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Abstract
A mediating variable is a variable that is intermediate in the causal path relating an
independent variable to a dependent variable in statistical analysis. The mediation
analysis of using a categorical predictor, mediator, and outcome variables has been
investigated in the literature. It is extremely common to have missing data even after
having a well-controlled study. It is also well known that missingness, especially the
non-ignorable missing, in a dataset has often been proven to produce biased results.
This paper uses the extended Baker, Rosenberger, and Dersimonian (BRD) model to
estimate the mediation effect under non-ignorable missing mechanisms. This paper
also proposes four identifiable models to estimate the mediation effect for missing-
ness in one categorical variable with two fully observed categorical variables. We
reported the relative bias and Mean Square Error to compare the performance of the
proposed BRD models against the Complete Case and Multiple Imputation methods
in estimating the mediated effect (̂âb) under the non-ignorable missing mechanism.
The application of these models in estimating the mediated effect was demonstrated
using the Multiple Risk Factor Intervention Trial datasets.

Keywords Mediation analysis · Mediated effect · Log-linear · Categorical variables ·
Logistic regression · Contingency table · Missing data · Maximum likelihood
method · BRD models

1 Introduction

Mediation analysis plays a significant role in the exploration of a causal relationship
between two variables. A mediation model effect focuses on how two variables are
related directly or indirectly: for example, consider the presence or absence of coronary
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heart disease (CHD) in high-risk men given as the independent variable (X), death due
to myocardial infarction given as the dependent variable (Y ), mediated by smoking
where the smoking variable is the mediator (M).

Mediation analysis, which was first developed in the psychological sciences, is
now instrumental in other disease development mechanisms for identifying interme-
diate factors useful for treatments and clinical trials.Methodological applications have
increased over the past years, and more progress has also been made in understanding
and applying mediation analysis in various research fields. Wright [1] proposed the
mechanism of mediation by using “Wright’s path analysis.” His model demonstrates
the mathematical equations and diagrammatical representation in understanding the
causal relationship between two variables such that the equations included the coef-
ficients. In contrast, the diagrammatic representation included arrows to illustrate
the relation’s direction. These path coefficients were useful in defining the media-
tion effect. Wright [2] showed that although path analysis can be useful in quantifying
causal relationships, it was extremely challenging to determine a causal effect between
two variables. Several studies criticize path analysis and suggest more knowledge is
still needed in identifying causal relations. The use of mediation analysis for research
purposes also requires more in-depth information [3].

However, the first mediation hypothetically used was in stimulus-organism-
response (S–O–R) [4]. The mediation analysis concept has been applied in various
areas, including psychology, medical sciences, epidemiology, and clinical trials [5].
Fisher [6] introduced the use of covariate as a third variable. Later on, Lazarsfeld and
his colleague Kendall [7] worked on the expansion method to explain the relationship
between the two variables to the third variable. According to Wright’s path analysis
model, economists and sociologists could generalize the covariance model [8–11].
Hence, this model was called the structural equation model, which improved the esti-
mated mediated effects’ accuracy. Sobel [12] used the structural equation model to
reduce the direct and indirect effects of standard errors and then used the standard errors
in computing the mediated effects’ confidence interval. More studies and research to
identify the complexity of the causal effect in mediation analysis have beenmade [13],
[14], [3].

The simplest mediation model, which consists of one mediator, is known as the
single mediator model. In this model, in addition to the direct effect, the independent
variable X affects the dependent variable Y through a mediator M. The variables in
a mediation model can either be continuous or categorical. The ordinary regression
model is used to analyze continuous variables, while logistic regression is used to
analyze categorical variables.

Missing data are a challenge affecting datasets and medical records in many areas
of research. It can also occur in mediation analysis, and improperly handling this
missingness may introduce biased mediation effects. The majority of statistical mod-
eling approaches are designed for complete observations for the variables included in
the data. It is crucial to deal with missing data using various methods to have valid
inferences. Rubin [15] introduced the taxonomy of missing data mechanisms, widely
used in the statistical literature. The methods of handling data with missing observa-
tions depend on the underlying assumption of the missing data mechanisms, which
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are Missing Completely at Random (MCAR), Missing at Random (MAR), Missing
Not at Random (MNAR).

