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Abstract
Order flow analysis studies the impact of individual order book events on result-
ing price change. Using data acquired from BitMex, the largest cryptocurrency 
exchange by traded volume, the study conducts an in-depth analysis on the trade 
and quote dataof the XBTUSD perpetual contract. The study demonstrates that the 
trade flow imbalance is better at explaining contemporaneous price changes than the 
aggregate order flow imbalance. Overall, the contemporaneous price change exhibits 
a strong linear relationship with the order flow imbalance over large enough time 
intervals. Lack of depth and low update arrival rates in cryptocurrency markets are 
found to be the main differentiators between the nascent asset class market micro-
structure and that of the established markets.

Keywords  Market microstructure · Cryptocurrency · Electronic trading · Market 
impact · Order flow

1  Introduction

Cryptocurrency is a nascent asset class. It was first conceptualised in the seminal 
Bitcoin whitepaper by anonymous programmer Satoshi Nakamoto (Antonopoulos 
2017). Bitcoin was the first digital currency that achieved exchange of value without 
the need of a third party. Bitcoin network timestamps the transactions by hashing 
them, thus creating a hash-based proof of work chain of transactions that cannot be 
undone without redoing all the work done prior. It may help to think of Bitcoin and 
other cryptocurrency structures as immutable databases or ledgers of transactions, 
that cannot be changed because of so-called network agents—the miners. Miners 
solve computationally hard problems to arrive to common consensus about what 
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chain of events (or transactions) took place over a defined number of events. Only 
the copy of the chain of events that is agreed upon by the majority of the network 
will be considered the true one. Bitcoin was the first proof of concept of the block-
chain technology. Blockchain—the technology used for verifying and recording 
transactions and is the core of Bitcoin—is seen as having the potential to reshape the 
global financial system and possibly other industries. As such, blockchain removes 
the need for trust between the parties exchanging value or utility, protecting from 
common pitfalls such as double-spending, fraud and transaction reversibility. Nowa-
days, there are a few thousand different currencies/projects that employ blockchain 
technology. As public interest in cryptocurrencies grew, first exchanges between fiat 
currencies and cryptocurrencies started to take place.

Cryptocurrency first began trading hand-to-hand, usually via forum negotiations; 
the first ever documented transaction was a purchase of two Papa Johns pizzas for 
the region of 10,000 Bitcoins (Bitcointalk 2010). As growth progressed and the asset 
class became more popular, first exchanges started to facilitate fiat–Bitcoin trading. 
First such venues were Mt.Gox, BitStamp, BTC China and BTC-e (Halaburda and 
Gandal 2017). Technological inferiority of such “handmade”exchanges meant that 
not only were they susceptible to hacks and compromises, but also that trading of 
new digital assets was and still is fragmented and inefficient. As of mid-2013, 45% 
of exchanges have been shutdown because of hacks and owner-driven compromises 
(Steadman 2013). Bitcoin price appreciation reached its initial peak in late 2013/
early 2014 when Mt.Gox, then the biggest exchange, shut down, reporting an attack 
that compromised roughly 850,000 Bitcoins, majority of which belonged to the 
customers of the exchange (Halaburda and Gandal 2017). Consequently, prices of 
cryptocurrency assets entered a period of downtrend, but the number of users of 
cryptocurrencies actually increased over the period. As of late 2017 and early 2018, 
CME and CBOE have listed cash-settled future contracts on Bitcoin/Dollar, which 
has made inflows of institutional capital into the asset class possible.

Market dynamics in cryptocurrency markets tend to be characterised by high 
volatility, thin liquidity and extreme sentiment swings (Chan 2017). Such market 
dynamics are produced by a number of drivers. First of all, there is no central limit 
order book or order routing between cryptocurrency venues, unlike for example in 
U.S. Equities. 90% of trading volume is fragmented across a dozen of exchanges, 
with notable price discrepancies (Verhage 2018). Another related driver of market 
dynamics is technological inferiority of cryptocurrency exchanges. Periods of high 
volume have seen many exchanges’ matching engines dysfunction at once, bright-
est example being December 2017 when value of Bitcoin crossed $15,000 (Russo 
2018). Another side effect of technological inferiority is the security breaches that 
happen in the form of hacking attacks and other compromises of private keys (Anto-
nopoulos 2017). Such events usually result in market-wide panic and trigger high 
levels of volatility and thin liquidity.

In turn, volatility attracts a wide array of day-traders that feast off the price 
swings that are much harder to come by in mature markets. If we add the effects of 
leverage that some exchanges offer, the traders’ activity can be argued to amplify the 
price swings even further. In addition, there is no generally accepted way of valu-
ing cryptocurrency. One could equate the intrinsic value of Bitcoin to the cost of 
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computational power that goes into solving the block’s hash divided by the block 
reward. On the other hand, one can attribute value to adoption statistics such as net-
work hash rate and number of unique wallets. However, as such, there is no agree-
ment on fundamental value criteria. As a result, technology, regulation, sentiment, 
market participants and lack of fundamental value consensus drive the over-arching 
market macrostructure of cryptocurrency (Hileman and Rauchs 2017).

Shift in public opinion about cryptocurrency, changing market microstructure 
landscape, diversity of available data and gaps in current research merit a thor-
ough analysis of order flow price impact in cryptocurrency markets. The idea of a 
decentralised economy is gaining traction and that demands better understanding of 
underlying dynamics of the currency (Zheng et al. 2016). To facilitate smooth adop-
tion of cryptocurrency into everyday lives, market stability is essential. The study 
will examine the order flow impact on price, a fundamental characteristic of market 
microstructure of any asset. The research will likely benefit fields of optimal liquid-
ity provision, optimal execution, and advancement of electronic trading in realm of 
cryptocurrency markets.

2 � Research objectives and questions

The research objectives of this study are motivated by the gaps in current research, 
which will be evident in the next section. The study aims to be the primer on the 
cryptocurrency market microstructure, thus becoming a point of future reference for 
subsequent research in the area. The main question that this study addresses is as 
follows:

To what extent does order flow imbalance impact price change in cryptocurrency 
markets?

The specific definitions of order flow imbalance and price change follow in 
Sect. 4. The preliminary research yields the following hypotheses:

1.	 Order flow imbalance OFIk has a positive linear relationship with contemporane-
ous mid-price change ΔMPk , i.e. the price impact coefficient �OFIk is not equal to 
zero and is statistically significant at 1% significance level, i.e. p  value ≤ 0.01. 

2.	 Trade flow imbalance TFIk has a positive linear relationship with contemporane-
ous mid-price price change ΔMPk , i.e. the price impact coefficient �TFIk is not 
equal to zero and is statistically significant at 1% significance level, i.e. p value ≤ 
0.01

H0 ∶ �OFI = 0;

H1 ∶ �OFI ≠ 0.

