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Abstract
This study describes extendedAnderson andHauck procedures for equivalence testing
of slope coefficients and mean responses in one and two regression lines. The general
formulation of asymmetric equivalence ranges permits a wide variety of equivalence
questions to be tested for a target magnitude or a negligible value. Specifically, the
equivalence tests are useful for assessing negligible trend and similar response in a sin-
gle regression line, and for evaluating unimportant interaction-moderation effect and
comparable simple effect between two linear regression lines. The associated power
functions and sample size procedures are also derived and compared under the random
and fixed model settings. According to the analytic justification and empirical assess-
ment, the exact approaches have a clear advantage over the approximate formulas for
accommodating the full stochastic nature of both the response and predictor variables.
Computer algorithms are also provided for conducting the proposed equivalence tests,
power calculations, and sample size determinations in simple linear regressions.

Keywords ANCOVA · TOST · Moderation · Power · Sample size

1 Introduction

Many studies are designed explicitly to show that there is an absence of effects of
competing scenarios or theories. However, they sometimes base their findings on fail-
ing to reject a null hypothesis rather than confirming a hypothesis of equivalence. For
comparison of treatment effects, the traditional hypothesis test of difference aims to
determine whether the treatment effects differ from one another. Under such condi-
tion, the traditional difference tests are inappropriate to establish equivalence, because
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failing to reject a no-difference hypothesis test does not necessarily support the conclu-
sion of equivalence. There has been a growing awareness and demand of appropriate
techniques for assessing equivalence and similarity in the behavioral and managerial
literature. For example, related discussions of theoretical perspectives and practical
issues can be found in Cashen and Geifer [1], Cortina and Folger [2], Edward and
Berry [3], Frick [4], Rogers, Howard, and Vessey [5], Seaman and Serlin [6], Stanton
[7], Stegner, Bostrom, and Greenfield [8], and Steiger [9], among others.

To assess an observed effect size that is clinically negligible or practically non-
important, the recommended equivalence test is to ascertain whether the observed
effect size falls inside the selected equivalence range. The technical discussion and
fundamental review of different types of mean equivalence tests were presented in
Berger and Hsu [10], Meyners [11], and Schuirmann [12]. Despite there are more
powerful tests, two prominent procedures have received considerable attention in the
literature. They are the two one-sided tests (TOST) method of Schuirmann [13] and
Westlake [14] and the equivalence approach of Anderson and Hauck [15] and Hauck
andAnderson [16]. These two procedures ofmean equivalence admit a simplemethod-
ological reform for assessing equivalence. Their flexible settings allow generalizations
to more complex experimental designs. Accordingly, Dixon and Pechmann [17], and
Schmidt and Meyer [18] have extended the TOST to assess whether the linear trend is
practically negligible in linear regressions. Also, Counsell and Cribbie [19] described
an extension of the Anderson and Hauck procedure for comparing the slope coeffi-
cients of two regression lines.

Despite the conservative nature, TOSTmaintains a good control of Type I error rate
at the specified level. However, the actual Type error rate of TOST can be substantially
less than the nominal level and the rejection region can be empty when the equivalence
ranges are narrow, particularlywith small sample sizes.Across the practical anddiverse
research designs for equivalence assessment, the undertaken equivalence bounds and
associated sample sizes may not be all that large. Under such circumstances, it is
of methodological concern to consider alternative procedures with proper rejection
region and good Type I error control. On the other hand, the normal approximation
presented in Counsell and Cribbie [19] for p-value calculations is only one of the
three possible methods proposed in Anderson and Hauck [15]. Following the results
of an extensive simulation study, Anderson andHauck [15] recommended the central-t
approach, instead of the least accurate normal approximation. In view of the absence
of vital clarification for theory development and supportive technique, it is desirable to
properly generalize the Anderson and Hauck procedure for linear regression analysis.

The present article aims to contribute to the development of equivalence method-
ology for linear regressions in three aspects. First, using the central-t approximation,
extended Anderson and Hauck procedures are presented for equivalence testing of
slope coefficient and mean response in one and two regression lines. The general
formulation of asymmetric equivalence ranges permits a wide range of equivalence
questions to be tested. Consequently, they are useful for assessing negligible trend and
similar response in a single regression line, and for evaluating unimportant interaction-
moderation effect and comparable simple effect between two linear regression lines.
Second, the associated power functions and sample size procedures are also derived
and compared under the random and fixed model settings. According to the analytic
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justification and empirical assessment, the exact approaches have a clear advantage
over the approximate formulas for accommodating the full stochastic nature of both
the response and predictor variables. It should be noted that exact power and sample
size calculations were not addressed in Counsell and Cribbie [19]. Third, the proposed
equivalence techniques are not available in popular software packages. Computer algo-
rithms are provided for critical value computations, power calculations, and sample
size determinations of the extended Anderson and Hauck procedures. The suggested
power and sample size calculations should be useful for planning equivalence stud-
ies about the much-discussed appraisals of interaction-moderation effect and simple
effect in behavioral and management research.

