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Abstract
Bitcoin is a digital currency started in early 2009 by its inventor under the pseudo-
nym of Satoshi Nakamoto. In the last few years, Bitcoin has received much attention 
and has shown a surprising price increase. Bitcoin is currently traded on many web-
exchanges making it a rare example of a good for which different prices are readily 
available; this feature implies important issues about arbitrage opportunities since 
prices on different exchanges are shown to be driven by the same risk factor. In this 
paper, we show that simple strategies of strong arbitrage arise by trading across dif-
ferent Bitcoin exchanges taking advantage of the common risk factor. The suggested 
arbitrage strategies are based on two alternative model specifications. Precisely, we 
consider the multivariate versions of Black and Scholes model and of an attention-
based dynamics recently introduced in the literature.

Keywords  Bitcoin · Arbitrage · Sharpe ratio

JEL classification  C32 · C58 · G12

1  Introduction

The white paper on Bitcoin appeared in November 2008, see  Nakamoto (2008), 
written by a computer programmer(s) using the pseudonym Satoshi Nakamoto. 
His/her invention is an open-source, peer-to-peer network where transactions in 
the digital currency do not require a third party and are secured by rules based on 
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cryptography and on the blockchain technology, a distributed ledger. The motivation 
underlying Bitcoin inception was to have a deflationary currency, independent of 
financial intermediaries and of central authorities.

After 10 years of its inception, the “state-of-art” of Bitcoin is quite far from the 
ideology which has given it birth. Indeed, most transactions are realized within 
web exchanges, which act essentially as brokers for retail investors registering as 
a user on the exchange platform rather than directly as a node in the peer-to-peer 
network. Some of the transactions are also finalized on the exchange without even 
being recorded in the blockchain1; in addition, the huge returns that Bitcoin was 
able to pay to its initial users, have increased media attention on the cryptocurrency 
and attracted market speculators. At the time of writing, Bitcoin is seldom used as a 
payment system between peers but rather as an investment opportunity; it is evened 
out with volatile financial assets and also affected by sentiment/eagerness factors, 
see Yermack (2015), Kristoufek (2015), Cretarola et al. (2018). Bitcoin is traded on 
dozens of online platforms, so-called exchanges, where Bitcoins and other crypto-
currencies are traded at different bid and ask prices; this feature leads to the possibil-
ity of strong arbitrage by minimizing the price for the long positions and maximiz-
ing that for the short positions across exchanges. Since short-selling is not possible 
on exchanges, the long position should always be executed before. Until recently, 
these strong arbitrages were possible only in theory, due to latency in the system, 
both related to the time confirmation of transactions in the blockchain and to time 
needed to transfer a fiat currency from the bank account of the investor to his digi-
tal account on the web exchange. Currently, instant trades are possible and instant 
wire transfer has been made available for some exchanges2 To achieve a profitable 
arbitrage, transaction fees should be added to the long–short positions: these were 
optional at inception of Bitcoin but they are compulsory and non-negligible across 
all the exchanges.

In this paper, extending preliminary results in Bistarelli et al. (2019), we show, by 
applying classical statistical techniques, that Bitcoin returns, computed daily by con-
sidering the different prices across major exchanges, are essentially perfectly cor-
related and that the risk (variability) of the overall system is mostly explained by a 
single source of randomness, as it is intuitively expected.

We take advantage of this preliminary outcome to consider two model specifi-
cations for the dynamics of Bitcoin price on multiple exchanges. The first exam-
ple is the multivariate version of the Black and Scholes model (see  Black and 
Scholes 1973) which is a natural benchmark for similar studies to ours. The sec-
ond example is the analogous generalization of the dynamics suggested in Cretarola 

1  Some websites, such as http://data.bitco​inity​.org/marke​ts/trade​spm provide the number of trades per 
minutes across major exchanges; this number often exceeds the number of transactions recorded mean-
while in the BTC blockchain, for further details see also the discussion https​://bitco​in.stack​excha​nge.
com/quest​ions/61873​/excha​nge-trans​actio​n-versu​s-block​chain​-verif​icati​on.
2  Commonly this is done by using Credit Card or PayPal services, see, for instance, https​://www.bitst​
amp.net/, https​://www.coind​esk.com/coinb​ase-enabl​es-insta​nt-tradi​ng-raise​s-daily​-purch​asing​-limit​s or 
https​://paxfu​l.com/. Nevertheless, these services usually impose some commission or price mark-ups to 
be taken into account when trying to take advantage of a potential short–long arbitrage.

http://data.bitcoinity.org/markets/tradespm
https://bitcoin.stackexchange.com/questions/61873/exchange-transaction-versus-blockchain-verification
https://bitcoin.stackexchange.com/questions/61873/exchange-transaction-versus-blockchain-verification
https://www.bitstamp.net/
https://www.bitstamp.net/
https://www.coindesk.com/coinbase-enables-instant-trading-raises-daily-purchasing-limits
https://paxful.com/
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and Figà-Talamanca (2018) which was related to a non-tradeable second source of 
risk, measuring market attention; motivations for the choice of this specific model 
dynamics will be detailed in due time.

The rest of the paper is organized as follows: in Sect. 2, we illustrate the data and 
report the outcomes of the preliminary statistical analysis; in Sect.  3 we describe 
two alternative models, while in Sect. 4 we define the strong arbitrage strategies cor-
responding to the different models specifications. Section 5 briefly addresses how 
the two models are estimated on market data and finally Sect. 6 reports the achieve-
ments of the model-based arbitrage strategies when applied for trading on the dif-
ferent exchanges considered in our sample. Concluding remarks are summed up in 
Sect. 7.