H0 ∶ �TFI = 0;

H1 ∶ �TFI ≠ 0.
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3.	 Order flow imbalance OFIk has a stronger explanatory power than trade flow 
imbalance TFIk on price ΔMPk , as measured by the coefficient of determina-
tion—R2.

3 � Literature review

This section provides an overview of current research in the field of cryptocurrency, 
market microstructure and the union of the two. Further, it identifies current gaps 
in the existing research and justifies the motivation to pursue the exploration of the 
chosen topic.

3.1 � Market microstructure

Market microstructure concerns itself with study of the different agents within a 
confined market structure and events that occur between these agents, namely limit 
orders, market orders and cancellations. Order flow imbalance quantifies the differ-
ence between supply and demand within a limit order book (LOB) and has been 
formalised by Cont et  al. (2014). Further studies have used order flow imbalance 
(OFI) and its variants to establish its predictive capacity over intra-day time frames, 
as opposed to measuring contemporaneous price change used in the initial study 
(Shen 2015; Jessen 2015). OFI examines how well a market can absorb the impact 
of order events. Understanding of this aspect of markets is essential for liquidity 
provision and market stability, both of which are of interest to financial institutions 
and government entities. The ability to forecast short-term price movements allows 
market makers to better position themselves in a stochastic environment to provide 
deeper levels of liquidity longer, thus dampening the effects of volatility (Bilokon 
2018). By construction, market stability can be improved, which largely decreases 
the probability of evaporation-of-liquidity type of events, e.g. 2010 ES-mini Flash 
Crash (Kirelenko et  al. 2017). In turn, market makers’ ability to make both sides 
of the book based on a well-defined statistical edge that helps them avoid adverse 
selection. In parallel, understanding how a market functions on an intricate level 
also reduces second-order execution costs such as slippage and market impact.

3.2 � Approaches to LOB analysis

Approaches to study of LOBs and their dynamics can be classified into two broad 
categories: theoretical (analytic) and empirical (data driven). Theoretical study of 
limit order books is motivated by replicating the processes observed in a LOB by 
means of a mathematical process. Many scientists converge that processes within 
LOB can be modelled by characteristics of a Markov process (Huang et al. 2015; 
Kelly and Yudovina 2017; Cont and De Larrard 2013), by those of a Hawkes process 
(Abergel and Jedidi 2015) and the hybrid of the two that evolves into a marked-point 
process (Morariu-Patrichi and Pakkanen 2017). Results are formulated by means of 
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mathematical analysis. Studies usually proceed to calibrate their models on empiri-
cal data to verify the validity of the models and find outstanding parameters.

Empirical approach to studying LOBs tackles the problem by first and foremost 
addressing the characteristics of real-world data. Such data-driven approaches were 
especially made attractive with development of (a) fast and efficient computation, 
(b) vast amounts of data and (c) modern Machine Learning algorithms that include 
classical statistical learning techniques (Hastie et al. 2001) and more recently, Deep 
Learning (Goodfellow et al. 2016). Goals of such studies vary from studying market 
impact and order book modelling (Donier and Bonart 2015; Cont et  al. 2014), to 
extracting predictive capability from various market microstructure features (Dixon 
2018; Sirignano and Cont 2018). Criticism around data-driven approach is centred 
around the fact that studies tackle the data head-on, often studying the statistical 
mechanics of the after-facts, rather than asking fundamental questions about pos-
sible origins of the underlying processes. Further styles of approach include econo-
physics approach, which attempts to model LOB dynamics by behaviour of sub-
atomic particles (Chakraborti et al. 2011).

3.3 � Birth of a new asset class

LOBs are a product of rapid technological development that took place over last 20 
years. At its heart, LOBs attempt to solve the problem of supply and demand and 
target information asymmetry by indicating a state of the market at any given time 
(Black 1971). Electronification of exchanges, implementation of limit order books, 
emergence of high-frequency trading and automated execution have become essen-
tial features of the modern financial markets. However, financial technology has 
brought a lot of value to the financial industry outside of electronic trading enhance-
ments—it has disrupted the way people exchange value and utility. The blockchain 
is in the core of Bitcoin function. A blockchain can be thought of as an immuta-
ble public ledger, in which all transactions are linked cryptographically. While the 
underlying technology is essential to understanding intrinsic value of an asset, this 
study will focus solely on order book dynamics of cryptocurrency markets.

3.4 � Current research

The majority of current cryptocurrency research is based on blockchain technol-
ogy (Zheng et al. 2016). A small fraction of research focuses on macroscopic price 
dynamics of cryptocurrencies (Osterrieder et al. 2017). To our current knowledge, 
there are only two academic studies that concern themselves with market micro-
structure of digital assets (Donier and Bonart 2015; Guo and Antulov-Fantulin 
2018) and some blog posts that shine light on the subject (Heusser 2013). Technol-
ogy research is concerned with various improvements of blockchain, such as scal-
ability, throughput, applications to new industries and disruption of existing ser-
vices by means of decentralisation. Current studies on price dynamics are mostly 
interested in predicting price series of cryptocurrency assets and try to understand 
how to value cryptocurrency objectively (Pagnottoni et  al. 2018). Wheatley et  al. 
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(2018) are able to model Bitcoin’s market cap via application of Metcalfe’s law to 
network size and show that Bitcoin price behaviour breaks its “fundamental” value 
on at least four occasions. Their analysis shows that such behaviour is well modelled 
by Log-Periodic Power Law Singularity (LPPLS) model, which parsimoniously cap-
tures diverse positive feedback phenomena, such as herding and imitation. Oster-
rieder et al. (2017) fits a large array of statistical models to cryptocurrency data to 
understand which distribution is best at modelling price dynamics. The study con-
cludes that Bitcoin price is best explained by a hyperbolic distribution of returns.

Madan et  al. (2015) explores avenues in automated trading of bitcoin, high-
lighting ease of market access and real-time feeds in data collection methodology. 
Researchers in Madan et al. (2015) propose Support Vector Machine (SVM), Bino-
mial GLM and Random Forest algorithms that take various bitcoin network fea-
tures, such as transaction count, mempool (number of unconfirmed transactions on 
Bitcoin blockchain network) and hash rate to classify 10-s and 10-min direction of 
return. They achieve maximum accuracy of 57% with deep Random Forest algo-
rithm. Shah and Zhang (2014) successfully apply Bayesian regression to the prob-
lem of binary classification of bitcoin price direction. Jiang and Liang (2016) apply 
convolutional neural network to cryptocurrency portfolio management problem. The 
network takes price series of cryptocurrencies as input and outputs a weight vector 
constrained to being long-only portfolio. Study claims to achieve a tenfold return on 
investment within a space of few months.