2 Single Regression Line

The simple linear regression model is of the form

Yi = β0 + Xiβ1 + εi , (1)

where Yi is the response score of the ith subject, β0 is the intercept, β1 is the slope
coefficient, Xi is the predictor score of the ith subject, and εi are iid N(0, σ2) random
variables, i = 1, …, N . The least squares estimator β̂1 of slope coefficient β1 has the
following distribution

β̂1 ∼ N (β1, σ 2/SSX), (2)

where SSX = ∑N
i=1 (Xi − X̄)2 and X̄ = ∑N

i=1 Xi/N .Also, σ̂2 = SSE/ν is the usual

unbiased estimator of σ2 where SSE is the error sum of squares and ν = N – 2.
Moreover,V = SSE/σ2 ~ χ2(ν), whereχ2(ν) are chi-square distributionwith ν degrees
of freedom.

To detect the difference of slope coefficient in terms of H0: β1 = β10 versus H1: β1
�= β10, the test statistic has the form

TS0 = β̂1 − β10

(σ̂ 2/SSX)1/2
(3)

The null hypothesis is rejected at the significance level α if

|TS0| > tν,α/2 (4)

where tν,α/2 is the 100(1 – α/2) percentile of t(ν) and t(ν) is a t distribution with
degrees of freedom ν.
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2.1 Equivalence Test of Linear Trend

The primary focus of this article is the test of equivalence, the null and alternative
hypotheses are expressed as

H0 : β1 ≤ �L or �U ≤ β1versus H1 : �L < β1 < �U , (5)

where�L and�U are a priori constants that represent the minimal range for declaring
equivalence effect size. The hypotheses with asymmetric equivalence thresholds can
be readily rewritten in terms of symmetric equivalence bounds as

H0 : β∗
1 ≤ −� or � ≤ β∗

1 versus H1 : −� < β∗
1 < �, (6)

where β∗
1 = β1 – �M , �M = (�L + �U )/2, and � = (�U – �L)/2. An important

scenario is to detect a negligible trend by setting �U = � and �L = – � so that �M

= 0 for a bound �.
For the given value of the predictor quantity SSX, it is essential to note that

TS = β̂1 − �M

(σ̂2/SSX)1/2
∼ t(ν, λs), (7)

where t(ν, λS) is the noncentral t distribution with degrees of freedom ν and noncen-
trality parameter λS = (β1 – �M )/(σ2/SSX)1/2. To claim the slope coefficient β1 is
within the interval (�L , �U ), a natural rejection region to the null hypothesis is

{τSL < TS < τSU },

where the two critical values τSL and τSU are chosen to simultaneously attain the
nominal Type I error rate

P{τSL < TS < τSU |β1 = �L} = α and P{τSL < TS < τSU |β1 = �U } = α.

Following the properties of a noncentral t distribution as in Johnson, Kotz and
Balakrishnan [20], it can be shown that the two conditions can be simultaneously
satisfied by the choice of critical values τSL = –τS and τSU = τS where τS > 0. Hence,
the rejection region is of the form

AHS = {−τS < TS < τS}, (8)

where τS is determined by the condition P{–τS < TS < τS | β1 = �L} = α or P{–τS
< TS < τS | β1 = �U} = α. Note that the error variance is generally unknown and the
exact distribution of TS cannot be specified. Following the suggestion in Anderson
andHauck [15], a feasible and accurate approach is to find the critical value τS through
the approximation TS ∼̇ T + λ̂S where T ∼ t(ν) , λ̂S = �/(σ̂2/SSX)1/2, and

P{−τS < T + λ̂ < τS} = α. (9)
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Thus, the optimal quantity τS can be computed by a simple iterative search. Note
that the critical value τS is a function ofα,�,N , σ̂2, and SSX. It does not have an explicit
analytic expression and requires a computer program to calculate the actual value. An
efficient algorithm is developed for computing the critical value and rejection region
for the suggested procedure. Also, the p-value associated with the observed slope
estimate β̂1O can be calculated as

p-value = P{−|TO | −λ̂S < T < |TO | −λ̂S}, (10)

where TO = (β̂1O−�M )/(σ̂2/SSX)1/2. It is apparent that the p-value is computation-
ally easier to obtain than the critical value.

