolio. Hence, if one enforced these fair transaction costs, the impermanent loss 
would disappear with respect to any reference point repeatedly. We presume that no 
further spread on top is required in order to incentivize the desired liquidity. On the 
one hand, the transaction costs involved can become considerably large. On the other 
hand, one would have to bear comparatively prohibitive costs with market orders in 
a CLOB, if one trades through the entire order book. The approach also gets strong 
support from the agent-based considerations in Sabaté-Vidales and Šiška (2022).

Lemma 6 (Break-Even Transaction Cost) Let us consider a CPMM of Definition 3. 
If one establishes order size and pool size dependent transaction fees

then the liquidity providers do not incur an impermanent loss. It obviously holds 
lim

Δx→∞
�2(Δx) = lim

Δy→∞
�2(Δy) = 1 − �1.

Proof 

1. Posting Δx > 0 yields to 

 where, because of (77) and (78) respectively, 

2. Posting Δy > 0 yields to 

 where, because of (86) and (87) respectively, 
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2

x
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)(
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)
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)
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,
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This concludes the proof.   ◻

Lemma 7 Let the premises of Lemma 6 be given. For receiving a desired Δy of Y, 
where

 the required posting amounts to

Analogously, for receiving a desired Δx of X, where

the required posting entails

Proof By plugging Δx(Δy) from (112) and �2
(
Δx(Δy)

)
 from (102) into (72), one 

easily verifies that

holds indeed. If (112) was not known, then one could solve (115) for Δx(Δy) and 
end up with a linear equation. Its solution is only economically meaningful within 
the specified boundaries of (111). Regarding (114), either one exploits the symmetry 
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in the x- and y-directions, or one proceeds algebraically in the same way with the 
expressions (114), (102) and (81) respectively. Again, the algebraic solution makes 
only sense from the economic viewpoint up to half of the available amount xpret  .   ◻

3.11  Optimal trade execution

Without further assumptions on the dynamics of the ecosystem, the question of opti-
mal trade execution cannot be answered conclusively. Optimality highly depends on 
the behavior of the other market participants. Nonetheless, it is a relevant question 
whether it may be advisable to split a large transaction into n equally sized small 
trades, ceteris paribus. For a classical CPMM with flat transaction fees � = �1 + �2 , 
executing one large swap is better than its counterpart, although the impact is typi-
cally negligible. Exemplarily (with an abuse of notation), when posting Δx > 0 
twice, the liquidity pool still ends up with

whereas

the strict inequality holds, because 

Consequently, one earns more tokens of Y by contributing 2Δx once. Furthermore, 
for a classical CPMM without transaction cost, the same argument demonstrates 
that executing one large swap is identical to initiating n small swaps. For break-even 
transaction cost as in the Sect.  3.10, splitting trades into smaller portions may be 
worthwhile as the relatively applied �2 grows with the order size. In this case, a 
trade-off must be solved between saved transaction fees and additionally required 
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gas fees (which are not order-size-dependent, but due for each transaction). An in-
depth analysis in this context can be found in Cartea et al. (2022a).

3.12  Estimating the impact of noise trades through roundtrips

First, we consider for �2 ≡ c the change in the value of the liquidity pool due to succes-
sive posting of Δx and

ceteris paribus. With an abuse of notation, the liquidity pool will then consist of (
x
post
t (Δx)

)
(Δy) = x

pre
t  tokens of X and

tokens of Y. In the Case 1 of a marketplace, the liquidity pool hosts a windfall profit. 
In the Case  2 of the market, the liquidity pool consists of the same amount of X 
tokens and more Y tokens compared to the starting point. Thus, the value of Y has 
slightly depreciated with respect to the numéraire. Second, we consider by symme-
try the change in the value of the liquidity pool due to successive posting of Δy and 
the analog to (119) in Δx . In the Case 1 of the marketplace, the liquidity pool hosts a 
windfall profit again. In the Case 2 of the market, the liquidity pool consists of more 
X tokens and the same amount of Y tokens compared to the starting point. Thus, 
the value of Y has slightly appreciated with respect to the numéraire. If �2 is order 
size-dependent as in the section 3.10 (without additional spread), then the analog to 
(119) is

The first implicit expression may include an additional spread. The second quantity 
is only meaningful for sufficiently small Δx up until the singularity that occurs at the 
root of the numerator; the domain is � =

{
Δx ≥ 0 || (1 − 𝜅1)Δx < x

pre
t

}
 . Beyond this 

root, a return to the starting point in X is no longer possible by means of one swap; 
see also Lemma 7. It is also worth parametrizing roundtrips in terms of returning to 
the initial FX-rate Spret  ; see the Jupyt er noteb ook for a numeric implementation.
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https://colab.research.google.com/drive/1A3O2hUh-nTGVeYyhzr4b9K03iSqrIMRb?usp=drive_link
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Appendix A: Uniswap v3

A.1: Model

In this adjusted framework (see Unisw ap v3 docum entat ion), one levers the provided 
funds to a higher level of liquidity. If the FX-rate is at or below the self-determined 
lower bound � (i.e., St < � < u ), then the entire liquidity is provided in X; if the FX-
rate is at or beyond the self-determined upper bound u (i.e., � < u < St ), then the 
entire liquidity is provided in Y. This enables range orders as well as limit orders.7 
For the sake of simplicity, we ignore transaction cost. Moreover, we do not consider 
the exact mechanism of the pool factory.

