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Abstract
This paper outlines, and through stylized examples evaluates a novel and highly 
effective computational technique in quantitative finance. Empirical Risk Minimi-
zation (ERM) and neural networks are key to this approach. Powerful open source 
optimization libraries allow for efficient implementations of this algorithm making it 
viable in high-dimensional structures. The free-boundary problems related to Amer-
ican and Bermudan options showcase both the power and the potential difficulties 
that specific applications may face. The impact of the size of the training data is 
studied in a simplified Merton type problem. The classical option hedging problem 
exemplifies the need of market generators or large number of simulations.

Keywords  ERM · Neural networks · Hedging · American options

Mathematics Subject Classification  91G60 · 49N35 · 65C05

JEL Classification  C02 · C63

1  Introduction

Readily available and effective optimization libraries such as Tensorflow or Pytorch 
now make previously intractable regression type of algorithms over hypothesis 
spaces with large number of parameters computationally feasible. In the context 
of stochastic optimal control and nonlinear parabolic partial differential equations 
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which have such representations, these exciting advances allow for a highly efficient 
computational method. This algorithm, which we call deep empirical risk minimi-
zation, proposed by Han and E (2016) and Han et al. (2018), uses artificial neural 
networks to approximate the feedback actions which are then trained by empirical 
risk minimization. As stochastic optimal control is the unifying umbrella for almost 
all hedging, portfolio or risk management problems, and many models in financial 
economics, this method is also highly relevant for quantitative finance.

Although artificial neural networks as approximate controls are widely used in 
optimal control and reinforcement learning (Bertsekas & Tsitsiklis, 1996), deep 
empirical risk minimization simulates directly the system dynamics and does not 
necessarily use dynamic programming. It aims to construct optimal actions and val-
ues offline by using the assumed dynamics and the rewards structure, and often uses 
market generators to simulate large training data sets. This key difference between 
reinforcement learning and the proposed algorithm ushers in essential changes to 
their implementations and analysis as well.

Our goal is to outline this demonstrably effective methodology, assess its 
strengths and potential shortcomings, and also showcase its power through rep-
resentative examples from finance. As verified in its numerous applications, deep 
empirical risk minimization is algorithmically quite flexible and handles well a large 
class of high-dimensional models, even non-Markovian ones, and adapts to com-
plex structures with ease. To further illustrate and evaluate these properties, we also 
study three classical problems of finance with this approach. Additional examples 
from nonlinear partial differential equations and stochastic optimal control are given 
in the recent survey articles of Fecamp et al. (2020) and Germain et al. (2020). They 
also provide an exhaustive literature review.

Our first class of examples is the American and Bermudan options. The anal-
ysis of these instruments offer many-faceted complex experiments through which 
one appreciates the potentials and the challenges. In a series of papers, Becker et al. 
(2019, 2021) bring forth a complete analysis with computable theoretical upper 
bounds through its known convex dual. They also obtain inspiring computational 
results in high dimensional problems such as Bermudan max-call options with 500 
underlyings. Akin to deep empirical risk minimization is the seminal regression on 
Monte-Carlo methods that were developed for the American options by Longstaff 
and Schwartz (2001) and Tsitsiklis and Van Roy (2001). Many of their refinements, 
as delineated in the recent article of Ludkovski (2020), make them not only textbook 
topics but also standard industrial tools. Still, the deep empirical risk minimization 
approach to optimal stopping has some advantages over them, including its effort-
less ability to incorporate market details and frictions, and to operate in high-dimen-
sions as caused by state enlargements needed for path-dependent claims. An exam-
ple of the latter is the American options with rough volatility models as studied by 
Chevalier et al. (2021). They require infinite-dimensional spaces and their numeri-
cal analysis is given in Bayer et al. (2020). Other similar examples can be found in 
Becker et al. (2019, 2021).

For interpretability of our results, we base the stopping decisions on a surface 
separating the ‘continuation’ and ‘stopping’ regions, and approximate directly 
this boundary—often called the free boundary—by an artificial neural network. 
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Similarly for the same reason, Ciocan and Mišić (2022) compute the free bound-
ary directly, by using tree based methods. An additional benefit of this geometric 
approach to American options is to construct a tool that can also be effectively used 
for financial problems with discontinuous decisions such as regime-switching or 
transaction costs, as well as non-financial applications. Indeed, the computation of 
the free-boundary is an interesting problem independent of applications to finance. 
Recently, deep Galerkin method (Sirignano & Spiliopoulos, 2018) is used to com-
pute the free boundary arising in the classical Stephan problem of melting ice (Wang 
and Perdikaris, 2021). An alternative method with topological guarantees could be 
obtained by adapting our geometric approach to this problem.

Our numerical results, reported in the Sects. 4.5 and 4.6 below, show that natural 
problem specific modifications enable the general approach to yield excellent results 
comparable to the ones achieved in Becker et  al. (2019, 2021). The free bounda-
ries that we compute for the two-dimensional max-call options also compare to 
the results by Broadie and Detemple (1997) and by Detemple (2005). An impor-
tant step in our approach is to replace the stopping rule given by the sharp interface 
by a relaxed stopping rule given by a fuzzy boundary as described in the Sect. 4.4. 
Further analysis and the results of our free-boundary methodology are given in our 
future manuscript (Reppen et al., 2022).