Note that similar discussion was described in Anderson and Hauck [15] for testing
two-group mean equivalence. Because of the computational ease of the p-value, they
recommend the p-value approach to conclude the decision. Hence, they did not address
the calculation and implementation issues of the rejection region and correspond-
ing power function. Accordingly, the sample size procedure for mean equivalence
in Hauck and Anderson [16] is less transparent and cannot be readily adopted as
a general tool in linear regressions. Moreover, the Anderson and Hauck procedure
has an unbounded rejection region as other more powerful tests. The counterintuitive
rejection of nonequivalence with arbitrarily large values of sample variance has been
debated extensively in Berger and Hsu [10] and the discussions therein. As a con-
structive response, they proposed to specify an upper bound on the sample variance
beyond which the null hypothesis will never be rejected. Moreover, unlike the TOST,
the advantage of the Anderson and Hauck procedure in the Type I error protection for
small sample sizes and tight equivalence bounds should also be taken into considera-
tion. The contrasting behavior of the two test procedures is also demonstrated in the
subsequent numerical examples.

2.2 Equivalence Test of Mean Response

The equivalence appraisal can also be applied to the mean response μ = β0 + Xβ1 at
a focal predictor value XF . The null and alternative hypotheses are presented as

H0 : μ ≤ �L or �U ≤ μ versus H1 : �L < μ < �U , (11)

where�L and�U are a priori constants that represent the threshold range for declaring
practical equivalence. With the least squares estimators (β̂0, β̂1) of (β0, β1), the linear

estimator μ̂ = β̂0 + XF β̂1 has the distribution

μ̂ ∼ N (μ, σ2HM ), (12)
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where HM = 1/N + (XF−X)2/SSX . It is useful to note that

TM = μ̂ − �M

(σ̂ 2HM )1/2
∼ t(ν, λM ), (13)

where the noncentrality parameter λM = (μ – �M )/(σ2HM )1/2 and �M = (�L +
�U )/2.

Following the same principle for slope coefficient assessment, a potential rejection
region to the null hypothesis is of the form

AHM = {−τM < TM < τM }, (14)

where the critical value τM is chosen to attain the nominal Type I error rate when
μ = �L and �U . The proposed approach is to find the critical value through the
approximate evaluation

P{−τM < T + λ̂M < τM } = α (15)

where T ~ t(ν), λ̂M = �/(σ̂2HM )1/2, and � = (�U – �L)/2. Note that the critical

value τM is a function of α, �, N , σ̂2, and HM . Moreover, an iterative algorithm is
required to compute the critical value.

2.3 A Numerical Example

The numerical details for the equivalence tests of slope coefficient and mean response
are demonstrated with the data of training study described in Table 6.1 of Huitema
[21] about the relation between the response variable (Y : achievement) and the pre-
dictor variable (X: aptitude) for three types of training program.

For the first training group with N = 10, the sample means of the predictor and
response variables are X = 52.00 and Y = 30.00, respectively. Moreover, the least
squares estimates of the linear regression line between achievement and aptitude mea-
surements are obtained as {β̂0, β̂1} = {4.1033, 0.4980}, and the sample variance of

error is σ̂2= 70.5615. For illustration, an equivalence test of slope coefficient is per-
formed in terms of H0: β1 ≤ 0.25 or 0.75 ≤ β1 versus H1: 0.25 < β1 < 0.75 (�M =
0.50 and � = 0.25). With SSX = 2014.00 and α = 0.05, the test statistic and crit-
ical value are computed as TS = –0.0106 and τS = 0.1598, respectively. Thus, the
nonequivalence null hypothesis is rejected at the significance level 0.05. The conclu-
sion indicates that the slope coefficient is essentially equivalent to 0.50 with no more
than 0.25 difference.

The equivalence test of mean response can also be performed with the estimated
mean response μ̂= 29.0040 at XF = 50. Using �M = 29 and � = 4, the equivalence
test of mean response is conducted in terms of H0: μ ≤ 25 �or 33 ≤ μ versus H1: 25
< μ < 33. The test statistic and critical value can be computed as TM = 0.0015 and
τM = 0.1966, respectively for α = 0.05. Hence, the nonequivalence null hypothesis
is rejected at the significance level 0.05. The analysis suggests that the mean response
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at XF = 50 is nearly within a bound of 4 around 29. Moreover, it can be shown that
the resulting rejection regions of the TOST procedures are empty sets and there is no
chance to reject the nonequivalence null hypothesis of the slope coefficient and mean
response. Apparently, the TOST approach may not be a reliable procedure when the
sample size is small, especially for a tight equivalence range. Such deficiency agrees
with the explication of TOST for assessing mean equivalence in Schuirmann [12].

2.4 Power and Sample Size Calculations

When planning and conducting a research, the actual values of the continuous mea-
surements of response and predictor variable for each subject are available only after
the observations are obtained. In addition to the randomness of normal responses, the
stochastic nature of predictor variables has to be taken into account in power analysis
under the random and unconditional context in linear regression study. A useful and
convenient framework is to assume the continuous predictor variables {Xi, i = 1, …,
N} have the independent and identical normal distribution N(μX , σ2X ) as in Shieh [22,
23] within the context of ANCOVA.