2 � Preliminary analysis and motivation

Bitcoin is traded on multiple online exchanges, where different exchange rates are 
applied against the same fiat currency; with a little abuse, we refer to Bitcoin prices 
rather than exchange rates, by considering the US Dollar (USD) as the fiat currency 
with respect to which Bitcoin is priced. The analyzed data sample, retrieved from 
the website https​://bitco​incha​rts.com/, consists of daily closing prices3 for Bitcoin 
across 5 major exchanges, namely Bitstamp, Gdax, Kraken, Cex.IO and BitKonan, 
observed from January 2015 to December 2017; we ignore for the moment the bid/
ask spreads.

Fig. 1   The Bitcoin price in USD according to 5 different exchanges (top) and two sub-samples with only 
two exchange rates (bottom)

3  By closing prices we mean those at 00:00 GMT provided by the website https​://bitco​incha​rts.com/ for 
all the exchanges under analysis.

https://bitcoincharts.com/
https://bitcoincharts.com/
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In Fig. 1, we plot the above Bitcoin prices in USD over the whole time span and 
also focus on two shorter periods; pictures are almost indistinguishable across the 
exchanges but the difference is better appreciated by looking at the shorter periods 
where only CEX.IO and BitKonan exchanges prices are plotted. It is beyond the 
aim of this paper to understand deeply the motivation for different prices on differ-
ent exchanges. Nevertheless, it is important to remark4 that these difference may be 
partially due to a different trustworthiness of involved exchanges as argued in Moore 
and Christin (2013).

From the above picture, it may be conjectured that price across exchanges, though 
slightly different, are driven by the same source/sources of randomness. For what 
concerns the returns, it is straightforward to check that the correlation parameters of 
returns across different exchanges are very close to one; hence, Bitcoin returns are 
almost perfectly positively correlated. To formally test that prices are also driven 
by the same risk factor/s computing correlation parameter is not of any help being 
the price time series non-stationary. In fact, we can apply a cointegration test to this 
purpose5; in Table 1 we sum up the outcomes of the Johansen cointegration test, see 
Johansen 1991, applied to the logarithmic prices across considered exchanges.6

As we can see from the table, the test fails to reject the null of cointegration rank 
r = 4 ; hence, we cannot reject that the logarithmic prices of Bitcoin on the analyzed 
exchanges are cointegrated, supporting the argument of a single stochastic factor 
driving the different price time series.

As a further check, we also perform a Principal Component Analysis (in short 
PCA) on the matrix composed by the vectors time series of the five exchanges under 
investigation, see Jolliffe (2011).

Table 1   Johansen cointegration 
test between Bitcoin log-prices 
across five major exchanges: 
data are from January 1st 2015 
to December 31, 2017

r Stat. value Critical value p value

0 1257.2623 79.3407 0.0010
1 734.3279 55.2459 0.0010
2 373.8155 35.0131 0.0010
3 141.0468 18.3969 0.0010
4 0.9410 3.8415 0.4667

Table 2   Percentage of the total 
variance explained by each 
principal component

PC1 (%) PC2 (%) PC3 (%) PC4 (%) PC5 (%)

83.4741 10.4865 3.6532 1.6840 0.7022

5  We thank an anonymous referee for this suggestion.
6  We applied the function jcitest.m, with trace test specification, provided in the Econometrics Toolbox 
of Matlab.

4  We thank an anonymous referee for pointing this out.
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The outcomes7 are summed up in Tables 2 and  3.
According to the numbers in Table 2, the first component PC1 accounts for more 

than 83% of the variability of the overall system and can be viewed as the level of 
Bitcoin returns within the considered exchanges. Indeed, it is a weighted sum of the 
5 time series, where weights are all positive and very similar in value as it is evi-
denced in Table 3.

2.1 � Risk factors: a further look

To motivate, at least partially, the choice of model in Eq. (3), which assumes that 
Bitcoin returns and volatility depend on an exogenous attention factor, we introduce 
in advance a PCA analysis where a time series, measuring market attention, is added 
to the Bitcoin return matrix defined above. Specifically, the Bitcoin trading volume 
and the SVI Google index for the word “bitcoin” are taken as such proxies, as sug-
gested in Cretarola et al. (2018), Figà-Talamanca and Patacca (2018).

In Tables  4 and 5, we report the outcomes of the PCA applied to the matrix 
including the time series of Bitcoin returns on the 5 exchanges and a time series 
for the attention factor, measured by the trading volume and the SVI Google index, 
respectively.

The outcomes show that two principal components are needed to explain about 86% 
of the system variability, for both attention measures; besides, while the first compo-
nent is still a nearly equally weighted average of Bitcoin returns on different exchanges 
and no weight on the attention factor, the second component is essentially the attention 
factor itself and contributes to about 16% of the system variability, see Tables 6 and 7.

Table 3   PCA Coefficients for Bitcoin returns across five major exchanges observed daily from January 
1st 2015 to December 31, 2017

PC1 PC2 PC3 PC4 PC5

Bitstamp 0.4797 − 0.1411 − 0.1036 − 0.1470 0.8471
Gdax 0.4494 − 0.2241 0.8378 0.1356 − 0.1659
Kraken 0.4640 − 0.1971 − 0.4597 0.6935 − 0.2315
Cex.IO 0.4709 − 0.1626 − 0.2727 − 0.6911 − 0.4470
BitKonan 0.3618 0.9299 0.0411 0.0365 − 0.0386

7  PCA weigths as well as ranking are obtained by applying the function pca.m, available in the Statistics 
and Machine Learning Toolbox of Matlab‸ , to the matrix of returns.
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3 � Modeling the Bitcoin price dynamics and arbitrage opportunities

From the above analysis, it is quite clear that prices are all based on a common risk 
factor: the time series for the different exchanges are interchangeable in terms of 
their macroscopic informational content. Still, prices can be slightly different across 
exchanges for some periods allowing for arbitrage opportunities.