Our second example of classical quadratic hedging (Schweizer, 1999) is undoubt-
edly one of the most compelling benchmark for any computational technique in 
quantitative finance. Thus, the evaluation of the deep empirical risk minimization 
algorithm on this problem, imparts valuable insights. Readily, Buehler et al. (2019a, 
2019b) use this approach for multidimensional Heston type models, delivering con-
vincing evidence for the flexibility and the scope of the algorithm, particularly in 
high-dimensions. Huré et al. (2018) and Bachouch et al. (2018) also obtain equally 
remarkable results for the stochastic optimal control using empirical minimization 
as well as other hybrid algorithms partially based on dynamic programming. Exten-
sive numerical experimentations are also carried out by Fecamp et al. (2020) in an 
incomplete market that models the electricity markets containing a non-tradable vol-
ume risk (Warin, 2019). Ruf and Wang (2021) apply this approach to market data of 
S &P 500 and Euro Stoxx 50 options. In all these applications, variants of the quad-
ratic hedging error is used as the loss function.

To highlight the essential features, we focus on a simple frictionless market with 
Heston dynamics, and consider a vanilla Call option with quadratic loss. In this set-
ting, we analyze both the pure hedging problem by fixing the price at a level lower 
than its known value and also the pricing and hedging problem by training for the 
price as well. By the well-known results of Schweizer (1991, 1999) and Föllmer 
and Schweizer (1991), we know that the minimizer of the analytical problem in the 
continuous time is equal to the price obtained by Heston (1993) as the discounted 
expected value under the risk neutral measure with the chosen market risk of volatil-
ity risk. Our numerical computations verify these results as well.

As the final example, we report the results of an accompanying paper of the first 
two authors (Reppen & Soner, 2020) for a stylized Merton type problem. With simu-
lated data, the numerical results once again showcase the flexibility and the scope of 
the algorithm, in this problem as well. We also observe that in data-poor environments, 
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the artificial neural networks have an amazing capability to over-learn the data causing 
poor generalization. This is one of the key results of Reppen and Soner (2020) which 
was also observed in Laurière et al. (2021). Despite this potential, as demonstrated by 
our experiments, continual data simulation can overcome this difficulty swiftly.

In this paper, we only discuss the properties of the algorithms that are variants of 
the deep empirical risk minimization. The use of artificial neural networks or statisti-
cal machine learning is of course not limited to this approach. Indeed, starting from 
Hutchinson et al. (1994) and especially recently, artificial neural networks have been 
extensively employed in quantitative finance. In particular, kernel methods are applied 
to portfolio valuation in Boudabsa and Filipović (2021), and to the density estimation 
in Filipovic et al. (2021). Gonon et al. (2021) use the methodology to study an equilib-
rium problem in a market with frictions. For further results and more information, we 
refer to the recent survey of Ruf and Wang (2020) and the references therein.

The paper is organized as follows. The next section formulates the control prob-
lem abstractly covering many important financial applications. The description of 
the algorithm follows. Section 4 is about the American and Bermudan options. The 
quadratic hedging problem is the topic of Sect. 5. Finally, the numerical examples 
related to the simple Merton problem are discussed in Sect. 6.

2 � Abstract problem

Following the formulation of Reppen and Soner (2020), we start with a Z ⊂ ℝ
d val-

ued stochastic process Z on a probability space Ω . This process drives the dynamics 
of the problem, and in all financial examples that we consider it is the related to the 
stock returns. For that reason, in the sequel, we refer to Z as the returns process, 
although they may be logarithmic returns in some cases. Investment or hedging deci-
sions are made at N uniformly spaced discrete time points labeled by k = 0, 1,… ,N 
and let

We use the notation Z = (Z1,… , ZN) and set Z0 = 0 . We further let � = (Ft)t=0,…,N 
be the filtration generated by the process Z. The �-adapted controlled state process 
X takes values in another Euclidean space X  and it may include all or some compo-
nents of the uncontrolled returns process Z.

In the financial examples, the state includes the marked-to-market value of the 
portfolio and maybe other relevant quantities. In a path-dependent structure, we 
would be forced to include not only the current value of the portfolio and the return, 
but also some past values as well (theoretically, we need to keep all past values but 
in practice one stops at a finite point). In illiquid markets, the portfolio composi-
tion is also included into the state and even the order-book might be considered. 
We assume that the state is appropriately chosen so that the relevant decisions are 
feedback functions of the state alone and we optimize over feedback decisions or 
controls. Thus, even if the original problem is low dimensional but non-Markov, one 
is forced to expand the state resulting in a high-dimensional problem.

T ∶= {0, 1,… ,N − 1}, T̂ ∶= {0, 1,… ,N}.
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We denote the set of possible actions or decisions by A . While the main decision 
variable is the portfolio composition, several other quantities such as the speed of the 
change of the portfolio could be included. Then, a feedback decision is a continuous 
function

We let C be the set of all such functions. Given � ∈ C , the time evolution of the state 
vector is then completely described as a function of the returns process Z. Hence, all 
optimization problems that we consider have the following form,

where � is a nonlinear function. We refer the reader to Reppen and Soner (2020) 
for a detailed derivation of the above formulation and several examples. Although 
the cost function � could be quite complex to express analytically, it can be easily 
evaluated by simply mimicking the dynamics of the financial market. Hence, com-
putationally they are straight-forward to compute and all details of the markets can 
be easily coded into it.