Under the prescribed stochastic consideration of {Xi, i= 1,…,N}, it can be readily
established that K = SSX/σ2X ~ χ2(κ) where κ = N – 1. The power function of the
equivalence procedure for slope coefficient can be expressed as

	S = P{−τS < TS < τS|�L < β1 < �U }. (16)

Note that the critical value τS depends on the two quantities σ̂2 and SSX. With
σ̂2 = σ2(V /ν) and Hs = 1/SSX = 1/(σ2X K ), the power function	S can be rewritten
as

	S = E(K , V )[
(BS)−
(AS)], (17)

whereBS = (�M – β1)/(σ2Hs)1/2 + τS(V /ν)1/2,AS = (�M – β1)/(σ2Hs)1/2 – τS(V /ν)1/2,

(·) is the cumulative density function of the standard normal distribution, and the
expectation E(K,V ) is taken with respect to the chi-square distributions of K and V .

Under the random predictor framework, the normality assumption implies that

TX = X̄ − XF

(̂σ 2
X/N )1/2

∼ t(κ , λX ), (18)

where σ̂2X = SSX/κ and λX = (μX − XF)/(σ
2
X/N )1/2 Also, the power function of

the equivalence procedure for mean response is of the form

	M = P{−τM < TM < τM |�L < μ < �U }. (19)

In this case, the critical value τM depends on the two terms σ̂2 and HM . With
σ̂2 = σ2(V /ν) and HM = 1/N + T 2

X/(κN ), it follows that the power function 	M
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can be expressed as

	M = E(T X , V )[
(BM )−
(AM )], (20)

where BM = (�M – μ)/(σ2HM )1/2 + τM (V /ν)1/2, AM = (�M – μ)/(σ2HM )1/2 –
τM (V /ν)1/2, and E(TX,V) is taken with respect to the joint distribution of TX and V .

The prescribed power functions	S and	M for slope coefficient andmean response
involve a mixture of noncentral t distributions through the distribution K and TX of
the predictor variables, respectively. It is appealing to simplify these power functions
because of computational complexity. Under the normal assumptionN(μX , σ2X ) for the

predictors {Xi, i = 1, …, N}, the standard results show that E[X ] = μX and E[SSX]

= κσ2X . Hence, an approximation of unconditional distribution can be obtained for the

test statistic TS ∼̇ t(ν, λSA) where λSA = (β1 – �M )/(σ2HSA)1/2 and HSA = 1/(κσ2X ).
It yields a simplified power function for the equivalence test of linear trend

	SA = P{−τS < t(ν, λSA) < τS}. (21)

Moreover, following similar arguments, the test statistic of mean response has
the approximate distribution TM∼̇t(ν, λMA) where λMA = (μ – �M )/(σ2HMA)1/2

and HMA = 1/N + (μX – XF)2/(κσ2X ). Then, an approximate power function for the
equivalence test of mean response is denoted by

	MA = P{−τM < t(ν, λMA) < τM }. (22)

The approximate power functions of the equivalence procedures provide com-
putational shortcuts to the exact formulas. The simple formulations can be readily
implemented with the embedded probability functions of a noncentral t distribution
in standard software systems. On the other hand, the prescribed analytic justifications
provide statistical support for the exact power functions. An immediate application of
the power functions is to compute optimal sample sizes needed for the equivalence
procedure to attain the specified power under the designated model configurations.
The fundamental discrepancy between the exact and simplified power and sample size
calculations will be further assessed in the succeeding numerical investigations.

2.5 Numerical Assessments

As an exemplifying framework, the model configurations follow that of the prescribed
training study in Huitema [21]. Accordingly, the sample estimated of regression coef-
ficients and variance component of the first training group are designated the working
configurations: {β0, β1} = {4.1033, 0.4980}, and σ2 = 70.5615, respectively. The
mean and variance of the normal predictors are chosen as {μX , σ2X} = {52.00,
223.7778}. The equivalence thresholds (�L , �U ) are defined as �L = �M – �,
�U = �M + �, and various magnitudes of �M and � are evaluated. For the equiv-
alence tests of linear trend, the selected values are �M = 0.5 with � = 0.2, 0.3, and
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0.4. The equivalence tests of mean response are examined at XF = 50 with �M = 29
for μ = 29.0040 under three equivalence bounds � = 4, 5, and 6.