In this paper, we assume that there are I exchanges trading Bitcoin in the same fiat 
currency (i.e., USD) and denote by S(i)

t
 the price of one Bitcoin quoted on exchange i 

at time t. To account for a single price risk factor, we consider multivariate models to 
describe the dynamics of Bitcoin price on different exchanges, depending on a single 
source of randomness.

Table 4   Percentage of the total 
variance explained by each 
principal component

PC1 (%) PC2 (%) PC3 (%) PC4 (%) PC5 (%) PC6 (%)

69.6382 16.5887 8.7419 3.0424 1.4037 0.5851

Table 5   Percentage of the total 
variance explained by each 
principal component

PC1 (%) PC2 (%) PC3 (%) PC4 (%) PC5 (%) PC6 (%)

69.6163 16.6167 8.7372 3.0424 1.4026 0.5849

Table 6   PCA Coefficients for Bitcoin returns across five major exchanges and A = trading volume 
observed daily from January 1st 2015 to December 31, 2017

PC1 PC2 PC3 PC4 PC5 PC6

Bitstamp 0.4795 − 0.0174 − 0.1410 − 0.1040 − 0.1474 0.8470
Gdax 0.4491 − 0.0278 − 0.2237 0.8376 0.1360 − 0.1655
Kraken 0.4638 − 0.0099 − 0.1971 − 0.4600 0.6934 − 0.2314
Cex.IO 0.4707 − 0.0064 − 0.1626 − 0.2722 − 0.6911 − 0.4474
BitKonan 0.3616 − 0.0040 0.9299 0.0408 0.0365 − 0.0387
Trad. Vol. 0.0299 0.9994 − 0.0080 0.0153 0.0038 0.0048

Table 7   PCA Coefficients for Bitcoin returns across five major exchanges and A = Google SVI observed 
daily from January 1st 2015 to December 31, 2017

PC1 PC2 PC3 PC4 PC5 PC6

Bitstamp 0.4794 − 0.0170 − 0.1412 − 0.1039 − 0.1476 0.8470
Gdax 0.4491 − 0.0231 − 0.2243 0.8376 0.1360 − 0.1657
Kraken 0.4638 − 0.0132 − 0.1971 − 0.4601 0.6933 − 0.2313
Cex.IO 0.4706 − 0.0061 − 0.1625 − 0.2723 − 0.6911 − 0.4474
BitKonan 0.3615 − 0.0195 0.9297 0.0411 0.0365 − 0.0386
SVI 0.0346 0.9993 0.0070 0.0107 0.0062 0.0041
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Precisely, we assume that the price process S(i) = {S
(i)
t
, t ∈ [0, T]} in exchange 

number i, is described, for a finite horizon T > 0 , by the following equation:

for every i = 1,… , I , where W = {W
t
, t ∈ [0, T]} is a standard Brownian motion 

and Y = {Y
t
, t ∈ [0, T]} is an exogenous stochastic process, both defined on a com-

plete probability space (�, ,�) endowed with a filtration � = {
t
, t ∈ [0, T]} that 

satisfies the usual conditions of right continuity and completeness, see, e.g., (Protter 
2005). Furthermore, we assume that 0 coincides with the trivial sigma-algebra.

The functions �
i
∶ [0, T] ×ℝ

+ ×ℝ → ℝ and �
i
∶ ℝ

+ × [0,T] ×ℝ → ℝ
+ , with 

i = 1,… , I , are the so-called drift and diffusion terms, respectively, which are 
assumed to satisfy suitable regularity conditions to guarantee the existence of a 
unique strong solution of Eq. (1). In this general setting, arbitrage opportunities are 
ruled out under specific assumptions on the drift and diffusion functions and the 
market is said to be complete if the number of traded securities is equal to that of 
the randomness sources. It is worth to remark that, in the model described by Eq. 
(1), prices available on different exchanges are perfectly correlated and the mar-
ket has the same “degree of incompleteness”, regardless the number of considered 
exchanges. Indeed, as soon as Y does not represent the price of a tradeable asset and 
it is an exogenous stochastic factor, i.e., it is a process driven by some additional risk 
factors, for example, another Brownian motion, the corresponding market model is 
generally incomplete. To ensure the completeness of the market, an investment pos-
sibility covering the risk arising from Y should be introduced.

In what follows, we take two special cases of the dynamics in Eq. (1) into 
account: the first one based on the pioneering model of Black and Scholes (1973) 
and the other one building on the model recently proposed in Cretarola et al. (2018), 
where Bitcoin price dynamics depends on an attention factor, which is assumed to 
be exogenous. We obtain no-arbitrage conditions based on the market price of risk 
(also known as Sharpe ratio) computed in each of the two model specifications.