Market dynamics studies that are enumerated above have clear limitations. First 
of all, they work with sampled trade data, omitting the order book dynamics. Such 
limited data can produce only limited backtests; it is not possible to simulate real-
istic execution and simulate slippage that would most likely occur in similar trad-
ing environments. Second, studying the strategies that attempt to maximise profit 
at such intervals does not merit much value to market stability and one may even 
argue them to be detrimental to stability of markets because the momentum price 
swings are likely to be amplified in such low-liquidity environments. Last but not 
least, validity of strategies that the studies come up with is questionable because 
data sample that they examine (mainly 2010–2017) is of trending nature, which may 
make these studies subject to overfitting.

3.5 � Cryptocurrency market microstructure

Donier and Bonart (2015) examine market impact of meta-orders in Bitcoin/USD 
market. Researchers use a privileged dataset of trade data from Mt.Gox exchange 
that discloses trades of distinct traders by anonymous IDs. Among the subjects it 
studied are execution of large orders, market impact of meta-orders, intra-day vola-
tility and market reaction to order flow. Perhaps the main result of the study is that 
square-root law of market impact holds for meta-orders in Bitcoin/USD market. That 
implies that the average relative price change between the first and the last trades of 
a meta-order is well approximated by the square root of the order volume, which 
is well documented for other more mature markets such as equities, futures and 
options (Bershova and Rakhlin 2013). The study proceeds to examine market impact 
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conditioned on various order flow predicates. Researchers highlight a very distinct 
feature of Bitcoin/USD market—during execution of meta-orders, impact is nicely 
approximated by square root of global market imbalance. They conclude that market 
impact is not a reaction to individual meta-orders, but to the whole order flow. This 
motivates further study of order flow imbalance in cryptocurrency markets. Guo and 
Antulov-Fantulin (2018) apply a range of Machine Learning techniques to predict 
Bitcoin prices using various LOB features, but are rather ambiguous about the fea-
tures they use.

While data in Donier and Bonart (2015) are represented by a privileged dataset, 
its source is one of the first-organised exchanges and dataset ends in 2013 due to a 
hack that bankrupted the exchange. Technological inferiority of Mt.Gox exchange 
may have affected the robustness of its LOB and hence the data that were recorded 
from it. Last but not least, Mt.Gox offered a flat-fee trading schedule of 60 bps for 
both, makers and takers. This is no longer the case for many current cryptocurrency 
exchanges; fee schedules and especially, rebates to market makers are essential fea-
tures of market microstructure landscape of any organised exchange.

4 � Methodology

This section describes the data that are used throughout the study, defines the vari-
ables subject to analysis and specifies the models that are fit to the variables.

4.1 � Data

4.1.1 � Data collection

The data that are used in this study correspond to the time period beginning in Sep-
tember 2017 and ending in November 2017. The data were collected via applica-
tion programming interface (API), publicly provided by BitMex exchange. Due to 
computational constraints, such as random-access memory (RAM), the subset of the 
data which is used in the study starts from 1 October 2017 and ends on 23 Octo-
ber 2017. Quote and trade data contain 81.3 million and 38.9 million data points, 
respectively.

Data were collected for the XBTUSD pair, which is the most traded pair on Bit-
mex, see “Appendix A”. The data are initially stored as Comma Separated Values 
file (CSV) and are later partitioned by trading day and stored in kdb+, an in-mem-
ory high-frequency database. Each row of quote data corresponds to an event taking 
place at the top of the order book (best bid and best ask). In other words, if there is a 
limit, a cancellation or a market order that changes the state of the top of the book, a 
new row will reflect that change. This representation is also known as Level I order 
book.

Given the fragmentation of cryptocurrency markets and lack of interoperabil-
ity between the venues, the sources of data were carefully considered. BitMex 
was chosen due to its satisfaction of two main criteria: sufficient liquidity and 
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lack of continuous downtime. Being the biggest exchange by trading volume, 
BitMex ticks the box of sufficient liquidity, having average daily turnover of $3 
billion. Second criterion is also satisfied, as BitMex has had lowest downtime 
out of all existing exchanges as of this writing. See “Appendix A” for BitMex 
exchange specification.

4.1.2 � Data format

Level I order book reflects any changes at the best bid and asks levels of the 
LOB. More formally, it is represented in the following format:

Timestamp Bid price Bid volume Ask price Ask volume

2017-10-11 03:10:34.852660 4753.6 6397 4753.7 59216
2017-10-11 03:10:35.095169 4753.6 6589 4753.7 59216
2017-10-11 03:10:35.168064 4753.6 6397 4753.7 59216
2017-10-11 03:10:35.354433 4753.6 6397 4753.7 54216
2017-10-11 03:10:35.393526 4753.6 6397 4753.7 56216

Columns represent:

•	 Timestamp: nanosecond timestamp.
•	 Bid price: highest price a market maker is willing to buy a cryptocurrency 

for.
•	 Ask price: lowest price a market maker is willing to sell a cryptocurrency for.
•	 Bid volume: current contract volume available at best bid price. Unitary.
•	 Ask volume: current contract volume available at best ask price. Unitary.

The collected data also include individual market orders, i.e. trades, which are 
represented by sequential time series, where each row corresponds to a market 
order:

Timestamp Price Volume Side

2017-10-11 03:09:53.566447000 4754.0 66 Sell
2017-10-11 03:09:53.858378000 4754.0 24 Sell
2017-10-11 03:10:01.632378000 4754.1 10 Buy
2017-10-11 03:10:12.383103000 4754.0 4500 Sell

Interpretation of market orders:

•	 Timestamp: nanosecond timestamp.
•	 Price: trade price.
•	 Amount: trade volume.
•	 Side: buy/sell market order differentiator.
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4.1.3 � Benchmarking

In some instances of the study, there occurs a need to benchmark the findings to the 
facts about established asset classes. The research question is “To what extent does 
order flow impact prices in cryptocurrency markets?” Answering this question in 
absolute terms will not give an intuitive answer without a reference point, whereas 
benchmarking to more established asset class will make the results more relevant 
by comparison. For these purposes, Level I data for ES-mini contracts are obtained. 
Traded on CME, ES mini-contracts are cash settled based on S&P 500 index value 
and are the most liquid equity index futures in the world. ES-minis represent a very 
liquid, mature and hence, stable financial instrument that makes it a good reference 
point for a nascent asset class that cryptocurrencies represent. The dates of the data-
set correspond to the period of May 2016, which is the only period for which such 
data are available. Format of the benchmark data is the same as that of cryptocur-
rency dataset—Level I TAQ (trades and quotes) data.

4.2 � Definitions

4.2.1 � Limit order book

A limit order book is a reflection of current supply and demand present respective 
of an asset at some time t. LOB is an implementation of an order-driven market. 
A state of a LOB can be characterised in terms of a collection of orders being that 
are present in a LOB. LOB consists of orders signifying interest to buy (bids) and 
orders signifying interest to sell (asks). Hence, limit bid orders can be thought of as 
indications of demand; inversely, limit ask orders can be thought of as indications of 
supply.