The goal is to compute the optimal feedback decision, �∗ , and the optimal value v∗,

When the underlying dynamics is Markovian and the cost functional has an additive 
structure, the above formulation of optimization over feedback controls is equivalent 
to the standard formulation which considers the larger class of all adapted processes, 
sometimes called open loop controls (Fleming & Soner, 2006). However, even with-
out this equivalence, the minimization over the smaller class of feedback controls 
is a consistent and a well-defined problem, and due to their tractability, feedback 
controls are widely used. In this manuscript, we implicitly assume that the problem 
is well chosen and the goal is to construct the best feedback control.

3 � The algorithm

In this section, we describe the deep empirical minimization algorithm proposed by 
Weinan E, Jiequn Han, and Arnulf Jentzen in Han and E (2016), Han et al. (2018).

A batch B ∶= {Z1,… , Zm} , with a size of m, is an i.i.d. realization of the returns 
process Z, where Zi = (Zi

1
,… , Zi

N
) for each i. We set

and consider a set of artificial neural networks parametrized by,

� ∶ T × X ↦ A.

minimize v(�) ∶= �[�(�, Z) ], over all � ∈ C,

�∗ ∈ argmin�∈C v(�), v∗ ∶= inf
�∈C

v(�) = v(�∗).

L(�,B) ∶=
1

m

m∑

i=1

�
(
�, Zi

)
,

N = {Φ(⋅;𝜃) ∶ T × X ↦ A ∶ 𝜃 ∈ Θ } ⊂ C.
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Instead of searching for a minimizer in C , we look for a computable solution in the 
smaller set N  . That is, numerically we approximate the following quantities:

The classical universal approximation result for artificial neural networks (Cybenko, 
1989; Hornik, 1991) imply, under some natural structural assumptions on the func-
tion � , that vN  approximates v∗ as the networks gets larger as proved in Reppen and 
Soner (2020) (Theorem  5). This also implies that the performance of the trained 
feedback control Φ(⋅;�∗) is almost optimal.

The pseudocode of the algorithm to compute �∗ and v∗ is the following,

•	 Initialize � ∈ Θ;
•	 Optimize by stochastic gradient descent: for n = 0, 1,…:

–	 Generate a batch B ∶= {Z1,… , Zm},
–	 Compute the derivative d ∶= ∇� L(Φ(⋅;�),B);
–	 Update � ← � − �d.

•	 Stop if n is sufficiently large and the improvement of the value is ‘small’.

In the above � is the learning rate and the stochastic gradient step is done through an 
optimization library.

The data generation can be done through either an assumed and calibrated model, 
namely a market generator, or by random samples from a fixed financial market data 
when sufficient and relevant historical data is available. Although these two set-
tings look similar, one may get quite different results in these two cases, even when 
the fixed data set is large. One of our goals is to better understand this dichotomy 
between these two data regimes and the size of the data needed for reliable results. 
Theoretically, when the simulation capability is not limited and data is continually 
generated, the above algorithm should yield the desired minimizer �∗ and the cor-
responding optimal feedback decision Φ(⋅, �∗) . However, with a fixed data set, the 
global minimum over N  is almost always strictly less than v∗ , and the large enough 
networks will eventually gravitate towards this undesirable extreme point which 
would be over-learning the data as already observed and demonstrated in Reppen 
and Soner (2020).

4 � Exercise boundary of American type options

American and Bermudan options are particularly central to any computational study 
in quantitative finance as they pose difficult and deep challenges, and they serve as 
an important benchmark for any new numerical approach. Methods successful in 
this setting often generalize to other problems as well. Indeed, the seminal regres-
sion on Monte-Carlo methods that were developed for the American options by 
Longstaff and Schwartz (2001) and Tsitsiklis and Van  Roy (2001) have not only 

�∗ ∶= �∗
N
∈ argmin�∈Θ v(Φ(⋅;�)),

vN ∶= inf
�∈Θ

v(Φ(⋅;�)) = v(Φ(⋅;�∗)).
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become industry standards in few years, but they have also shed insight into other 
problems as well. Together with rich improvements developed over the past decades, 
they can now handle many Markovian problem with ease. However, the key feature 
of these algorithms is a projection onto a linear subspace, and this space must grow 
exponentially with the dimension of the ambient space, making high-dimensional 
problems out of reach of this otherwise powerful technique. Examples of such high-
dimensional problems are financial instruments on many underlyings modeled with 
many parameters, path-dependent options, or non-Markovian models, all requiring 
state enlargements and resulting in vast state spaces.

4.1 � Problem

As well known the problem is to decide when to stop and collect the pay-off of a 
financial contract. Mathematically, for t ∈ T̂ = {0,… ,N} , let St ∈ ℝ

d
+
 be the stock 

value at the t-th trading date and � ∶ ℝ
d
+
↦ ℝ be the pay-off function. With a given 

interest rate r > 0 , the problem is

over all T̂ -valued stopping times � . We use the filtration generated by the stock price 
process to define the stopping times. It is classical that the expectation is taken under 
the risk neutral measure.

We assume that S is Markov and the pay-off is a function of the current stock 
value. When it is not, then we need to enlarge the state space. In factor models like 
Heston or SABR, factor process is included. In non-Markovian models like the frac-
tional Brownian motion, past values the stock are added as in Bayer et al. (2020), 
Becker et al. (2019, 2021). In look-back type options, the minimum or the maximum 
of the stock process must be included in the state. We refer to Reppen et al. (2022) 
for the details of these extensions.