(1)dS
(i)
t
= �

i
(t, S

(i)
t
, Y

t
)dt + �

i
(t, S

(i)
t
, Y

t
)dW

t
, S

i

0
= s

i

0
∈ ℝ

+,

Fig. 2   An example with simulated paths for 3 months of daily prices according to different parameters: 
�
1
= 1.5 and �

1
= 0.75 (solid blue), �

2
= 1.5 �

2
= 0.5 (dotted red), respectively (color figure online)
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3.1 � The Black and Scholes model

Assume that the price dynamics of Bitcoin is described, in every exchange, by the 
well-known Black and Scholes model (Black and Scholes 1973). Precisely, Si , with 
i = 1,… , I , satisfies

Here, for every i = 1, 2,… , I , the constants �
i
∈ ℝ , �

i
∈ ℝ

+ , represent model 
parameters, This is a very special case of the model given in Eq. (1), where the drift 
and the diffusion functions are linear with respect to the stock price S(i)

t
 and do not 

depend on any exogenous factor. Note that different exchanges are characterized by 
(possibly) different parameters values in the dynamics. In Fig. 2, we plot one pos-
sible path for 3 months of daily prices simulated according to model given in Eq. (2) 
for two different set of parameters where �1 = �2 = 1.5 and �1 = 0.75, �2 = 0.5 . The 
picture exhibits a similar pattern to the one observed in Fig. 1.

3.2 � An attention‑based multi‑exchange modeling

In Cretarola et al. (2018) the authors propose a model in continuous time to describe 
the behavior of the Bitcoin price and of the investors attention on the overall net-
work. The model assumes that both the returns level and their variance depend on 
an exogenous factor representing investor attention; this feature is mainly motivated 
by previous research where market attention and sentiment were proven to affect 
Bitcoin returns and volatility significantly, see, among others, Kristoufek (2013, 
2015), Figà-Talamanca and Patacca (2018). In addition, the analysis carried out in 
Sect. 2.1, further evidences the relevance of attention measures on the overall vari-
ability of the system, when measured either by the trading volume in Bitcoins or 
by the search volume index on the topic. It is worth to remark, as noticed in Cre-
tarola et  al. (2018), that the specification in Eqs. (3, 4)  below makes possible to 
build an approximation of the exact likelihood of the returns process which can be 
maximized to estimate model parameters on historical data. This is briefly recalled 
in Sect. 5.2 and will be applied below in our multivariate setting. Moreover, another 
point in favour of such model choice is that it provides a closed formula for Euro-
pean style plain vanilla and binary options on Bitcoin.

However, in Cretarola et al. (2018), it is assumed that Bitcoin has a unique price, 
given by the average price provided by the website https​://block​chain​.info; hence, 
price variability across exchanges is not taken into account.

In a multi-exchange setting, we assume that the price dynamics of S(i) , with 
i = 1,… , I , is described by the equation

(2)dS
(i)
t
= �

i
S
(i)
t
dt + �

i
S
(i)
t
dW

t
, S

(i)

0
= s

(i)

0
∈ ℝ

+.

(3)dS
(i)
t
= �

i
A
t−�i

S
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i
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A
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t
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t
, S
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https://blockchain.info
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where, for every i = 1, 2,… , I , the constants �
i
∈ ℝ , �

i
∈ ℝ

+ , �
i
∈ ℝ

+ (delays) rep-
resent model parameters; moreover, A = {A

t
, t ∈ [0, T]} describes the attention fac-

tor for the Bitcoin system.
The behavior of A is described, as in Cretarola et al. (2018), by the equation

where �
A
∈ ℝ , �

A
∈ ℝ

+ , L ∈ ℝ
+ are constant parameters and Z = {Z

t
, t ∈ [0, T]} 

is a standard Brownian motion on (�, ,�;� ) , which is independent of W. Notice 
that the process A affects Bitcoin prices Si through a dependence of both the drift 
and the diffusion terms up to a certain preceding time t − �

i
 , therefore accounting 

for the effect of the past. The introduction of a delay parameter may enlarge the pos-
sible mutual behavior for prices on different exchanges. Further, � ∶ [−L, 0] → R

+
0
 , 

with L > max{𝜏1,… , 𝜏
I
} , is a non-random function which is introduced to make the 

dynamics well defined for t ∈ [0, �
i
] for i = 1, 2,… , I . The model given in Eqs. (3, 4) 

is in fact a special case of Eq. (1), where the exogenous factor is given by Y
t
= A

t−�i
 , 

for each t ∈ [0, T] . In particular, Y
t
= �(t − �

i
) , for t ∈ [0, �

i
] . It is worth noticing 

that the function � might be defined, in principle, by any non-negative function. In 
the empirical application, it will be replaced by a suitable discrete sample for the 
attention factor observed up to the theoretical initial date t = 0.

In this setting, different exchanges are characterized not only by (possibly) differ-
ent parameters values in the dynamics but also by (possibly) different delays with 
respect to the attention factor. Moreover, two sources of randomness are present in 
the above model specification, one driving the price changes and another driving the 
attention factor; this is not in contradiction with the findings of a single market risk 
factor in Sect. 2, since only the Brownian motion W affects directly the Bitcoin price 
dynamics and, as evidenced in Sect. 2.1, market attention may also explain the vari-
ability of Bitcoin prices across exchanges.