Participants in a LOB are predominantly separated into two groups: market mak-
ers and market takers. Market maker is an agent that posts liquidity onto a LOB by 
means of a limit order. Market taker is an agent that depletes the LOB liquidity by 
means of posting an order that matches an order of a market maker, usually known 
as a market order. The de facto LOB is a double auction model, whereby orders on 
either side are prioritised by price and at each price level distinct orders are priori-
tised on a first-in-first-out basis (Cartea et al. 2015).

State of a LOB changes with introduction of new order events. Recent electronic 
trading innovations have introduced a large number of order types, but predomi-
nantly, they consist of limit orders, market orders and cancellations (Johnson 2010). 
Limit order is a binding intention to either buy or sell a specified quantity of an asset 
for at least (for limit sell orders) or at most (for limit buy orders) some price p. Limit 
orders guarantee the price but not the execution. Market order is an intent of buying 
or selling at best available market price. Market orders guarantee the execution but 
not the price. Cancellation removes an unmatched or partially matched limit order 
from an order book. State of an order book evolves with arrival of these three base 
types of orders.
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Nowadays, in face of fast pace of financial markets, majority of venues use LOBs 
to match buyers and sellers. The Hong Kong, Swiss, Tokyo, Moscow, Euronext and 
Australian Stock Exchanges now operate as pure LOBs. New York Stock Exchange 
(NYSE), NASDAQ and London Stock Exchange (LSE) operate a hybrid LOB sys-
tem, which allows an execution through market specialist and floor brokers, as well 
as direct access to the exchange LOB (Gould et  al. 2013). Majority of cryptocur-
rency trading venues utilise a vanilla all-to-all LOB model (Hileman and Rauchs 
2017).

4.2.2 � Order flow imbalance

Out of many interpretations of a LOB imbalance that have been developed over the 
last couple of decades, some researchers define the imbalance as an imbalance of 
trades, aggregated by their direction (Lee and Ready 1991; Chordia et  al. 2002). 
Others consider the aggregate order flow imbalance, composed of all types of events 
taking place in a LOB (Cont et  al. 2014). OFI is a quantification of supply and 
demand inequalities in a LOB during a given time frame. OFI rests on the fact that 
any event that changes the state of a LOB can be classified as either the event that 
changes the demand or the event that changes the supply currently present in a LOB. 
Namely

•	 Increase in demand in a LOB is signified by any of the following events:

–	 Arrival of a limit bid order

•	 Decrease in demand in a LOB is signified by any of the following events:

–	 Arrival of market sell order
–	 Full or partial cancellation of a limit bid order

•	 Increase in supply in a LOB is signified by any of the following events:

–	 Arrival of limit ask order

•	 Decrease in supply in a LOB is signified by any of the following events:

–	 Arrival of a market buy order
–	 Full or partial cancellation of a limit ask order

Cont et  al. (2014) assumes a simplified model of a LOB, under which the price 
impact of any given order event is deterministic. The main assumption of the model 
is uniform distribution of liquidity across price levels; all price levels beyond best 
bid and ask are assumed to have a certain quantity of volume D present. By exten-
sion, cancellations and limit order arrivals occur only at best bid/ask. Under these 
assumptions, effects of individual order events are additive. Hence, over a specified 
time interval [t, t + Δt] , bid price change ΔPb (in ticks) can be calculated by adding 
together impacts of three different event types:

ΔPb = [Lb − Cb −Ms]∕D,
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where Lb represents volume of limit bid orders, having a positive impact on bid 
price, Cb represents bid order cancellations (negative impact) and Ms represents 
market sell orders (negative impact). Ask price change ΔPa is determined by the 
same method:

Given the order book model described above, calculating price changes over period 
[t, t + Δt] become trivial. For demonstration purposes, let D be 10. Assume that in 
a given interval, the following events take place: limit bid order of size 3, bid order 
cancellation of size 12 and market sell order of size 5. Bid price change will be

Stylized parameter D makes price change calculations dependent only the net order 
flow. In reality, LOBs are not so ideal. LOBs are usually full of humps, gaps, some-
times thin and sometimes bearing hidden iceberg orders (Gould et al. 2013). Hence, 
the parameter D is far from constant in reality—it is constantly changing with very 
complex dynamics. Nevertheless, Cont et al. (2014) show strong linear relationship 
between net order flow and contemporaneous price change in US Equity markets.

The formal definition of OFI is derived from the above definitions. In general, the 
impact of a single event is quantified as follows:

where PA
n
 and PB

n
 are best bid and best ask prices at index n respectively, qB

n
 and qA

n
 

are bid and ask volumes, respectively, and I is the price-conditional identity func-
tion. To provide an intuition of mechanics of en , if qB increases by some volume v, 
signifying an increase in demand via a limit bid order placement, en takes on the 
value of

since neither of the best bid and ask prices actually changed. By construction of 
Level I quote data,

since only one event can occur between the observations, which means that 
qA
n
= qA

n−1
 . This implies that

the size of the new limit order added to the bid queue v. In summary, en measures 
the supply/demand impact of nth order event.

Order flow imbalance is an aggregation of impacts en over a number of events that 
take place during time frame t:
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where N(t) is the number of events occurring at Level I during time frame [0,t]. OFI 
can be seen as an accumulator of supply and demand changes over a given time 
frame.

The response variable is the contemporaneous mid-price change in number of ticks 
over the same time frame as OFIk:

where MPk is a simple mid-price defined as P
B
t
+PA

t

2
 at time t and � is the tick size, 

which is 10 cents in our data and is constant. Division by tick size is in line with 
assumptions made in Sect. 4.2.1.

The linear model that will be evaluated regresses contemporaneous price change on 
OFI:

where 𝛽OFI is the price impact coefficient, �k is the error term and 𝛼̂OFI is the inter-
cept. The model is to be fit by the method of Ordinary Least Squares (OLS). The 
chosen time intervals k are 1 s, 10 s, 1 min, 5 min, 10 min and 1 h.

4.2.3 � Trade flow imbalance

Plerou et al. (2002), Karpoff (1987), Chordia et al. (2002) and Lee and Ready (1991) 
are only a few examples that study price changes as a function of trade flow. Some 
claim trade imbalance to work as a predictor in practical trading environments (Chan 
2017). By definition, trade events are a subset of order book events considered in OFI. 
By intuition, trade flow imbalance may not have as big of an explanatory power as OFI 
because components of the latter are a superset of components of the former. However, 
when one places and cancels the order, he has virtually no cost of doing so, whereas to 
place a trade, one pays a commission and a bid/ask spread. Trade flow imbalance over 
time interval t is defined as

where

where Ms and Mb represent market sell and market buy orders, respectively, and N(t) 
is the number of events occurring at Level I during [0,t]. I is the identity function 
that differentiates between market buy and sell events, marking them with according 
signs. This study will investigate to what extent trade flow events impact price in 
cryptocurrency markets by means of the following linear regression model:

where k is a time interval over which the magnitudes of signed market orders and 
mid-price change are calculated. 𝛽TFI is the trade impact coefficient, 𝛼̂TFI is the inter-
cept and �k is the error term. The model is to be fit via OLS.