Categorical mediation data for simple analyses can also be presented in terms
of contingency tables. Missing counts in contingency tables are important in miss-
ing data analysis, and there exist various methods for dealing with missingness in
contingency tables. We can use Model-based procedures such as the Baker, Rosen-
berger, and Dersimonian (BRD) Models [16]. These models were proposed by Baker,
Rosenberger, and Dersimonian (BRD) for analyzing missing counts in a two-way
contingency table with three supplementary margins, using log-linear and maximum
likelihood estimates [16]. In two-way contingency tables, the cell counts adjustments
for log-linear factorization of likelihood methods have been used in several research
papers. Hocking and Oxspring [17] also explained the use of maximum likelihood
estimation in factoring partially classified contingency tables. Several publications
recommend using log-linear models for partially classified contingency tables using
conditional probabilities [18]. This paper focuses on the application of estimation of
the mediation effect under the non-ignorable missing data mechanism (MNAR) using
the extension of Baker, Rosenberger, and Dersimonian (BRD) models proposed by
Rochani et al. [19] for a three-way contingency table. Estimation of mediation effect
by BRD model approach has two main advantages over other available methods for
non-ignorable data. First, the BRD approach explicitly models the missing mecha-
nism, which will result in a full likelihood specification of the models with unique
interpretations. Second, the estimation method will not be affected by the proportion
of missing information which can affect the rate of convergence of methods like the
Expected maximum (EM) algorithm.

Section 2will focus on an overview of existingmethods used for mediation analysis
for categorical variables under non-ignorable missing data mechanisms. New models
derived using the BRD model approach used for at least two non-missing categori-
cal variables in the mediation analysis will be discussed in Sect. 3. Simulations are
presented in Sect. 4. We will include the application of proposed models using the
Multiple Risk Factor Intervention Trial (MRFIT) data for the Prevention of Coronary
Heart Disease in Sect. 5, followed by a discussion in Sect. 6.

2 Mediation Analysis under Non-Ignorable Missing Data Mechanisms

Several methods exist in analyzing the mediation effect of continuous and categorical
variables under non-ignorable missing data mechanisms. However, the purpose of this
paper focuses on the non-ignorablemissing datamechanism (MNAR) using the Baker,
Rosenberger, and Dersimonian (BRD) model approach in analyzing the mediation
models using categorical mediation variables.

Given a mediation model, the relationship between smoking and coronary heart
disease can be denoted by the regression coefficient parameter, “a.” On the other
hand, the regression coefficient, which explains the relationship between the presence
or absence of coronary heart disease in high-risk men and death due to myocardial
infraction when controlling for smoking, can be denoted as “c′,” which is also called
the direct effect. The coefficient parameter used to describe the relationship between
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smoking and death due to myocardial infarction can be denoted as “b.” Given these
coefficients’, the product value of “a” and “b" is called the indirect effect. Both the
direct effect and the indirect effect make up the total effect c. Figure 1 represents the
path diagram and equations for the mediation model.

Researchers used mediation analysis to test the difference between the total effect
c and direct effect c’. As a rule of thumb, a mediator is considered significant in the
model if the value of (c- c’) is greater than 20% [3]. Moreover, this is interpreted that
X’s independent variable affects the dependent variable Y indirectly via a mediator
M. In general, for any mediation model with categorical or continuous variables, the
model population coefficient a can be calculated as:

â � Cov[X , M]

Var [X ]
, (1)

where Cov[X , M] is the covariance between variables X and M, and Var[X] is the
variance of X. The model population coefficient of b and c’ are given, respectively, as:

̂b � Var [X ]Cov[X ,Y ] − Cov[X , M]Cov[X ,Y ]

Var [X ]Var [M] − Cov[X , M]2
(2)

̂c′ � Var [M]Cov[X , Y ] − Cov[X , M]Cov[M,Y ]

Var [X ]Var [M] − Cov[X , M]2
, (3)

In the mediation analysis for categorical variables, logistic regression analysis is
recommendedwhenat least the dependent variableY is categorical. Logistic regression
has become well known in numerous fields, one of which is its easy transformation
to the odds ratio. The equivalence (âb̂ � ĉ − ĉ′) is true when the dependent variable
Y is continuous in calculating the mediated effect. However, this is not true when the
dependent variable Y is categorical. The standard error is more complicated because
the covariance between ĉ and ĉ′ for ordinary regression does not directly apply to
logistic regression. Hence, thismakes themediation effect estimation also complicated
in terms of computing. Samawi et al. [20] developed amore straightforwardmethod of
analyzing the mediated effect among three variables when the dependent andmediator
variables were dichotomous using a new approach called the latent variable technique
to adjust for ab � c − c′.