In Fig. 3 we plot a possible path for 2 months of daily prices simulated accord-
ing to model in Eqs. (3)–(4) for two sets of parameters: �

A
= 0.5 , �

A
= 1.0 , 

�
S1
= �

S2
= 0.04 , �

S1
= �

S2
= 0.1 , and �1 = 1 day (solid blue), �2 = 5 days (dotted 

(4)dA
t
= �

A
A
t
dt + �

A
A
t
dZ

t
, A

t
= �(t), t ∈ [−L, 0],

Fig. 3   An example with two simulated paths for 3 months of daily prices: parameters are set to �
A
= 0.5 , 

�
A
= 1.0 , �

S1
= �

S2
= 0.04 , �

S1
= �

S2
= 0.1 , and �

1
= 1 day (solid blue), �

2
= 5 days (dotted red), respec-

tively (color figure online)
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red); we just change the value of the parameter � , to better appreciate its contribu-
tion to the dynamics. The picture exhibits both a vertical movement and an horizon-
tal shift.

4 � Arbitrage opportunities

When dealing with multivariate models in continuous time, it is important to ensure 
the absence of arbitrage opportunities in the underlying financial market. An arbi-
trage strategy consists of a dynamical family of transactions in which no money can 
be lost and some can be earned in certain states of nature; it does not require an ini-
tial investment and leads to a positive value with positive probability. A strong arbi-
trage is a free lunch, i.e., it costs nothing to set up and is achieved when the positive 
gain is made without taking any risks (with probability one).

When there are no frictions, such opportunities should not arise, which motivates 
the investigation of financial markets under the assumption of absence of arbitrage 
opportunities. The latter assumption allows to get some relations between the prices 
of securities and their payoffs that are easily expressed in terms of state prices.

From a mathematical point of view, arbitrage-free markets are characterized by 
the existence of an equivalent martingale measure associated with a market price of 
risk, which determines a risk-neutral price for derivatives. In arbitrage-free and also 
complete markets, every derivative is hedge-able and there exists a unique risk-neu-
tral price, which coincides with the value of the replicating self-financing strategy. 
On the contrary, in arbitrage-free and incomplete markets, not every derivative can 
be replicated and there exist infinitely many risk-neutral prices, corresponding to 
infinitely many equivalent martingale measures. Note that, it may be that the market 
is complete, but there exists no equivalent martingale measure; so, arbitrage oppor-
tunities arise.

For the sake of simplicity, we assume that we have I = 2 exchanges. We show 
that the Black and Scholes (BS henceforth) multivariate model given in Eq. (2) 
is arbitrage free, if all the assets have the same market price of risk, see Sect. 4.1. 
Analogous results are obtained and the existence of arbitrage opportunities is dis-
cussed within the model given in Eqs. (3, 4) (CFTP henceforth), see Sect. 4.2.

4.1 � Multi‑exhange BS model

It is well known and easy to prove that the Black and Scholes multivariate specifica-
tion in Eq. (2) is free from arbitrage opportunities if the market price of risk, also 
called the Sharpe ratio, is equal across the different assets (exchanges). We assume a 
constant risk-free interest rate r ∈ ℝ

+
0
 . The Sharpe ratios of both exchanges are con-

stant over time and are given by

Sharpe ratio
i
=

Risk premium
i

�
i

=
�
i
− r

�
i

, i = 1, 2.
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Then, the risk premium is the return in excess of the risk-free rate of return an 
investment in Bitcoin is expected to yield. Now, assume that under the multivariate 
Black and Scholes framework, we have

Define the self-financing portfolio (�1, �2, �) , where:

•	 we buy the amount �1 = C
(
S(1)�1

)−1 of Bitcoin with price S(1) on exchange 1;
•	 we short-sell the quantity �2 = C

(
S(2)�2

)−1 of Bitcoin with price S(2) on exchange 
2;

•	 we invest/borrow the risk-free bond in the amount of the cost difference given by 

C

(
1

�1
−

1

�2

)
 , where C is an arbitrary positive constant.

Precisely, we choose

and

If V
t
 denotes the corresponding portfolio value at time t, then (�1, �2, �) is a strategy 

with null initial value, since

Moreover, the return of the above strategy is

The total gain of the strategy in the time interval [0, s], for an investment horizon 
s > 0 , is given by

Here, C represents a scale factor which leverages the total gain. Therefore, the above 
investment strategy is a strong arbitrage opportunity, since it produces a positive 
profit with probability 1 (free-lunch). Note that the above arbitrage strategy exists 
because of perfect correlation between the returns model dynamics on the two 

Sharpe ratio1 > Sharpe ratio2.

�1
t
= C

1

S
(1)
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�1

, �2
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1
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e
rtdt
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dS
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−
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S
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t
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t

− rC

(
1
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−

1

𝜎2

)
dt
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(
𝜇1 − r
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−

𝜇2 − r

𝜎2

)
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(
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)
dt > 0.

C

(
𝜇1 − r

𝜎1
−

𝜇2 − r

𝜎2

)
s > 0.
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exchanges. While perfect correlation has been evidenced on Bitcoin exchanges, this 
is not the case in traditional financial markets: though some common risk factors 
may be identified to describe the systematic fraction of the variance of each asset, 
the idiosyncratic part of the variance is non-negligible.

4.2 � Multi‑exchange CFTP model

In this setting, a second source of randomness is introduced, related to the dynamics 
of the market attention factor. It is worth noticing that the price of risk relative to the 
second source of uncertainty (price of attention risk) does not vary across assets/
exchanges; hence, arbitrage opportunities are only related to the market Sharpe ratio 
as we will show below.