We continue by defining the price at all future points. Recall that the filtration �  
is generated by the stock price process. Let Ξt be the set of all �-stopping times with 
values in {t,… ,N} . At any t ∈ T̂  , s ∈ ℝ

d
+
 , let v(t, s) be the maximum value or the 

price of this option when St = s , i.e.,

Then, v(N, ⋅) = � and the the stopping region is given by

Then the optimal stopping time is the first time to enter the region S , i.e., the follow-
ing stopping time in Ξt is a maximizer of the above problem:

Notice that as v(N, ⋅) = � , we always have (N, SN) ∈ S . This implies that �∗ is well-
defined and is bounded by N.

maximize v(�) ∶= �
[
e−r� �

(
S�
) ]

,

v(t, s) ∶= max
�∈Ξt

�
[
e−r(�−t) �

(
S�
)
∣ St = s

]
.

(4.1)S ∶= { (t, s) ∶ v(t, s) = �(s) }.

�∗ ∶= min
{
u ∈ {t,… ,N} ∶

(
u, Su

)
∈ S

}
.



98	 Digital Finance (2023) 5:91–111

1 3

Clearly, standard call or put options are the main examples. Many other examples 
that are also covered in the above abstract setting, including the max-call option dis-
cussed below.

Example 4.1  (Max-Call) Let St = (S
(1)
t ,… , S

(d)
t ) ∈ ℝ

d
+
 be a process representing 

the price of d dividend bearing stocks. We model it by a d-dimensional geometric 
Brownian motion with constant mean-return rate and a covariance matrix. The pay-
off of the max-call is given by,

where the strike K is a given constant. We study this example numerically in 
Sect. 4.6 below. One can also consider max-call options with factor models with an 
extended state-space.

4.2 � Relaxed stopping

Quite recently, in a series of papers, Becker et  al. (2019, 2021) use deep empiri-
cal risk minimization in this context. As the control variable is discrete (i.e., at any 
point in space, the decision is either ‘stop’ or ‘go’) and as the training or optimi-
zation is done through a stochastic gradient method, one has to relax the problem 
before applying the general procedure. We continue by first outlining this relaxation.

In the relaxed version, we consider an adapted control process p = (p0,… , pN) 
with values in [0, 1] which is the probability of stopping at that time conditioned 
on the event that the process has not stopped before t. Because one has to stop at 
maturity, we have pN = 1 . Given the process p, let �pt  be the probability of stopping 
strictly before t. Clearly, �0 = 0 and at other times it is defined recursively by,

It is immediate that �pt ∈ [0, 1] and is non-decreasing. Also, if pt = 1 , then �ps = 1 
for all s > t . The quantity (1 − �

p

t ) is the unused “stopping budget”, and the relaxed 
stopping problem is defined by,

over all [0,  1]-valued, adapted processes p. The original problem of stopping is 
included in the relaxed one, as for any given stopping time � , p�

t
∶= �{t=�} yields 

𝜉𝜏
t
= 𝜒{t>𝜏} and consequently, v(�) = vr(p

�) . It is also known that this relaxation does 
not change the value.

Becker et al. (2019, 2021) study the problem through this relaxation and imple-
ment the deep empirical risk minimization exactly as described in the earlier sec-
tion. Additionally, using the known convex dual of the stopping problem, they are 

�(St) =

(
max

i=1,…,d
S
(i)
t − K

)+

,

�
p

t+1
= �

p

t + pt
(
1 − �

p

t

)
= pt +

(
1 − pt

)
�
p

t , t ∈ T.

(4.2)maximize vr(p) ∶= �

[
N∑

t=0

pt
(
1 − �

p

t

)
ert �(St)

]
,
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able to obtain computable upper-bounds. For many financial products of interest, 
they obtain remarkable results in very high-dimensions. They also consider a frac-
tional Brownian motion model for the stock price. As for this example there is no 
Markovian structure, in their calculations the state is all the past yielding an enor-
mous state space. Still the algorithm is tractable with computable guarantees.

4.3 � The free boundary

In most examples, the optimal stopping rule is derived from a surface called the 
free boundary. For instance, the continuation region of a one-dimensional American 
Put option is the epigraph of a function of time. The stopping region of an Ameri-
can max-call option on the other hand, is obtained by comparing the maximum 
of the stock values to a scalar-valued function as proved in Proposition 4.4 below. 
These stopping rules have the advantage of being interpretable Ciocan and Mišić 
(2022) and easy to implement. Additionally, free-boundary problems of this type 
appear often in financial economics as well as problems from other disciplines. Thus 
numerical methods developed for the free-boundary of an American option could 
have implications elsewhere as well.

To be able to apply this method, we assume that the stopping region S has a cer-
tain structure. Namely, we assume that there exists two functions

(recall that T̂ = {0,… ,N} ) so that the stopping region of (4.1) is given by,

More importantly, we also assume that � is given by the problem and we only need 
to determine F which we call the free boundary. The following examples clarifies 
this assumption which holds in a large class of problems.

Example 4.2  It is known that the stopping region of an American Put option with a 
Markovian stock process is given by

for some function f ∶ [0, T] ↦ ℝ+ . In this case, �(s) = s and F(t, s) = f (t).
In the case of the max-call option, we show in Proposition 4.4 below that for any 

s = (s1,… , sd) ∈ Rd
+
 with �(s) = max{s1,… , sd} , there exists a free boundary F. 	