ΔMPk = (MPk −MPk−1)∕�,

ΔMPk = 𝛼̂OFI + 𝛽OFIOFIk + 𝜖k,

TFIk =

N(tk)
∑

n=N(tk−1)+1

mn,

mn = −IMs + IMb ,

ΔMPk = 𝛼̂TFI + 𝛽TFITFIk + 𝜖k,
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5 � Analysis and results

5.1 � Statistical properties

5.1.1 � Prices

Financial time series data are one of the most complex types of data sets that one 
can attempt to comprehend; datasets tend to have non-Gaussian and non-stationary 
properties (Bilokon 2018). The latter implies the dynamically changing statistical 
properties of financial data over time. Market microstructure introduces additional 
estimation difficulties, due to so-called “microstructure effects” (Aït-Sahalia and 
Jacod 2014). Cryptocurrency price series are especially subject to non-stationarity; 
sentiment swings and lack of fundamental pricing contribute to wild volatility of 
cryptocurrency, which can be orders of magnitudes larger than that of mature asset 
classes, e.g. U.S. Equities (Chu et al. 2017). To examine stationarity of the differ-
enced price series, augmented Dickey–Fuller (ADF) and KPSS tests are conducted 
for all variants of k in ΔPk variable. The tests confirm that price series are stationary 
for every sampling period k at 1% significance level.

Figure 1 illustrates a typical trading day featuring XBTUSD. Being a 24-h mar-
ket, cryptocurrency is traded around the clock by traders globally. The price for the 
day starts at around $5900, has a drawdown of roughly 10% to $5400 and ends the 
day with a rally back to $5700. The high volatility is precisely what attracts day-
traders to cryptocurrency; such volatility is unheard of in established markets. Bot-
tom panel illustrates a proxy for volatility—moving average of mid-price changes 

Fig. 1   XBTUSD midprice series P (top), differenced tick-to-tick mid-price series ΔMP (middle), rolling 
volatility (bottom), estimated by moving average of SD �ΔMP

 over 1000 tick window. Date: 15th October, 
2017
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standard deviation over 1000 ticks. Spikes in volatility are rather sudden, explained 
by low market depth at times of urgency, possibly explained by lack of liquidity 
providers.

5.1.2 � Orders

The intensity of order arrivals is perhaps the biggest differentiator of cryptocurrency 
market microstructure dynamics in respect to that of other established asset classes. 
Empirical findings show that order arrival rates in cryptocurrency markets are orders 
of magnitude lower than those in mature markets. Level I updates are aggregated by 
count of updates per 1 s. The statistics are then benchmarked to ES-mini contracts.

Table  1 makes cryptocurrency low arrival rates apparent as compared to ES-
mini contracts. It is especially staggering how different the maximum arrival rate is 
between the assets. Attributed mainly to number of market agents and technology of 
exchanges, ES-mini contracts Level I LOB experienced maximum arrival of 2387 
orders in 1 s versus XBTUSD’s 48. To examine this further, auto-correlation func-
tion of update arrival volumes is computed by summing the number of updates into 
10-s buckets and performing auto-correlation. Update arrival volume ACF (Fig. 2) 
suggests that activity on best bid and ask levels is moderately time dependent. 
Thus, instances of high levels of activity are likely to be immediately succeeded by 
instances of high levels of activity and calm periods are usually succeeded by calm 
periods. ACF stays at roughly 30% after 8th lag due to the fact that update counts are 
always positive. Such nature of markets is well documented and consistent with oth-
ers’ findings (Cartea et al. 2015).

5.2 � Order flow imbalance

Recall that order flow imbalance is a quantification of supply and demand activ-
ity over a given period of time k. Augmented Dickey–Fuller stationarity tests are 
conducted on non-differenced OFIk variable, where k corresponds to 10-s sampling 
frequency. Test results, presented in Table 2, confirm that the order flow imbalance 
series are stationary by virtue of rejection of null hypothesis at 1%, 5% and 10% 
significance levels.

Table 1   XBTUSD versus 
ES-mini May 2016 contract: 1-s 
arrival rate descriptive statistics

XBTUSD ESM16

Mean 4.932 57.657
SD 5.427 96.234
Min 0.000 0.000
25% 1.000 4.000
50% 3.000 20.000
75% 7.000 64.000
Max 48.000 2387.000
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Cont et al. (2014) start sampling from 1-s interval and then grow the sampling 
interval up to 10 min. We begin by sampling at 1-s intervals and extend the window 
up to 1 h to account for lower arrival rates. The reason for aggregation of events over 
a larger time grid is to accumulate a reasonable amount of order book events so that 
the eventual price change and imbalance are sufficiently observable. The first model 
is fit to data that are aggregated over 1-s intervals and demonstrates this subtle point 
and how it effects the model R2.

Self-dependence of OFI is evident from ACF plot (Fig. 3), which shows that 10-s 
OFI is positively auto-correlated up to third lag. Auto-correlation of order flow imbal-
ance shows that direction and magnitude of order flow is self-dependent. In other 
words, periods of positive order flow (demand increasing or supply decreasing) are 
likely to be succeeded by positive order flow and vice versa for negative order flow. 

Fig. 2   XBTUSD 10-s update counts ACF

Table 2   OFI augmented 
Dickey–Fuller test results ADF statistic − 484.153707

p value 0.0000001
Critical values
1% − 3.430
5% − 2.862
10% − 2.567
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This largely extends our findings in Sect.  5.1.2; not only is there time dependence 
between absolute activity levels, but there is also dependence between the signs of the 
activity. Chordia et al. (2002) suggests that this nature is due to traders splitting their 
orders into multiple smaller orders, thus the succeeding order activity is likely to have 
the same sign.

The first relationship that is investigated is between OFI and the mid-price change 
(change in number of ticks) over a 1-s time frame by means of fitting an Ordinary 
Least Squares linear model defined in Sect. 4.2.2.

One-second OFI model demonstrates the point mentioned earlier—low update 
arrival rates require sampling over a bigger time frame to observe a substantial price 
change/order flow imbalance. It is visible that the scatter plot (Fig.  4) represents 
a “sliding cross” formation whereby not much activity is able to develop as most 
points lay close to the axes of the graph. Correspondingly, the linear relationship 
between OFI and price change is poor at this sampling window. R2 of 1-s OFI linear 
model fit is 7.1%. All results are presented in Table 2 at the end of the section.