The risk premia for the the Bitcoins quoted on exchanges 1 and 2, respectively, are 
defined in this setting as

for every t ∈ [0, T] . Again, the risk-free rate is assumed as a non-negative constant r. 
The corresponding Sharpe ratios, that is, the average returns earned in excess of the 
risk-free rate per unit of volatility or total risk, are defined as

for every t ∈ [0, T] . Indeed, if �1 ≠ �2 , equality

is in general not satisfied, for every t ∈ [0, T] , even when �1 = �2 and �1 = �2.
As in the BS example, it is easy to prove that, if the following (or the opposite ine-

quality) holds for some t ∈ [0, T]

then the market is not arbitrage free. Indeed, suppose that (5) holds and set

Risk premium1 = �1At−�1
− r, Risk premium2 = �2At−�2

− r,

Sharpe ratio1 =
Risk premium1

�1

√
A
t−�1

=
�1At−�1

− r

�1

√
A
t−�1

Sharpe ratio2 =
Risk premium2

�2

√
A
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√
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√
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√
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√
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√
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−
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− r

�2

√
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t−�2

.
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Then, if k
t
> 0 , let us consider the self-financing portfolio (�1, �2, �) , defined by

and

Precisely,

•	 we buy the amount �1 of Bitcoin with price S(1) on exchange 1;
•	 we short-sell the quantity �2 of Bitcoin with price S(2) on exchange 2;
•	 we invest/borrow the amount � in the risk-free bond.

If V
t
 denotes the corresponding portfolio value at time t, we get that (�1, �2, �) is a strat-

egy with null initial value, since

Moreover, the return of the above strategy is

On the contrary, whenever k
t
< 0 , we apply the opposite of the above strategy by 

inverting log and short positions.
The total gain of the above strategy in the time interval [0, s], for an investment hori-

zon s > 0 , is given by
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Therefore, it gives rise to a strong arbitrage opportunity since, at no initial cost, it 
produces a sure profit that is strictly greater than 0. Note that the total gain is a posi-
tive value but it is not known at time 0 because it depends on the attention process; 
precisely, it is a random variable with support in ℝ+.

Again, C represents a scale factor, which leverages the total gain, and investment 
quotes should be revised in continuous time to keep the profit riskless.

5 � Model fitting

Now, we estimate the above multivariate models on daily prices from 01/01/2015 to 
12/31/2017 available on Bitstamp, Gdax, Kraken, Cex.IO and BitKonan.

5.1 � BS parameters estimation

In the Black and Scholes framework, parameter estimation is straightforward. 
Indeed, considering discrete time observations for each exchange i, with observation 

step � , the logarithmic returns R(i)
t
∶= ln

(
S
(i)
t

S
(i)

t−1

)
 , according to the dynamics in Eq. 

(2), for t = 1, 2, 3,… , T  are given by

where {�
t
}
t=1,2,…,T is a Gaussian white noise with unit variance.

The parameter of interest may be estimated by computing the sample mean and 
variance of observed logarithmic returns using the following formulas:

The results of the estimation can be found in Table  8. The standard deviation of 
the estimates is also reported (in brackets) as well as significance of the parameters, 
obtained by means of a classical t test for the drift and diffusion parameters. All esti-
mates are strongly significant.

The Sharpe ratio, which is the strategic value to build the arbitrage strategy, is 
computed for each exchange and is also reported in Table  8. Again, the standard 
deviation is added (in brackets) as well as the significance level, obtained by apply-
ing Bootstrap techniques8, see Tibshirani and Efron (1993).

In our empirical exercise, the arbitrage will be achieved by investing on the two 
exchanges which show the largest difference in the Sharpe ratio values, i.e., Cex.IO 
and Gdax.

R
(i)
t
=

�
�
i
−

�2
i

2

�
� + �

i

√
��

t
, i = 1,… , I,

𝜇
i
=

R̄(i)

𝛥
+

𝜎2
i

2
; 𝜎2

i
=

�ar
[
R(i)

]
𝛥

; i = 1,… , I, t = 1,… , T .

8  We thank an anonymous referee for this suggestion.
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5.2 � CFTP parameters estimation

A simple estimation procedure for the model specification given in Eqs. (3, 4), when 
considering a single exchange, is introduced in Cretarola et al. (2018). For the sake 
of brevity, we report here the main steps for the estimation procedure which is based 
on the maximization of the approximated likelihood of the returns. The interested 
reader is referred to the quoted paper for further details.

Given a discrete sample for both Bitcoin prices and a market attention proxy, 
the following procedure is repeated for several values of the delay parameter �:

1.	 the cumulative attention measure is computed for each time interval within the 
discrete sample, assuming that the underlying attention process can be observed 
at a finer grid than the Bitcoin price;

2.	 the distribution of the cumulative attention is approximated by applying the out-
comes in Levy (1992);

3.	 the joint approximate likelihood of the market cumulative attention and Bitcoin 
returns is computed by applying the Bayes rule, the conditional normality of 
returns (given the cumulative attention) and the approximated distribution of the 
attention obtained in step 3;

4.	 parameters other than the delay are estimated by maximizing the approximate 
likelihood obtained in the previous step.