� ◻

Given the above structure of the stopping region through the pair (�,F) the opti-
mal stopping time is given by �∗ = �F , where for any free boundary F,

� ∶ ℝ
d
+
↦ ℝ, and F ∶ T̂ ×ℝ

d
+
↦ ℝ,

S = { (t, s) ∶ �(s) ≤ F(t, s) }.

S = {(t, s) ∶ s ≤ f (t) },

�F ∶= min
{
t ∈ T̂ ∶ �(St) ≤ F

(
t, St

) }
.
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In this approach, the output of the artificial neural network is a scalar valued func-
tion Φ(⋅;�) of time and the state values, and it approximates the free boundary F. 
Then for any parameter � , the stopping time is

4.4 � Fuzzy boundary

A sharp free-boundary has the same problem of zero-gradients as the original prob-
lem and its remedy is again a relaxation to allow for partial stopping. Indeed, given 
a free-boundary Φ(⋅;�) and a tuning-parameter 𝜖 > 0 , we define a fuzzy boundary 
region given by,

If Φ − � ≤ −� we stop, and if Φ − � ≥ � we continue, and we do these with prob-
ability one in each case. But if the process falls into the fuzzy region FΦ,� , then as in 
the relaxed problem, we assign a stopping probability as a function of the normal-
ized distance d�

t
 to the sharp boundary {Φ − � = 0} , i.e.,

and g ∶ [−1, 1] ↦ [0, 1] is a fixed increasing, onto function. Linear or sigmoid-like 
functions are the obvious choices. Once we compute the process p�

t
 , the value cor-

responding to the parameter � is vr(p�) with vr as in (4.2). Hence, the relaxed free 
boundary problem is to train the network to

The resulting trained artificial neural network is an approximation of the optimal 
free boundary.

4.5 � American put in one‑dimension

As in Becker et  al. (2019, 2021) we run the algorithm for an American put on a 
non-dividend paying stock whose price process is modeled by a standard geometric 
Brownian motion with parameters

where as usual S0 is the initial stock value, K is the strike, � is the volatility, and r is 
the risk-free rate. In this example, the state process is simply the stock process.

We are able to obtain accurate results for the value as well as for the free bound-
ary. One typical result is given in Fig. 1 below. As the free boundary is steeper and 
has larger curvature near maturity, we use a denser mesh in this region to better 
represent the function. Figure  1 uses 500 time points. We also employ important 

�� ∶= �Φ(⋅;�) = min{ t ∈ T̂ ∶ �(St) ≤ Φ
(
t, St ; �

)
}.

FΦ,� ∶= { (t, s) ∶ −� ≤ Φ(t, s;�) − �(s) ≤ � }.

p�
t
∶= g

(
d�
t

)
, where d�

t
=

Φ
(
t, St;�

)
− �

(
St
)

�
,

minimize � ∈ Θ ↦ vr
(
p�
)
.

S0 = K = 40, T = 1, � = 0.4, and r = 0.06,
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sampling to ensure more crossings of the free boundary. After the training is com-
pleted, the value corresponding to this trained free boundary is computed by using 
the corresponding sharp interface. Accurate price values are obtained rather easily. 
All of these calculations are implemented by python in a personal laptop.

4.6 � Max‑call options

In this subsection, we consider the max-call option studied in the seminal paper by 
Broadie and Detemple (1997) and also in the book by Detemple (2005). Let St ∈ ℝ

d 
be the price process of a dividend bearing stock. The pay-off the max-call option at 
time � is

where the function m ∶ ℝ
d
+
↦ ℝ+ is given by,

The main structural assumption needed is the natural sub-linear dependence of the 
stock prices on their initial values.

Assumption 4.3  (Sublinearity) For t ∈ T  , s ∈ ℝ
d
+
 , non-decreasing function 

� ∶ ℝ
d
+
↦ ℝ , � ≥ 1 and a stopping time � ≥ t,

Above assumption is satisfied in all examples. In fact, in most models the depend-
ency on the initial data is linear. Although in our numerical calculations, we use 
a geometric Brownian motion model for the stock price process, the method also 
applies more generally to all factor models.

We use this assumption to show that the stopping region has a certain geometric 
structure which we exploit. The following result is already proved in Broadie and 

�
(
S�
)
=
(
m(S�) − K

)+
,

m(s) ∶= max
i=1,…,d

si, s =
(
s1,… , sd

)
∈ ℝ

d
+
.

�
[
�(S�) ∣ St = �s

]
≤ �

[
�(� S�) ∣ St = s

]
.

Fig. 1   Left figure is a random initialization and the right one is the final trained boundary. The blue line 
is the optimal calculated through a finite-difference scheme. The price is 5.311



102	 Digital Finance (2023) 5:91–111

1 3

Detemple (1997) and more generally in Reppen et al. (2022). We provide its proof 
for completeness. Let S be as in (4.1) and set

Note that for any s ∈ ℝ
d
+
 , s

m(s)
∈ K.

Proposition 4.4  Consider the max-call option in a market satisfying the Assumption 
4.3. Then, if (t, s) ∈ S , then (t, �s) ∈ S for any � ≥ 1 . In particular,

where F ∶ T̂ ×K ↦ ℝ+ is given by,

Above result can be equivalently stated as the t-section 
St ∶= { s ∈ ℝ

d
+

∶ (t, s) ∈ S } of the continuation region being star-shaped for every 
t.