With these specifications, the required sample sizes of both exact and approximate
methods were computed for the chosen power value 1 – β = 0.80 and significance
level α = 0.05. The estimated sample sizes for the equivalence tests of linear trend
and mean response are presented in Table 1. Note that the resulting sample sizes
cover a reasonable range of magnitudes without being unrealistic or excessively large.
More importantly, the estimated sample sizes of the exact approach are consistently
larger than or equal to those of the approximate procedure for all 6 cases. For ease
comparing the accuracy of power functions, the estimated power or attained power
are also summarized in Table 1. Because of the underlying metric of integer sample
sizes, the estimated values of both exact and approximate procedures are marginally
larger than the nominal level for all cases.

In the second stage, Monte Carlo simulation studies were performed to justify
the performance of power and sample size calculations. With the computed sample
sizes, parameter configurations, and nominal alpha level, estimates of the true power
were computed via Monte Carlo simulation of 10,000 independent data sets. For
each replicate, the sample size N predictor values were generated from the selected
normal distributions. The outcome values of predictor variables are then designated to
determine the mean responses for generating the normal responses with the specified
linear regression model. Next, the equivalence test statistics were computed and the
simulated powerwas the proportion of the 10,000 replicateswhose null hypothesiswas
rejected at the significance level 0.05. Accordingly, the adequacy of the approximate
and exact sample size procedures is determined by the error (= simulated power –
estimated power) between the simulated power ofMonte Carlo study and the estimated
power computed from analytic power function. The simulated power and error are also
presented in Table 1.

The results reveal that the exact approaches are extremely accurate because the
associated errors of the 6 cases are all within the small range of –0.0055 to 0.0075.
Accordingly, there exists a close agreement between the simulated power and the esti-
matedpower of the exact approaches for these settings.On theother hand, the simulated
powers for the approximate methods are constantly less than the estimated pow-
ers. Specifically, the resulting errors are {–0.0167, –0.0210, –0.0306} and {–0.0057,
–0.0069, –0.0177} for the linear trend and mean response, respectively. Although
some of the differences are not substantial, it implies that the approximate power
functions do not give reliable results for small sample sizes. In short, the adequacy of
the approximate power and sample size calculations varies with model configurations.
It is clear that the exact techniques are more reliable and accurate than the approximate
methods for all cases of linear trend and mean response considered here.

3 Two Regression Lines

The two-group nonparallel simple linear regression model is expressed as

Y1i = β01 + X1iβ11 + ε1i and Y2 j = β02 + X2 jβ12 + ε2 j , (23)
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where ε1i and ε2j are iid N(0, σ2) random variables, i = 1, …, N1, and j = 1, …,
N2. Note that a traditional ANCOVA model assumes that the regression slopes are
equivalent β11 = β12. Accordingly, a test of slope equality is generally required to
justify the use of ANCOVA.

Standard results that the least squares estimators β̂11 and β̂12 of slope coefficients
β11 and β12 have the following distributions

β̂11 ∼ N (β11, σ2/SSX1) and β̂12 ∼ N (β12, σ2/SSX2),

where SSX1 = ∑N1
i=1 (X1i − X)2, SSX2 = ∑N2

j=1 (X2 j −X2)
2, X1=∑N1

i=1, X1i/N1

and X2 = ∑N2
i=1 X2i/N2. The difference of two slope estimators has the distribution

β̂D = β̂11−β̂12 ∼ N {βD , σ2HDS}, (24)

where βD = β11 – β12 and HDS = 1/SSX1 + 1/SSX2. In this case, σ̂2 = SSE/νD is

the usual unbiased estimator of σ2 and V = SSE/σ2 ~ χ2(νD) where SSE is the error
sum of squares and νD = N1 + N2 – 4.

To detect the difference between two slope coefficients in terms of H0: βD = βD0
versus H1: βD �= βD0, the test statistic has the form

TDS0 = β̂D − βD0

(σ̂2HDS)
1/2 (25)

The null hypothesis is rejected at the significance level α if

|TDS0| > tνD , α/2 (26)

3.1 Equivalence Test of Trend Effect

To conduct equivalence test of trend effect or slope difference, the null and alternative
hypotheses are expressed as

H0 : βD ≤ �L or �U ≤ βD versus H1 : �L < βD < �U , (27)

where�L and�U are a priori constants that denote the minimal magnitude for declar-
ing equivalence for trend effect. Under the model assumption, it follows that

TDS = β̂D − �M

(σ̂ 2HDS)1/2
∼ t(νD , λDS), (28)

where the noncentrality parameter λDS = (βD – �M )/(σ2HDS)1/2 and �M = (�L +
�U )/2. To justify the slope difference βD is within the interval (�L , �U ), a feasible
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rejection region to the null hypothesis is

AHDS = {−τDS < TDS < τDS}, (29)

where the critical value τDS is chosen to simultaneously attain the nominal Type I error
rate when βD = �L and �U . In practice, the exact distribution of TDS is practically
unknown and the critical value τDS can be determined through the approximation

P{−τDS < T + λ̂DS < τDS} = α, (30)

where T ~ t(νD), λ̂ DS = �/(σ̂ 2 HDS)1/2, and � = (�U – �L)/2. The optimal quantity
τDS is a function of α, �, N1, N2, σ̂2, and HDS . Although the critical value does not
have a closed-form expression, it can be computed by a simple iterative search.