When k is set to 10 s, the linear model has a much better fit—R2 = 40.5% . The 
linear relationship starts to resemble the one that Cont et al. (2014) observe. One-
minute time frame provides an even clearer demonstration of linear relationship 
between price change and order flow imbalance, see Fig.  5. The corresponding 
model with its estimated parameters is

ΔMP = −0.19173 + 8.383e − 5OFI.

Fig. 3   XBTUSD 10-s order flow imbalance ACF
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The interpretation of the model is very intuitive: for 10,000 units of net order flow, 
the expected average mid-price change is 0.65 ticks. Note that the price impact coef-
ficient 𝛽OFI , does not differentiate between types of order book events, hence gener-
alising for cancellation, placement and trade order volume flows.

As the time frame is increased to 5-min, 10-min and 1-h intervals, there is an 
increase in the goodness of fit. R2 eventually plateaus at 55%. At this point, we start 
seeing a linear relationship between OFI and the contemporaneous price change. 
The R2 never gets as high as 65% as per results of Cont et al. (2014). The results 
merit the rejection of the first null hypothesis that OFIk does not have a positive lin-
ear relationship with contemporaneous price change ΔMPk at 1% significance level. 
The price impact coefficients 𝛽OFI are statistically significant for all sampling win-
dows as evidenced by the p  values of the coefficients in Table 2.

5.3 � Trade flow imbalance

This section examines how trade flow imbalance (TFI) affects the contemporaneous 
mid-price change. Cont et al. (2014) find that explanatory power of TFI in U.S. equi-
ties is weaker than that of OFI for all the stocks they examine.

Fig. 4   XBTUSD 1-s order flow imbalance versus contemporaneous price change
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The intervals that are used for calculation of TFI and contemporaneous price 
change are the same as the intervals used in OFI modelling: 1 s, 10 s, 5 min, 10 min 
and 1 h. Augmented Dickey–Fuller and KPSS stationarity tests are conducted on 
TFIk for every sampling period k. The tests confirm stationarity of the variable for 
every sampling period at 1% significance level. As demonstrated by Fig.  6, trade 
flow demonstrates similar time dependence characteristics to aggregate order flow. 
It is evident that 10-s trade flow imbalance is significantly and positively auto-cor-
related with lags 1–5. This means that trades exhibit momentum towards the current 
direction of trade flow. Heusser (2013) finds the process of Bitcoin trades to be self-
exciting, whereby time between trades is sparse and trades usually arrive in clusters. 
This study largely conforms to findings of Heusser (2013) and extends that the clus-
ters tend to be uni-directional respective of the current trade flow.

The first model regresses TFI on contemporaneous mid-price change ΔMP sam-
pled over 1-s intervals. The model produces a coefficient of determination of 12.8%, 
which is higher than the R2 achieved for OFI over the same sampling period. At 10-s 
sampling interval R2 of the TFI model is 37.3%, which is lower than its 10-s OFI 
counter part, whose R2 is 40.5%.

For sample periods higher than 10 s, however, TFI is a consistently better 
estimator of the price change than OFI . At 1-h sampling time grid R2 is 75.2%, 
which is 20% higher than the order flow imbalance R2 for the same time grid. 

Fig. 5   XBTUSD 1-min order flow imbalance versus contemporaneous price change
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Scatter plot exhibited in Fig. 7 visually demonstrates that the fit is more linear 
than that of OFI in Fig. 5. The estimated model and its parameters are

The interpretation of the model is as follows: for 10,000 units of net trade flow, the 
expected average mid-price change is 0.14 ticks.

These results are counter to the findings of Cont et  al. (2014) that find that 
for all 50 U.S. stocks chosen for their analysis, order flow imbalance takes prec-
edence of explaining contemporaneous price change for every single one. The 
initial hypothesis that aggregate order flow imbalance has stronger explanatory 
power than trade flow imbalance is rejected based on these results. The null 
hypothesis, which states that TFI does not have a positive linear relationship 
with contemporaneous price change ΔMP , is rejected at 1% significance level. 
Results in Table  3 confirm that 𝛽TFI is statistically significant for all sampling 
periods k. Note that the p values are close to zero for all TFI and OFI coeffi-
cients, and instead of being reported, are instead subtracted from 100%, yielding 
the probabilities of the coefficients not being obtained by chance. t-Statistics are 
also included for every estimated coefficient.

ΔMP = 0.01297 + 1.1884e − 5TFI.

Fig. 6   XBTUSD 10-s trade flow imbalance ACF
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5.4 � Discussion

Order flow imbalance provides a good approximation for realised mid-price 
change, and there are a few potential reasons why OFI does not provide a better 
fit. First of all, it helps to understand under which circumstances OFI provides 
an inferior estimate of contemporaneous price change. More crudely, under what 
predicates will the data points end up in second and fourth quadrants on scatter 
plot such as the one presented by Fig. 5. The stylised LOB model in Sect. 4.2.2 
assumes that each and every level of the order book contains outstanding orders 
amounting to some constant quantity D and that activity takes place at best bid/
ask levels only. Now, let us assume that at time t there is volume Vb present and 
best bid and Va present at best ask, such that Va > Vb . At time t + 1 , a cancella-
tion order arrives on ask side, cancelling amount qc < Va , thus, ceteris paribus, 
registering a positive effect on the current order flow calculation, and leaving the 
mid-price unchanged. At time t + 2 , there is a sell market order of quantity qm 
such that qm > Vb and qm < qc . This market order moves the mid-price down, but 
because qm < qc , current OFI value is still positive. The resulting data point will 
end up in the second quadrant of the scatter plot. Thus, it is unevenness of volume 
across the LOB price levels that exacerbates the estimation of price change by 
OFI.

Fig. 7   XBTUSD 1-min trade flow imbalance versus contemporaneous price change. R2 = 58.1%
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Upon examining Level III data for a number of snapshots, numerous instances 
where best bid/ask and adjacent price levels are unevenly filled, and some not 
filled at all, exemplifying a thin order book, that would welcome such non-linear 
relationship between OFI and ΔMP . The original Cont et al. (2014) study investi-
gated order flow in established markets (US Equities), which are more liquid and 
hence price impact can be modelled more accurately by order flow imbalance. 
Thus, the goodness of fit is a function of two main factors: (a) depth D at all price 
levels and (b) more realistically, dispersion of D, since all real-life markets will 
have non-constant D. If LOB price levels have a very “volatile” D, the effects of 
order flow will not even out as well as if D is not so dispersed. Concluding from 
statistics and empirical evidence, cryptocurrency prices are impacted by order 
flow in a much less deterministic fashion than established markets due to lower 
compliance with the stylised model of LOB that this study assumes.

The results also show that the impact of trade flow imbalance on prices is 
stronger than that of order flow imbalance. The explanatory power of TFI depends 
on the same depth parameter D and its dispersion across price levels. Circum-
stances under which trade flow will not be a good estimator of price change are, 
therefore, similar to circumstances under which order flow will not be a good 
estimator of price change.