Proof  Suppose that (t, s) ∈ S and � ≥ 1 . As {(N, s) ∶ s ∈ ℝ
d
+
} ⊂ S , if t = N , clearly 

(t, �s) = (N, �s) ∈ S . So we assume that t < N . Then, a point (t, s�) is in S if and 
only if s′ > K and the following inequality is satisfied for every � ∈ Ξt:

By Assumption 4.3,

Hence, we conclude that (t, �s) ∈ S . 	�  ◻

4.6.1 � Numerical experiments

We consider a max-call option and in a geometric Brownian motion model under the 
risk neutral measure,

with parameters

K ∶=
{
s ∈ ℝ

d
+

∶ m(s) = 1
}
.

S = { (t, s) ∶ m(s) ≥ F(t, s∕m(s)) },

F(t, k) ∶= inf { 𝜌 > 0 ∶ (t, 𝜌k) ∈ S }, m ∈ M.

�

[
e−r(�−t)

(
S� − K

)+ | St = s�
]
≤ s� − K.

�

[
e−r(�−t)

(
S� − K

)+ | St = �s
]
≤ �

[
e−r(�−t)

(
�S� − K

)+ | St = s
]

= �

[
e−r(�−t)

(
�
[
S� − K

]
+ (� − 1)K

)+ | St = s
]

≤ ��
[
e−r(�−t)

(
S� − K

)+ | St = s
]
+ (� − 1)K

≤ �(s − K) + (� − 1)K

= (�s − K).

St = S0 exp
(
(r − div)t + �Wt −

1

2
�2t

)
,
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where the notation is as in the previous subsection and div is the dividend rate. We 
take the maturity to be 3 years and N = 9 . Thus, each time interval corresponds to 
four months. All these parameters are taken from Becker et al. (2019), Becker et al. 
(2021) to allow for comparison. We also make qualitative comparison to the results 
of Broadie and Detemple (1997).

Table 1 shows the results with d = 2 , S0 = 90 , batch size of B = 213 and 7000 
iterations. The corresponding price is computed after the training is completed 
with 223 Monte-Carlo simulations using the sharp boundary instead of the fuzzy 
one. Important sampling is used with a 1.4% downward drift. We repeated the 
experiment ten times in a personal computer. All of the results are within the 
95% confidence interval [8.053 , 8.082] computed in Andersen and Broadie 
(2004). The standard deviation of each price computation is quite low. Hence, 
the maximum of the values is a lower bound of the price.

We also repeated the experiments of Becker et al. (2019), Becker et al. (2021) 
in space dimensions d = 5, 10, 100 with the above parameters. For each param-
eter set, we computed ten prices exactly as described above. The results reported 
in Table  2 below are in agreement with the results of Becker et  al. (2021) 
(Table 9). We should also note when d is large, the maximum of many stocks 
have a very strong upward drift making the standard deviation of the rewards 
quite high.

The above table reports the average values for ten runs to be able to asses 
the possible variations. However, the maximum value among these ten runs is 
in fact a lower bound the actual price. As we computed these values with 223 
(roughly eight million) simulations, the standard division of this price value is 
small.

In two dimensions, the stopping region can be visualized effectively. Fig-
ures 2 and 3 are stopping regions in two space dimensions obtained with initial 
data S0 = 90 and S0 = 100 . Clearly the free boundary is independent of the ini-
tial condition and the below numerical results verify it. Also they are similar to 
those obtained in Broadie and Detemple (1997).

K = 100, S0 = 90, 100, 110, � = 0.2, r = 0.05, div = 0.1,

Table 1   Ten experiments with S
0
= 90 , batch size 213 , 7000 iterations

Prices are calculated with 223 simulations. Stdev in the third and sixth rows refer to the standard devia-
tions of the Monte-Carlo simulations, while Stdev at the end is the standard deviation of the calculated 
ten prices

Runs 1 2 3 4 5 6

Price 8.0747 8.0757 8.0710 8.0684 8.0670 8.0731
Stdev 0.00305 0.00315 0.00310 0.00310 0.00309 0.00311

Runs 7 8 9 10 Mean Stdev

Price 8.0686 8.0707 8.0620 8.0679 8.0699 0.0040
Stdev 0.00306 0.00308 0.00307 0.00311 – –
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5 � Valuation and Hedging

We consider a European option with stock process S and pay-off �(ST ) . We consider 
the Heston dynamics,

where W, W̃ are one-dimensional Brownian motions with constant correlation of � , 
and the five Heston parameters (�, �, �, �, �) are chosen satisfying the Feller condi-
tion. In particular, we choose the market price of volatility risk parameter �.

dSt = St
�
𝜇dt +

√
vt dWt

�
,

dvt =
�
𝜅(𝜃 − vt) − 𝜆 vt

�
dt + 𝜎 vt dW̃t,

Table 2   Each price is the 
mean of ten experiments with 
parameters as in Table 1

Max price is the maximum of ten experiments with a standard devia-
tion of the price calculation with 223 Monte-Carlo simulations

Dim. S
0

Price Std Price in 
Becker et al. 
(2021)