As emphasized in Huitema [21], Kutner et al. [24], Rencher and Schaalje [25],
and related texts of research methods, the traditional ANCOVA assumes that the slope
coefficients associating the predictor variableswith the response variables are the same
for each treatment group. The assertion of homogeneous regression slopes implies a
lack of interaction effects between a categorical moderator and a continuous predic-
tor in moderation study. Note that the conventional difference test purports to show
the regression lines are nonparallel. Hence, the suggested equivalence procedure for
trend effect is more appropriate for supporting the equality or comparability of slope
coefficients assumption in ANCOVA.

3.2 Equivalence Test of Simple Effect

A related and practical scheme for comparing two regression lines is to assess the
difference between two mean responses at a designated predictor value. The simple
effect or the mean response difference between two regression lines at XF is defined
as

μD = μ1−μ2 = (β01−β02) + XF (β11−β12) (31)

The equivalence test of simple effect is conducted under the null and alternative
hypotheses:

H0 : μD ≤ �L or �U ≤ μD versus H1 : �L < μD < �U , (32)

where �L and �U are a priori constants that represent the minimal threshold for
declaring essential equivalence.

Using the least squares estimators {β̂01, β̂11 β̂02, β̂12} of for the intercept and slope
coefficients {β01, β11, β02, β12}, the estimated mean response μ̂1 and μ̂2 for mean
values μ1 = β01 + Xβ11 and μ2 = β02 + Xβ12 at a specified value XF are

μ̂1 = β̂01+XF β̂11 and μ̂2 = β̂02+XF β̂12
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respectively. A natural and unbiased estimator of μD is μ̂D = μ̂1 − μ̂2 and

μ̂D ∼ N (μD, σ 2HDM ), (33)

where HDM = 1/N1 + 1/N2 + (XF – X1)2/SSX1 + (XF –X2)2/SSX2. It is important
to note under the model assumption that

TDM = μ̂D − �M

(σ̂ 2HDM )1/2
∼ t(νD , λDM ), (34)

where the noncentrality parameter λDM = (μD – �M )/(σ2HDM )1/2 and �M = (�L +
�U )/2. To evaluate whether the simple effect μD is within the interval (�L , �U ), the
suggested rejection region is

AHDM = {−τDM < TDM < τDM }, (35)

where the critical value τDM is chosen to simultaneously attain the nominal Type I
error rate when μD = �L and �U . The assessments can be calculated through the
approximation

P{−τDM < T + λ̂DM < τDM } = α, (36)

where T ~ t(νD), λ̂ DM = �/(σ̂2 HDM )1/2, and� = (�U –�L)/2. The optimal quantity
τDM is a function of α, �, N1, N2, σ̂2, and HDM , and it needs to be calculated by an
iterative search algorithm.

It should be noted that the equivalence analysis of simple effect or response dif-
ference between two linear regression lines is closely related to the Johnson–Neyman
problemof Johnson andNeyman [26] andPotthoff [27]. The Johnson–Neyman regions
of significance and non-significance are identified with the conclusion to reject or the
failure to reject the conventional hypothesis of no difference between mean responses.
Technical illustrations and implications can be found in Hunka [28], Rogosa [29], and
Spiller, et al. [30], among others. Contrastly, the proposed equivalence test of simple
effect can be used to identify the regions of equivalence and nonequivalence or the
ranges of predictor values that the simple effect is equivalent and nonequivalent.

3.3 An Application

The prescribed example about training study in Table 6.1 of Huitema [21] is utilized
to demonstrate the suggested equivalence testing of trend and simple effects between
the first two treatments. In addition to the summary information of the first group, the
second group of training type hasN2 = 10, Y 2 = 39.0000 and X2 = 47.0000, and SSX2

= 1798.00. The regression coefficient estimates are { β̂02, β̂12} = {15.1863, 0.5067}
and the sample variance of error is σ̂22 = 54.3025. It is readily obtained that

β̂D = β̂11−β̂12 = −0.0087 and the pooled sample variance is σ̂2 = 62.4320. The
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equivalence hypothesis testing of trend effect is presented as H0: βD ≤ –0.25 or 0.25
≤ βD versus H1: –0.25 < βD < 0.25 (�M = 0 and � = 0.25). For ν = 16 and α =
0.05, the test statistic TDS = –0.0338 and the critical value τDS = 0.1048. Hence, the
nonequivalence null hypothesis is rejected at the significance level 0.05. It suggests
that the slope coefficient is virtually equivalent and their difference is within the range
(–0.25, 0.25).