Table 9   Parameter estimates with corresponding standard error (in brackets) for Bitstamp, Gdax, Kraken, 
Cex.IO and BitKonan exchanges, attention measured by trading volume: from 01/01/2015 to 12/31/2017

***The parameters significance: * P ≤ 0.05 ; **P ≤ 0.01 ; ***P ≤ 0.001

Exchange �̂ �̂
A

�̂
A

�̂
S

�̂
S

Bitstamp 1 0.4996 (0.6253) 1.0651*** (0.0607) 0.0385*** (0.0085) 0.0979*** (0.0056)
Gdax 1 0.5186 (0.6246) 1.0653*** (0.0607) 0.0423*** (0.0094) 0.1087*** (0.0062)
Kraken 1 0.5142 (0.6243) 1.0652*** (0.0607) 0.0385*** (0.0086) 0.0989*** (0.0057)
CEX.IO 1 0.5162 (0.6241) 1.0652*** (0.0607) 0.0388*** (0.0084) 0.0970*** (0.0055)
BitKonan 1 0.5166 (0.6234) 1.0653*** (0.0607) 0.0389*** (0.0089) 0.1027*** (0.0059)

Table 10   Parameter estimates with corresponding standard error (in brackets) for GDAX, Bitstamp, 
Kraken, Cex.IO and BitKonan trading exchanges, attention measured by Google SVI: from 01/01/2015 
to 12/31/2017

***The parameters significance: * P ≤ 0.05 ; ** P ≤ 0.01 ; *** P ≤ 0.001

Exchange �̂ �̂
A

�̂
A

�̂
S

�̂
S

Bitstamp 7 1.8295** (0.6854) 1.1664*** (0.0667) 0.4333*** (0.1170) 0.4210*** (0.0240)
Gdax 7 1.8295** (0.6854) 1.1664*** (0.0667) 0.4920*** (0.1363) 0.4898*** (0.0279)
Kraken 7 1.8295** (0.6854) 1.1664*** (0.0667) 0.4344*** (0.1185) 0.4263*** (0.0243)
CEX.IO 7 1.8295** (0.6854) 1.1664*** (0.0667) 0.4345*** (0.1153) 0.4148*** (0.0237)
BitKonan 7 1.8295** (0.6854) 1.1664*** (0.0667) 0.4441*** (0.1243) 0.4472*** (0.0255)
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Finally, � is chosen so to maximize the value of the approximate likelihood.
The overall procedure can be referred to as profile quasi maximum likelihood 

method and it is applied separately to each exchange; the attention factor is meas-
ured for all exchanges either via the daily trading volume or the Google Search 
Volume Index (SVI) retrieved from www.block​chain​.info and www.googl​etren​
ds.com, respectively.

In Tables 9, 10, we report estimated values as well as standard deviations (in brack-
ets) for model parameters of the five major exchanges when attention is measured by 
the total trading volume and by the SVI, respectively. Estimates are all strongly signifi-
cant with the only exception of the attention drift parameter, when attention is meas-
ured by trading volume.

For the above model specification, the Sharpe ratio of each exchange is a random 
process which is a function of the attention process itself; so it is not reported in the 
table. Again, in the empirical application, the arbitrage is built by investing in Cex.IO 
and Gdax to compare the outcomes with those of the BS-based strategy. 

It is worth noticing that for both the trading volume of transactions and the SVI, the 
Bitcoin price is affected by market attention with the same delay for different exchanges 
but in all cases �̂ ≠ 0.

6 � Arbitrage strategies in discrete time

It is evident that it is in-feasible in practice to update trading strategies in continuous 
time as it is requested in continuous time model-based arbitrages. If trading strategies 
are revised at discrete points in time, their non-riskiness property as defined in Sect. 4 
is not guaranteed anymore; in fact, there is a readjustment cost depending on the dis-
crete time step from one revision to the other; so, the suggested strategies do not neces-
sarily lead to strong arbitrage opportunities.

Though, it is still interesting to investigate the performance of these model-based 
strategies as special investment opportunities where no capital is initially allocated.

In what follows, we apply the trading strategies defined in Sects. 4.1 and 4.2 with 
a daily-based revision scheme. We consider several investment horizons, namely 
s = 1, 7, 15, 30, 45, 60, 90 days.

To measure the overall performance of the strategies, we compute the mean daily 
gain as well as the deviation from the mean value across all the different investment 
horizons.

For the sake of comparison between the strategies based on the multi-exchange 
BS and CFTP models, respectively, we also compute a profit to risk ratio of the trad-
ing schemes based on the different model specifications and for different investment 
horizons. The suggested index, named Gain Sharpe ratio ( GSR in the tables), shares 
the same underlying idea with the traditional Sharpe ratio; though it is computed on 
gains rather than returns since the trading strategies defined above have zero initial cost 
which makes it impossible to compute returns, neither expected nor realized. More 

http://www.blockchain.info
http://www.googletrends.com
http://www.googletrends.com
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precisely, if the value of a strategy at time k is denoted by V(k), and we have daily 
observations, then the daily gain is G(k) ∶= V(k) − V(k − 1) . For an investment hori-
zon s > 1 day, the mean daily gain EG, its deviation GDEV and the Gain Sharpe ratio 
GSR are defined, respectively, as

Clearly, for s = 1 we have EG(1) = G(1) and neither GDEV nor GSR may be 
defined.

Note that the selection of the two exchanges on which to invest is chosen on the 
first day of investment by maximizing the difference in the market price of risk. In 
our example, the selection is towards Gdax and CEX.IO exchanges. The outcomes 
are summed up in Tables 11 and 12.

It is worth noticing that the trading strategies are computed from January 1, 2018 
to March 31, 2018 based on parameters estimated on a time series ending December 
2017 and the selection of the exchanges is not updated through time. If such a strat-
egy was automatized by updating parameters estimates and by reviewing the selec-
tion of exchanges showing maximal difference for their relative market price of risk, 
then the overall profit of the strategy would certainly improve further.

EG(s) ∶=

∑s

k=1
G(k)

s
,

GDEV2(s) ∶=

∑s

k=1
[G(k) − EG(s)]2

s − 1
,

GSR(s) ∶=
EG(s)

GDEV(s)
.