Max Price Its Std

2 90 8.0699 0.0031 8.068 8.0757 0.0040
2 100 13.9086 0.0059 13.901 13.9128 0.0033
2 110 21.3434 0.0059 21.341 21.3541 0.0104
5 90 16.6187 0.0040 16.631 16.6238 0.0045
5 100 26.1194 0.0259 26.147 26.1644 0.0057
5 110 36.7176 0.0078 36.774 36.7408 0.0078
10 90 26.2130 0.0182 26.196 26.2362 0.0069
10 100 38.2735 0.0538 38.272 38.3351 0.0089
10 110 50.8350 0.0397 50.812 50.8685 0.0081
100 90 66.2460 0.4946 66.359 66.6163 0.0223
100 100 82.5475 0.6463 83.390 83.6563 0.0272
100 110 98.9868 0.0366 100.421 99.0575 0.0353

Fig. 2   Evolution of the Free Boundary with S
0
= 90
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Let p∗ be the price of this claim, and Z be the return process, i.e.,

Further, let the feedback actions be the continuous functions

representing the dollar amount invested in the stock. The corresponding wealth pro-
cess is given by,

with initial data X�,x
0

= x.
We first fix an initial wealth of x < p∗ and consider the following pure-hedging 

problem of minimizing the square hedging error, i.e.,

In the second problem, we minimize over x as well, i.e,

As proved by Föllmer and Schweizer (1991), it is well-known that in continuous 
time the solution to the second problem, v∗ , is equal to the Heston price. Thus, for 
sufficiently fine discretization v∗ is close to zero, x∗ is close to the known continu-
ous-time Heston price. Also the numerical hedge �∗ must be equal to the continuous 
time hedge.

If r = 0 , then, X�,x
t = x + X

�,0
t  and the initial wealth x only influences the mean 

of the hedging error. Therefore, we expect that after an initial adjustment to mini-
mize the mean, the networks would minimize the variance which is independent 
of the initial wealth. This approximate reasoning indicates that after an initial 

(5.1)Zt+1 ∶=
St+1 − St

St
, t ∈ T.

� ∶ T ×ℝ+ ×ℝ ↦ ℝ,

(5.2)X
�,x
t+1

= (1 + r)X�,x
t

+ �
(
t,X�,x

t
, Zt

) (
Zt+1 − r

)
, t ∈ T,

(5.3)v∗(x) ∶= min
�∈C

v(x,�), where v(x,�) ∶= �

[(
�
(
ST
)
− X

�,x
T

)2 ]
.

(5.4)v∗ ∶= min
x∈ℝ

v∗(x) = min
(x,�)∈ℝ×C

v(x,�).

Fig. 3   Evolution of the Free Boundary with S
0
= 100
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transient region, both minimization problems may behave similarly when there is 
large data.

5.1 � Numerical results

We implemented the above hedging problem in Julia’s Flux (Innes, 2018) by param-
eterizing the portfolio at each time point, including the initial wealth level. In par-
ticular, we hedge a call option with strike K, i.e., �(x) = (x − K)+ = max{x − K, 0} . 
Our implementation follows the scheme in Sect. 3, which we here describe in greater 
detail for this particular problem.

We see in (5.4) that the two quantities we optimize over are x and � . As x is a 
scalar, we directly parameterize it with a 1-element tensor, which after optimization 
is the option price. The policy � , however, can be approximated in various ways. 
We here opt for a very direct method in which we represent it by a single neural 
network with time and stock data as inputs. This contrasts (Buehler et al., 2019a), 
where the authors discretize time and design one neural network per time point. As 
we shall see, our implementation of a single neural network also performs well, with 
the additional benefit of allowing changes to the time discretization during training. 
There are also other training differences between the two parameterizations, as, for 
instance, the one used here accomplishes a large degree of parameter sharing. Nev-
ertheless, a thorough account of these differences is outside the scope of the present 
paper.

Another detail of our implementation is that we write � as a function of t and St 
instead of the formulation in (5.2). It is clear that the two are mathematically equiva-
lent, although they could differ in training performance. Ours is a naïve choice and 
we make it because we find it more natural, not because it necessarily leads to better 
performance. The neural network is designed with two hidden layers of width 20 
and with ReLU activation. In-between layers, batch normalization is employed.1

The results of our computations are presented in Table  3. We compare our 
numerical solution to the Heston prices from https://​www.​quant​lib.​org/. No signif-
icant tuning has gone into producing our values, and it is nevertheless clear that 

Table 3   Hedging performance 
of a call option with strike K in 
a Heston model with parameters 
S
0
= 100 , v

0
= 0.04 , � = 0.9 , 

� = 0.04 , r = � = 0 and � = 0.2

The maturity T = 1∕12 and the time interval is discretized in 22 
steps. Each row lists the deep hedging price average over 100 runs 
along with the standard deviation over the same 100 runs

K QuantLib price Price Avg. abs. error Error std. dev.

90 10.076508 10.078163 0.001869 0.001174
100 2.295405 2.295211 0.002018 0.001065
110 0.128136 0.127069 0.001971 0.001793

1  Although we believe that the following parameters are not crucial for replicating our results (because 
they were not tuned), we list them here for completeness: batch size: 512; optimizer: Adam with the Flux 
default parameters (�, �

1
, �

2
) = (0.001, 0.9, 0.999) ; and the number of epochs was a fixed value for which 

the training error of a typical run had plateaued.

https://www.quantlib.org/
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accurate prices are consistently attained. We see, for instance, that the absolute error 
is approximately the same for all three strikes, which we argue is a consequence of 
(i) not tuning the training parameters to each individual problem and (ii) our hedg-
ing is in discrete time, which introduces a time discretization error. Although this 
is only a one-dimensional problem, it gives credence to the method’s effectiveness, 
effectiveness that does translate into higher-dimensional performance, as we illus-
trated for the American options problems.