It is of practical importance to assess the simple effect or the mean response dif-
ference between two regression lines. At the particular predictor value XF = 50, the
mean response difference is computed as μ̂D = μ̂1 − μ̂2 = –11.5161. For illustration,
the equivalence thresholds is set as �M = –11 and � = 5 and the equivalence test
of simple effect is conducted for the hypotheses H0: μD ≤ –16 or –6 ≤ μD versus
H1: –16 < μD < –6. With ν = 16 and α = 0.05, the test statistic and critical value
can be obtained as TDM = –0.1436 and τM = 0.1684, respectively. Consequently, the
nonequivalence null hypothesis is rejected at the significance level 0.05 and the mean
response difference is practically –11 with the threshold of 5 at XF = 50. In view of
the limited features of available software packages, computer programs are developed
to facilitate the usage of the proposed equivalence procedures for trend and simple
effects.

3.4 Power and Sample Size Calculations

In order to elucidate the critical notion of accommodating the distributional properties
of the predictor variables, the continuous covariate variables {X1i, i = 1, …, N1} and
{X2j, j = 1,…, N2} are assumed to have the independent normal distributions N(μX1,
σ2X1) and N(μX2, σ 2

X2), respectively. It can be readily established that K1 = SSX1/σ2X1
~ χ2(κ1) and K2 = SSX2/σ2X2~ χ2(κ2) where κ1 = N1 – 1 and κ2 = N2 – 1.

Under the unconditional setting, the power function for trend effect is expressed as

	DS = P{−τDS < TDS < τDS|�L < βD < �U }. (37)

Note that the critical value τDS depends on the two statistics σ̂2 and HDS . With
σ̂2 = σ2(V /ν) and HDS = 1/(σ2X1 K1) + 1/(σ2X2K2), the power function 	DS can be
rewritten as

	DS = E(K1, K2, V )[
(BDS)−
(ADS)], (38)

where BDS = (�M – βD)/(σ2HDS)1/2 + τDS(V /νD)1/2, ADS = (�M – βD)/(σ2HDS)1/2

– τDS(V /νD)1/2, and E(K1, K2, V ) is taken with respect to the joint distribution of K1,
K2 and V .

Moreover, the normality assumptions of predictor variables imply that

TXg = Xg − XF

(σ̂2Xg
/Ng)1/2

∼ t(κg , λXg ) (39)

123



Journal of Statistical Theory and Practice (2024) 18 :36 Page 15 of 21 36

where σ̂2Xg = SSXg/κg and λXg = (μXg – XF)/(σ2Xg/Ng)1/2 for g = 1 and 2. Following

the prescribed power function 	DS , the power function for mean response difference
is presented as

	DM = P{−τDM < TDM < τDM |�L < μD < �U }. (40)

Note that the critical value τDM depends on the two terms σ̂2 and HDM . With σ̂2

= σ2(V /νD), HDM = 1/N1 + 1/N2 + T 2
X1/(κ1N1) + T 2

X2 /(κ2N2), the power function
has the alternative form

	DM = E(T X1, T X2, V )[
(BDM ) −
(ADM )], (41)

where BDM = (�M – μD)/(σ2HDM )1/2 + τDM (V /νD)1/2, ADM = (�M –
μD)/(σ2HDM )1/2 – τDM (V /νD)1/2, and E(TX1, TX2, V ) is taken with respect to the joint
distribution of TX1, TX2 and V .

It is also temping to simplify the unconditional distributions for the equivalence
test statistics for comparing slope coefficients and mean responses. Conceivably, a
straightforward approach is to replace the two means {X1, X2} and sum of squares

{SSX1, SSX2} with the corresponding expected values E[X1] = μX1, E[X2] = μX2,

E[SSX1] = κ1σ
2
X1, and E[SSX2] = κ2σ

2
X2. Thus, an approximate power function for

the equivalence test of trend effect is

	DSA = P{−τDS < t(ν, λDSA) < τDS}, (42)

whereλDSA = (βD –�M )/(σ2HDSA)1/2 andHDSA = 1/(κ1σ2X1)+ 1/(κ2σ2X2).Moreover,
the power function of equivalence test of simple effect is expressed as

	DMA = P{−τDM < t(ν, λDMA) < τDM }, (43)

where λDMA = (μD – �M )/(σ2HDMA)1/2 and HDMA = 1/N1 + 1/N2 + (μX1 –
XF)2/(κ1σ2X1) + (μX2 – XF)2/(κ2σ2X2). Empirical examinations will be conducted to
demonstrate the critical differences between the exact and approximate power func-
tions using different levels of information of predictor variables.