The aggregate order flow already includes trades, so why does the trade flow 
on its own explain price movements better? The argument comes down to the 
fact that while aggregate order flow includes more information, in the realm of 
cryptocurrency market microstructure as well as macrostructure, such informa-
tion may be of little value, due to noise. There are a few possible reasons that may 
help explain this phenomenon, both macrostructural as well as microstructural.

Unlike U.S. Equities, that are subject to multiple anti-spoofing policies includ-
ing Dodd–Frank Wall Street Reform (Pasquale 2014) (spoofing constitutes an 
action of posting and cancelling limit orders in quick succession to disguise the 
intent of executing an order), there are no equal regulatory counterparts in cryp-
tocurrency markets. This may have repercussions for why order flow may carry 
relatively lower information as opposed to trade flow in cryptocurrency markets. 
Traders who submit and quickly cancel orders to fake the intent of buying/sell-
ing are not legally constrained from doing so. Therefore, market agents are more 
inclined to post low-information orders of any magnitude into the LOB if that 
benefits their agenda. For example, a market maker that sits on a large inven-
tory could choose to spoof in the direction that would benefit the value of his net 
inventory. This leads to ephemeral liquidity, i.e. orders that do not intend to be 
executed and, therefore, do not contribute to net price change. On the other hand, 
to execute a market order, a trader will pay a commission as well as a bid/ask 
spread, thus signifying a high-information intent that, as can be evidenced from 
the results, has a significant impact on price.

Stylised model of an order book described in 4.2.1 states that price change is 
inversely proportional to the depth parameter D, which, in the realm of theoretical 
model, is assumed fixed for all levels in a LOB. While it is only a theoretical rela-
tionship, we can clearly see how markets of lower liquidity abide to that relation-
ship, exhibiting much higher average ΔPk than U.S. Equities. In case of this study, 
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depth was not measured empirically, and it would make for a good basis for subse-
quent research, specifically in cryptocurrency markets.

D and its variance across price levels are the main factors that drive explana-
tory power of both OFI and TFI. The results also conclude that TFI has an overall 
better explanatory power than OFI, while the component events of the latter are a 
superset of component events of the former. This phenomenon is largely attribut-
able to two things that are both, though indirectly, functions of parameter D. First of 
all, it is possible to consider the bid/ask spread having an effect on low explanatory 
power of OFI. The average spread of XBTUSD contract is 2.87 ticks, with standard 
deviation of 11 ticks, which is large and dispersed if compared to American equi-
ties, where large cap stocks rarely have average spreads larger than one tick (Upson 
and Van Ness 2017). When the spread is large, the mid-price can be manipulated at 
little or no cost by posting and cancelling limit orders at best bid and ask, whereas 
if the spread is almost always at one tick, there is no cost-less way of manipulating 
the price in the same way. In such circumstances, OFI is more likely to have a poor 
explanatory power. Cont et al. (2014) present that the CME Group stock that has an 
average spread of 103 ticks (the biggest of the group of selected stocks), also has the 
worst OFI R2 of 35%, as compared to other stocks used in the study. Contrary to our 
results, however, CME’s TFI has worse explanatory power than its OFI counterpart, 
which may be attributed to its below-average quote/trade ratio of 27.14. XBTUSD, 
on the other hand, has a quote/trade ratio of 2.08, which means that there is an aver-
age of only two quotes per trade. That suggests that there is very big propensity to 
trade (much higher than in U.S. Equities) in cryptocurrency markets. This propen-
sity may imply a lack of market makers that are able to provide liquidity, and hence 
stabilise the depth across the order book. Such conditions may well justify the gen-
erous market maker rebates that BitMex pays to liquidity providing traders.

6 � Conclusion

In conclusion, cryptocurrency market shares many features with conventional mar-
kets, specifically on microstructure levels. Main differences are attributed to lower 
average depths of the order book, which spawn other discrepancies related to how 
order books absorb order flow. One of the interesting findings that the study discov-
ers is how well the price change can be explained by trade flow imbalance.

Further research may attempt to drill into this cause further. It would be of 
great use to analyse the linear model that combines both OFI and TFI as explana-
tory variables, whereby the noisiness of the former may become apparent. Bear-
ing in mind that the study explored the biggest derivatives market for Bitcoin, 
which is also bigger than any other existing spot market by dollar turnover, it is 
highly advisable to replicate the research methodology on spot markets. Other 
exchanges have different characteristics, such as maker/taker fee schedules, vol-
umes and participants. These factors are very likely to produce different land-
scape of market microstructure and hence, different results. Another direction 
that can be explored is the predictive capacity of the order flow in cryptocur-
rency markets. Existing studies that tackle this area, specifically in the realm of 
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cryptocurrencies, are rather ambiguous (Guo and Antulov-Fantulin 2018) with 
the input features used in generating predictive models. Without being able to 
have a stable forecasting apparatus, optimal liquidity provision is hardly attain-
able (Bilokon 2018). Yet further studies focusing on cryptocurrency market 
microstructure may also consider how underlying protocols of the currencies, 
such as mining algorithms and network statistics, manifest themselves in the 
microstructure.

The study began by saying that cryptocurrencies are a nascent asset class. As 
such, its value may continue being subject to sentiment shifts of different entities 
like governments and it might continue being an asset of high volatility that it is. 
One of the results of this study suggests that there is a clear lack of liquidity provid-
ers in this market. Brittle market depth and volatility create a “chicken and egg” 
problem, whereby cryptocurrency might continue lacking mass adoption and repel 
quality liquidity providers in face of its current volatility and thin markets.

Appendix A: Exchange specification

An essential feature of BitMex is that, above all, it is a marketplace for derivatives 
on cryptocurrency, as opposed to a spot market. All margin payments are carried 
out in Bitcoin, thus the only predicate for participating in the markets is a Bitcoin 
deposit. Another key feature of BitMex is leverage that it offers to traders. Currently, 
maximum leverage that one can take out on XBTUSD contract is × 100.

XBTUSD is effectively a perpetual swap contract, where one contract is worth 
1 USD of Bitcoin. XBTUSD never expires, but participants are may be subject to 
margin funding. The contract tracks the underlying price of Bitcoin, which is calcu-
lated as an index across various spot markets. The tracking mechanism is dependent 
upon funding ratio. In essence, to reduce tracking error, BitMex will calculate the 
deviation between current XBTUSD contract value and spot price index. If the value 
of the contract is above the reference index, than the implied interest rate of Bitcoin 
is higher that USD. Hence, to stabilise the price, the long contract holders will pay 
funding the short-sellers of the contract. This mechanism applies vice versa when 
contract value falls below the reference index and is what keeps the contract at fair 
price.