As long as St ∈ [�, u] prevails, the actually provided funds xt and yt satisfy

L is an auxiliary quantity and does no longer comply with the natural interpretation 
of a CPMM. The intuition of the leverage in the Eq. (123) is shown in the Fig. 5. 
Additionally, the levered positions must coincide with the observed FX-rate, i.e.,

Plugging this into the former equation leaves us with

Hence, if � , u, St
!

<u , and xt were given exogenously, then

Likewise, we get

If � , u, St
!

>� , and yt were given exogenously, then

(123)

�
xt +

L√
u

��
yt + L

√
�
�
= L2.

(124)
yt + L

√
�

xt +
L√
u

!
=St.

(125)St

�
xt +

L√
u

�2

= L2.

(126)
L =

xt�
1

St
−

�
1

u

, yt = max

�
St

�
xt +

L√
u

�
− L

√
�, 0

�
.

(127)

�
yt + L

√
�
�2

St
= L2.

7 One either sets � = −∞ or u = +∞.

https://blog.uniswap.org/uniswap-v3
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A.2: Dynamics of the liquidity pool

Analogously as for the classical CPMM, we get

(128)L =
yt√

St −
√
�
, xt = max

�
yt + L

√
�

St
−

L√
u
, 0

�
.

Fig. 3  The upper chart illustrates two sample paths of (Sx
t
)0≤t≤1 and (St)0≤t≤1 respectively. The lower chart 

shows the inferred càdlàg step functions that jump on randomly sampled trading instances. In our consid-
erations, changes in XTZYOU can only be observed through transactions
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provided that the FX rate remains within [�, u] . By plugging in the above expres-
sions for Δx(Δy) and utilizing the fundamental equation  (123), one easily checks 
that

Analogously,
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y
pre
t + Δy + L
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− x

pre
t −
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u
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(130)
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pre
t

Δy = −y
pre
t + L

�√
u −

√
�
� �����
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1√
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pre
t

�������
.

Fig. 4  This chart depicts the accounting value of the liquidity pool consistent with Fig. 5. The impact of 
transaction cost is almost not visible, whereas the impermanent loss (the discrepancy between the perfor-
mance of the liquidity pool and the vanilla portfolio) can become significantly large
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A.3: Impermanent Loss

Let us assume that it held � < St < u at the time of providing the liquidity. Simi-
larly as in the Sect. 3.4, the impermanent loss denominated in Y amounts to

It is easy to check that the loss function is continuous and negative throughout; 
exemplarily, utilizing (125) and (127) yields

If it held St ≤ � < u or � < u ≤ St at the time of providing the liquidity, then one 
would not incur any opportunity loss as long as St+Δt ≤ � or St+Δt ≥ u respectively. 
Other than that, the above formula prevails.

One argument in favor of Uniswap v3 is that one can achieve greater capital 
efficiency with leverage and therefore earn more premiums. Conversely, the lev-
erage also increases the risk and extent of the impermanent loss. Over-leveraged 
positions have been the recurring cause of critical failures in the financial indus-
try over the past decades. Thus, when facing the situation of the Sect. 3.6, we are 
not inclined to believe that leveraging is the solution to the quest for a sustainable 
ecosystem.

Appendix B: Balancer (CPMM with n Assets)

B.1: Notation

Notation Description

xi
t

Amount of token i (e.g., XTZ) at time t, i = 1, 2,… , n

Si
t

FX-rate of token i in the numéraire currency (e.g., XTZUSD) at time t

ct ∶=

n∏
i=1

xi
t
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≤ 0.
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B.2: Arbitrage

For the sake of simplicity, we ignore transaction costs. We consider the system of 
equations

where (ii.) must hold for i = 2, 3,… , n . Thus,

Notably, it usually requires all components for the regulation. The arbitrage profit 
with respect to the numéraire amounts to

the arithmetic average is larger or equal than the geometric average, and equality 
holds if and only if all components are identical. See also the Balan cer docum entat 
ion for further details.

Appendix C: Flat curve

C.1: Model

We consider a CFMM approach with

see the corresponding GitHu b repos itory. This choice is convenient for pairs of sta-
ble tokens. The isolines F(x, y) ≡ c for c > 0 are a mixture between constant product 
and constant sum (CSMM); see the Fig. 6. Note that the spot FX-rate for CSMM 
is unaffected by transactions. However, liquidity could be removed entirely. The 
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.
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(139)F(x, y) = (x + y)8 − (x − y)8, St =

(
xt + yt

)7
−
(
xt − yt

)7
(
xt + yt

)7
+
(
xt − yt

)7 ;

https://docs.balancer.fi/
https://docs.balancer.fi/
https://github.com/tezos-checker/flat-cfmm
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model is not analytically tractable; numerical approximations become inevitable, for 
instance, the Newton–Raphson method. In contrast to the classical CPMM, the par-
ity Sx

t
xt = S

y

t yt is usually not met.

levered: xy = const

√
k

�

√
k

u

√
k�

√
ku

unlevered:
(
x +

√
k

u

)(
y +

√
k�

)
= k = L2

Fig. 5  As long as the lower isoline does not leave the first quadrant, it will be levered to a level of higher 
liquidity. Beyond the boundaries, automatic conversion is prevented

Fig. 6  Illustration of the implicit isoline in (139) that is clamped between those of CPMM and CSMM
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