3.5 Numerical Investigations

The model configurations of the first two groups of the training study in Huitema [21]
provide a convenient framework for the subsequent simulation study of trend effect and
simple effect. For illustration, the key statistics of response and predictor variables are
treated as population parameters as potential settings of future investigations for power
calculations and sample size determinations. Specifically, the regression coefficients
are {β01, β11} = {4.1033, 0.4980}, {β02, β12} = {15.1863, 0.5067}, and common
error variance σ2 = 62.4320. The means and variances of the two predictor variables
are {μX1, σ2X1} = {52.00, 223.7778} and {μX2, σ2X2} = {47.00, 199.7778}.
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Similar to the prescribed scenario of linear trend and mean response, numerical
investigations contain the determination of optimal sample sizes and the simulation
study of power calculations. Through the empirical examinations, the Type I error rate
and nominal power are fixed as α = 0.05 and 1 – β = 0.80, respectively. First, the trend
effect or the slope difference between two regression lines is βD = –0.0087. Thus, the
equivalence tests of trend effect have�M = 0 and� = 0.2, 0.3, and 0.4 for the equiva-
lence bounds. Second, the mean response of the two levels of treatment at XF = 50 are
μ1 = 29.0040 and μ2 = 40.5200, respectively, and their difference is μD = –11.5161.
Accordingly, the equivalence tests of simple effect are performed for �M = –11 and
� = 4, 5, and 6. The optimal sample sizes of both exact approach and approximate
method were determined for the chosen power value and significance level with bal-
anced and unbalanced structures r = N1/N2 = 1 and 2. The computed sample sizes
for the equivalence tests of trend effect and simple effect are presented in Tables 2 and
3, respectively. The results suggest the general pattern that the approximate formulas
tend to give smaller sample sizes than the exact techniques. Balanced designs require
fewer samples to achieve the nominal power than the unbalanced structures. Also, the
computed sample size decreases with increasing threshold bound �.

To elucidate the accuracy of sample size calculations, Monte Carlo simulation
study of 10,000 replications were conducted to obtain the simulated powers and they
are compared to the estimated powers for the optimal sample sizes. These power
values and associated errors are also presented in the tables. As can been from the
reported deviations, the exact approaches of trend effect and simple effect maintain
small errors in power computations. Whereas the approximate methods are not as
good as the exact counterparts and their performance deteriorates as the sample size
decreases. Specifically, the two errors associated with� = 0.4 are {–0.0301, –0.0360}
and {–0.0172, –0.0157} in Tables 2 and 3, respectively. The overall usefulness of the
approximate methods is affected by the undesirable properties of underestimation
of sample sizes and over-calculation of power levels. According to the findings, the
exact power functions and sample size procedures are recommended for general use.
The implementation of the suggested power evaluation and sample size determination
involves specialized programs not currently available in prevailing statistical pack-
ages. Thus, the accompanying computer algorithms are presented for conducting the
suggested power and sample size calculations.

4 Conclusions

The concept and theory of equivalence have been widely practiced in pharmaceutical
sciences and relatedmedical fields. Equivalence testing procedures are also potentially
useful in behavioral and psychological sciences. The technical intuition and compu-
tational simplicity of TOST provide an important motivation to apply appropriate
statistical tools for equivalence assessment, rather than the traditional hypothesis tests
that purport to detect whether treatment groups significantly differ from one another.
Despite the ready applicability, the TOST is generally conservative and the true Type I
error rate can be substantially less than the nominal level for close equivalence bounds
and small sample sizes. In contrast, the Anderson andHauck procedure and othermore
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powerful equivalence tests always have a rejection region with reasonably controlled
significance level.

Within the context of linear regressions, one and two regression lines represent two
major scenarios of regression slope appraisal research. Accordingly, the TOST has
been applied to assess whether the linear trend is practically negligible in ecological
and environmental issues. In view of the potential limitation of TOST, this study
presents extended Anderson and Hauck procedures for equivalence assessment in
linear regression analysis. Specifically, equivalence tests are proposed for evaluating
the linear trend and mean response of a single regression line, and the trend effect
and simple effect between two regression lines. The hypotheses are constructed with
asymmetric equivalence bounds and therefore, can be readily applied to all equivalence
problems about regression slopes and mean responses.

Moreover, to enhance the usefulness of the suggested procedures, the advanced
issues of power and sample size calculations are also investigated. The proposed
power and sample size procedures are derived under the random regression framework
and have the distinct features to account for the imbedded uncertainty of predictor
variables. It is essential to note that the recommended approaches involve statistical
evaluations and iterative algorithms not currently available in statistical package.A full
set of computer programs are developed for implementing the suggested equivalence
tests and sample size determinations. These research findings expand the conceptual
understanding and theoretical development of Anderson and Hauck procedure for
equivalence assessments in linear regression analysis.
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