Fig. 4   Expected gain for CFTP model-based strategy where market attention is measured by trading vol-
ume (left) or The Google SVI (right): comparison between CFTP model-based strategy (solid blue) and 
CFTP model-based strategy with fees (dotted red) (color figure online)
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From the table, it is quite clear that all the strategies, though implemented in a 
discretized way, lead to a positive profit with positive probability starting from an 
initial 0 capital allocation, i.e., they are indeed weak arbitrages. In terms of pure 
profit, the best performance in the short term ( s ≤ 30 ) is achieved by the CFTP 
model-based strategy where attention is measured by the total trading volume while 
for s ≥ 45 the best profit is obtained by the BS-based strategy. Of course, it is impor-
tant to measure also the variability of the profit so we introduce the Gain Sharpe 
ratio, defined as the ratio between mean profit and deviation from that mean, as a 
single index to measure the performance of the strategies. By looking at this sin-
gle value, the CFTP model-based strategy provides the best performance for all the 
investment horizons.

We also consider the analogous trading strategies where fees are payed according 
to the rules established by the exchanges: Gdax fees are in the range of 0.10–0.30% 
on the trades9 while CEX.IO fees are in the range10 of 0.10–0.25%. In both 
exchanges, the exact amount of fees is based on 30-day trade volume. As expected, 
when fees are included, the cumulative gain reduces but it is still positive, hence 
defining an arbitrage. In Fig. 4, we plot the cumulative gain for the arbitrage strate-
gies based on the CFTP model with and without fees and with the trading volume 
and the Google SVI, respectively, as attention measures. Fees are fixed to 0.25% 
of the trade for both exchanges, to make things easier; it is likely that this choice 

Fig. 5   Comparison between the Ksdensity plot for BS-based strategy (red) and CFTP-based strategy 
(blue) where market attention is measured by trading volume: several investment horizons from 15 to 90 
days (color figure online)

9  https​://pro.coinb​ase.com/fees.
10  https​://cex.io/fee-sched​ule.

https://pro.coinbase.com/fees
https://cex.io/fee-schedule
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reduces the gain with respect to the application of precise (lower for most trades in 
our example) fees for CEX.IO trade positions.

Since the profit distribution is asymmetric, the mean and the deviation of the 
profit may not be enough to describe and compare profits across the different strate-
gies and it would be necessary to take into account the whole distribution function 
of the profits. To this aim we estimate the density of the profit distribution by using 
kernel methods11, see for instance (Bowman and Azzalini 1997).

In Fig. 5 we plot the estimated distributions across different investment hori-
zons, namely s = 15, 30, 60, 90 days. The distributions tend to become similar 
when the investment horizon increases. For each time horizon, the CFTP model-
based strategy gives better result in terms of variability since the distributions are 
always tighter around their mean value; for short-term investment (e.g., for s = 15 
days), it also delivers higher profit values. On the other hand, when attention is 
measured by the Google SVI, the distribution of realized profits is tighter around 
its mean (leading to almost sure profit) but of very limited value.

The overall message of our investigation is that the above model-based strate-
gies do lead to arbitrage opportunities and that the best performance is achieved 
by the strategy based on model (Cretarola et al. 2018) with the trading volume as 
a measure of attention. It is worth to remark that all the above strategies might be 
further optimized by adjusting parameter estimates at a fixed frequency within 
the longer horizon or by properly revising the selection of exchanges.

7 � Concluding remarks

In this paper, we have shown that simple model-based arbitrage strategies can 
be constructed by long–short trading on different Bitcoin exchanges. This can be 
done by taking advantage of the evidence that the Bitcoin prices across the ana-
lyzed exchanges depend on a single market risk factor, pointed out in our prelimi-
nary statistical analysis. We consider two alternative multi-exchange frameworks, 
based on Black and Scholes model (Black and Scholes 1973) and on Cretarola 
et al. (2018), respectively, to model the Bitcoin price dynamics across exchanges. 
By applying established results in mathematical finance, we show that the mod-
els are arbitrage free under usual assumptions, if the market prices of risk (or 
Sharpe ratios) computed on different exchanges are equal. Once the two mod-
els are estimated on daily closing prices for five major exchanges available on 
https​://bitco​incha​rts.com/ (see Cretarola et  al. 2018), we show that the no arbi-
trage constraint is violated and that arbitrage opportunities exist in the real mar-
ket. Though, a strong arbitrage may not be designed since continuous trading is 
infeasible and also non-profitable when transactions fees are taken into account. 
The discretized real-market versions of the model-based arbitrage strategies are 
finally implemented by assuming a daily revision on the long-short positions in 

11  Specifically, we apply the function ksdensity.m, available in the Statistics and Machine Learning tool-
box in Matlab® to estimate such probability densities.

https://bitcoincharts.com/
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the two exchanges where the difference is maximized of the corresponding mar-
ket price of risks. The expected gain, as well as the standard deviation of the gain, 
is computed for each strategy relative to several investment horizons from 1 day 
to 3 months. Notably, the CFTP model-based strategy provides a better perfor-
mance than the BS model-based alternative. This outcome is persistent across all 
investment horizons when market attention is measured by the trading volume. 
In addition, the result also holds when transaction fees are included in the strate-
gies. To increase the profit from these strategies, one may either update parameter 
estimates during the investment period or allow for a switch in the two chosen 
exchanges when this proves to be profitable. Further research will be devoted to 
this optimized investing rules and to their possible automation.
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