Theoretically, in continuous-time, the optimal hedge is independent of the initial 
wealth. We also studied this by fixing the initial portfolio value to the price and also 
to its half value. One simulation of the trained hedge is given in the Fig.  4 shows 
that the dependence is minimal.

6 � Merton problem and overlearning

In this section, we summarize the results of Reppen and Soner (2020) by the first 
two authors. As in that paper, to emphasize the essential features of the algorithm, a 
simple financial market without any frictions and constant coefficients is considered. 
Additionally, consumption is not taken into account. All these details can incor-
porated into the model and problems with complex market structures have already 
been studied extensively by Buehler et al. (2019a, 2019b).

Consider a stock price process St ∈ ℝ
d
+
 in discrete time and assume a constant 

interest rate of r. Let the return process Z be as in (5.1) and X� = X�,x be as in (5.2). 
We suppress the dependence of the initial wealth x for simplicity. Then, the classical 
investment problem is to maximize v(�) ∶= �[U(X�

T
)] with a given utility function 

U.

Fig. 4   Optimal Hedges for the Heston model. The orange curve is the trained feedback hedge with an 
initial wealth half the option price, while the red curve is trained with initial wealth equal to the option 
price. The stock price is rescaled to start at S

0
= 1
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In Reppen and Soner (2020) it is proved that the deep empirical risk minimization 
algorithm converges as the size of the training data gets larger. On the other hand, 
it is also shown that for fixed training data sets, larger and deeper neural networks 
have the capability of overlearning the data, however large it might be. In such situ-
ations, the trained neural networks while substantially over-perform the theoretical 
optimum on the training set, they do not generalize and perform poorly on other data 
sets.

These theoretical results are demonstrated in the following stylized example with 
an explicit solution in Reppen and Soner (2020) (Sect. 8). In that example, the utility 
function is taken to be the exponential with parameter one, and as the decisions are 
independent of the initial value for these class of utilities, the initial value is fixed 
as one dollar. To simplify even further, for one period this amount is invested uni-
formly on all stocks. Then, with � ∶= (1,… , 1) , �0 = �∕d and X1 = (Z1 ⋅ �)∕d − r 
are uncontrolled, and the investment problem is to choose the feedback portfolio 
�1(Z1) ∈ ℝ

d so as to maximize

where X�
2
= (1 + r)X1 + a(Z1) ⋅ (Z2 − r�) . The certainty equivalent of a utility value 

v < 1 given by

is a more standard way of comparing different utility values. Indeed, agents with 
expected utility preferences would be indifferent between an action � and a cash 
amount of ce(v(�)) because the utilities of both positions are equal to each other. 
Thus, for these agents the cash equivalent of the action � is ce(v(�)).

The following Table Reppen and Soner (2020) (Table  1) clearly demonstrates 
overlearning. In this experiments the training data of size N = 100, 000 and an 
artificial neural network with three hidden layers of width 10 is trained on this set 
for four or five epochs. For each dimension the algorithm is run thirty times and 
Table 4 below reports the mean and the standard. deviation. Although conservative 

v(�) = �
[
1 − exp

(
−X�

2

)]
,

ce(v) ∶= ln(1 − v) ⟺ v = U(ce(v))

Table 4   Average relative 
in-sample performance, and its 
comparison to the out-of-sample 
performance with the above 
described conservative stopping 
rule

Everything is in % with training size of N = 100, 000 and three hid-
den layers of width 10. The � value is the average of 30 runs and � is 
the standard deviation

dims p
in

 (%) p
in
− p

out
 (%)

� � � �

100 10.12820 1.09290 23.67080 2.01177
85 8.38061 1.35575 20.16440 2.30489
70 7.32720 0.86458 15.62060 1.94043
55 5.05783 0.81518 10.93950 1.54431
40 3.74648 0.62588 7.91105 1.32581
25 2.11501 0.43845 4.58954 0.88461
10 0.53982 0.34432 1.46138 0.39078
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stopping rules are employed in Reppen and Soner (2020), there is substantial over-
performance increasing with dimension.

7 � Conclusion

The deep empirical risk minimization proposed by Han and E (2016), Han et  al. 
(2018) provides a flexible and a highly effective tool for stochastic optimization 
problems arising in computational finance. Recent development of optimization 
libraries make this algorithm tractable in very high dimensions allowing to include 
important market details such as factors and frictions, as well as models with long 
memory. Once a large training set is given, the algorithm mimics the market dynam-
ics with all its details. This simple description together with powerful new compu-
tational tools are keys to the power of the algorithm. We have demonstrated above 
properties in three different classes of problems. As it is always the case, each 
requires problem specific but natural modifications. Moreover, the output can be 
designed to be exactly the decision rule that is under investigation.

The method on the other hand needs large data sets for reliable results. In the 
financial setting this essentially limits its scope to model driven markets with an 
unlimited simulation capability. However, due to its seamless transition to more 
complex structures, more interesting parametric models are now feasible. Thus, 
on-going research on market generators will be an important factor on further 
developments.
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