Trading fee structure on BitMex is very straightforward and highly shifted 
towards market makers when compared to other exchanges. Market makers get paid 
a constant 25 bps rebate, while takers pay 35 bps in commission.
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Appendix B: Python code

Listing 1: Python Code for Data Import, Model Fitting and Stationarity Tests
import s ta t smode l s . ap i as sm
from s ta t smode l s . r e g r e s s i o n . l i n ea r mode l import OLS
import s ta t smode l s . t sa . s t a t t o o l s as t s
import pandas as pd
import numpy as np
%matp lo t l i b i n l i n e
import matp lo t l i b . pyplot as p l t
p l t . rcParams [ ’ f i g u r e . f i g s i z e ’ ] = (12 . 0 , 10 . 0 )

def l o ad data hd f ( path , date from , date to = None ) :
df = pd . read hdf ( path , i nd ex c o l = ’ timestamp ’ )
df . index = pd . to date t ime ( df . index . values , format=’%Y−%m−%dD%H:%M:%S.% f000 ’ )
return df . l o c [ date from : ]

def o f i ( quotes , dt ) :
qdf = r e s e t i n d ex ( quotes . copy ( ) )

qdf [ ’Mid−Pr ice Change ’ ] = ( ( qdf [ ’ b idPr i c e ’ ] + qdf [ ’ a skPr i c e ’ ] ) / 2 ) . d i f f ( ) . d iv ( 0 . 1 )

qdf [ ’ p r e v b i dp r i c e ’ ] = qdf [ ’ b idPr i c e ’ ] . s h i f t ( )
qdf [ ’ p r e v b i d s i z e ’ ] = qdf [ ’ b idS i z e ’ ] . s h i f t ( )
qdf [ ’ p r ev a skp r i c e ’ ] = qdf [ ’ a skPr i ce ’ ] . s h i f t ( )
qdf [ ’ p r e v a s k s i z e ’ ] = qdf [ ’ a skS i z e ’ ] . s h i f t ( )

qdf . dropna ( i np l a c e=True )

b id geq = qdf [ ’ b idPr i c e ’ ] >= qdf [ ’ p r e v b i dp r i c e ’ ]
b i d l e q = qdf [ ’ b idPr i c e ’ ] <= qdf [ ’ p r e v b i dp r i c e ’ ]
ask geq = qdf [ ’ a skPr i ce ’ ] >= qdf [ ’ p r ev a skp r i c e ’ ]
a s k l e q = qdf [ ’ a skPr i c e ’ ] <= qdf [ ’ p r ev a skp r i c e ’ ]

qdf [ ’OFI ’ ] = pd . S e r i e s (np . z e r o s ( len ( qdf ) ) )
qdf [ ’OFI ’ ] . l o c [ b id geq ] += qdf [ ’ b idS i z e ’ ] . l o c [ b id geq ]
qdf [ ’OFI ’ ] . l o c [ b i d l e q ] −= qdf [ ’ p r e v b i d s i z e ’ ] . l o c [ b i d l e q ]
qdf [ ’OFI ’ ] . l o c [ ask geq ] += qdf [ ’ p r e v a s k s i z e ’ ] [ ask geq ]
qdf [ ’OFI ’ ] . l o c [ a s k l e q ] −= qdf [ ’ a skS i z e ’ ] [ a s k l e q ]

qdf = set nanosecond index ( qdf )

qdf = qdf [ [ ’Mid−Pr ice Change ’ , ’OFI ’ ] ] . resample ( dt ) .sum ( ) . dropna ( )
qdf . name = ’ OFI df ’ + str ( dt )

return qdf

def t f i ( t rades , quotes , dt ) :
td f = t rade s . copy ( )
qdf = quotes . copy ( )
td f [ ’ s g n s i z e ’ ] = np . where ( td f [ ’ s i d e ’ ] == ’Buy ’ , td f [ ’ s i z e ’ ] , −td f [ ’ s i z e ’ ] )
qdf [ ’ midpr ice ’ ] = ( qdf [ ’ b idPr i c e ’ ] + qdf [ ’ a skPr i ce ’ ] ) / 2
dmid = qdf [ ’ midpr ice ’ ] . d i f f ( ) . resample ( dt ) .sum ( ) . f i l l n a ( 0 . 0 )
t f = td f [ ’ s g n s i z e ’ ] . resample ( dt ) .sum ( ) . f i l l n a ( 0 . 0 )
a s s e r t dmid . count ( ) == t f . count ( )
t f . name = ’TFI ’
dmid . name = ’Mid−Pr ice Change ’
return t f , dmid
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def s e t nanosecond index ( df ) :
tmp = df . copy ( )
tmp . s e t i nd ex ( ’ index ’ , i np l a c e=True )
tmp . index = pd . to date t ime (tmp . index . values , format=’%Y−%m−%dD%H:%M:%S.% f000 ’ )
return tmp

def r e s e t i n d e x ( df ) :
tmp = df . copy ( )
return tmp . r e s e t i n d e x ( )

def p lo t o f i and o l s summary ( df , dt ) :
df . p l o t ( kind=’ s c a t t e r ’ , g r i d=True ,

x=’OFI ’ , y=’Mid−Pr ice Change ’ ,
t i t l e = ’XBTUSD ’+ dt + ’ OFI ’ ,
alpha =0.5 , f i g s i z e =(12 ,10))

o f i = sm . add constant ( df [ ’OFI ’ ] )
o l s = OLS( df [ ’Mid−Pr ice Change ’ ] , o f i ) . f i t ( )
print ( o l s . summary2 ( ) )

def p l o t t f i and o l s summary ( t f , dmid , dt ) :
pd . concat ( [ t f , dmid ] , ax i s = 1 ) . p l o t ( kind=’ s c a t t e r ’ , g r id=True ,

x=’TFI ’ , y=’Mid−Pr ice Change ’ ,
t i t l e = ’XBTUSD ’+ dt + ’ TFI ’ ,
alpha =0.5 , f i g s i z e =(12 ,10))

t f = sm . add constant ( t f )
o l s = OLS(dmid , t f ) . f i t ( )
print ( o l s . summary2 ( ) )

def a d f t e s t ( var ) :
adf = t s . a d f u l l e r ( var , 1)
print ( ’ADF S t a t i s t i c : %f ’ % adf [ 0 ] )
print ( ’p−value : %f ’ % adf [ 1 ] )
print ( ’ C r i t i c a l Values : ’ )
for key , va lue in adf [ 4 ] . i tems ( ) :

print ( ’ \ t%s : %.3 f ’ % ( key , va lue ) )

def kp s s t e s t ( var ) :
kpss = t s . kpss ( var )
print ( ’KPSS S t a t i s t i c : %f ’ % kpss [ 0 ] )
print ( ’p−value : %f ’ % kpss [ 1 ] )
print ( ’ C r i t i c a l Values : ’ )
for key , va lue in kpss [ 3 ] . i tems ( ) :

print ( ’ \ t%s : %.3 f ’ % ( key , va lue ) )
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