                                                                                                        e3

                                     a                                                   b                                      e1

c’ DEPENDENT 

VARIABLE 

Y

INDEPENDENT 

VARIABLE

X

                     

MEDIATOR

M

Fig. 1 Path diagram and equations for the mediation model
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Although the logistic regression can analyze the categorical variables, the categor-
ical dependent variable’s scale Y ∗ cannot be observed directly. The residual variance
and error terms are not the same as in termsof ordinary linear regression as explained by
MacKinnon, and Dwyer [21]. This is because in ordinary linear regression, the depen-
dent variance is observed and constant across the models while in logistic regression,
the residual variance is fixed across the models. Winship andMare [22] recommended
setting the residual variance to π2

3 to fix the scale of the unobserved dependent Y ∗
variable and hence the variance of Y ∗ becomes

σ 2
Y ∗ � ĉ2σ 2

X +
π2

3
(4)

where Eq. (4) is the scale of the unobserved dependent Y ∗ for the model of the
independent variable X predicting the dependent variable Y.

By applying this recommendation, MacKinnon, and Dwyer [21] showed using a
simulation study that the mediation effect estimation of ĉ − ĉ′ and âb̂ were approxi-
mately equal either in the logistic or probit regression. However, in probit regression
analysis, π2

3 it will be replaced with 1.
There are several methods considered for modeling missingness in mediation

models with categorical variables. The commonly used method for dealing with miss-
ingness in categorical data is to substitute the missing values of each observation
with the most common observation value. Although this method has been proven a
common approach, its challenge is that it does not consider dependencies among the
observation values. Other widely used methods include complete case analysis, mul-
tiple imputation, and Model-based analysis. This paper focuses on the extension of
the model-based analysis method called Baker, Rosenberger, and Dersimonian (BRD)
Models to a three-way contingency table proposed byRochani et al. [19] for estimation
of the mediation effect under the non-ignorable missing data mechanism (MNAR).

3 Estimation of Models

As mentioned earlier, a contingency table can represent categorical variables for
mediation analysis, especially a three-way table for a simple medication model. An
illustration of a three-way contingency table with supplementary margins for analyz-
ing the association between two binary variables I, J while controlling for a third
variable K in a 2 ×2 × 2 contingency table is given in Table 1.

These three-way tables with supplementary margins are used to apply log-linear
models in the analysis for contingency tables with missing counts, where the missing
data indicator forvariableI isdenotedasRI (RI � 1 represents observed values for I and
RI � 2 represents missing values for I). Similarly, RJ is an indicator for J’s missing
data such that RJ � 1 represents observed values for J and RJ � 2 represents
missing values for J. The same approach applies for RKwhereRK � 1 indicates that
K is observed. The cell counts are denoted as {ni jkab1}, where i, j, and k are the levels
for variables I, J , and K . The subscript a and b, when equal to 1, shows that I and
J have been observed for the comparable cell and vice versa. The cell count n+ jk211
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Table 1 Three-way table with supplementary margins

K I J

RJ � 1 RJ � 2

J � 1 J � 2

RK � 1 K � 1 I � 1 n111111 n121111 n1+1121

I � 2 n211111 n221111 n2+1121

RI � 1 n+11211 n+21211 n++1221

K � 2 I � 1 n112111 n122111 n1+2121

I � 2 n212111 n222111
n+22211

n2+2121
n++2221RI � 1 n+12211

shows where j and k and both are observed but i is missing. The cell count ni+k121
shows where i and k and both are observed but j is missing. Furthermore, cell count
n++k221 shows where i and j and both are missing but k is fully observed.

Rochani et al. [19] identified sixteen BRD models using the log-linear model to an
incomplete three-way table to correct for missingness in two variables with the third
variable fully observed (Fig. 2).

The Fig. 2 gives a general representation of the BRD models for the I × J two-
way table with three supplementary margins. In these models, α is the missing data
indicator for variable I, and β is the missing data indicator for J. The first and second
subscript for parameters α and β corresponds to the variables I and J, respectively.
The subscript ’.’ indicates that the parameter is constant over the corresponding index
[16]. For example, (αi ..,β...)can be interpreted as missingness in a variable I depends
on its own realization, while the missingness in variable J is constant across variables
I and J.

This paper identifies four special case BRD models that can be used to correct for
missingness in one categorical variable with the other two categorical variables fully
observed. These models are model (α...), Model (αi ), model (α. j .), and Model (α..k).
Model (α...) is under the ignorable missing mechanism assumption, while the other
three are under the non-ignorable missing data mechanisms.

BRD1(α.. ,β .. )

BRD2(α.. ,β i. ) BRD3(α.j ,β .. ) BRD4(α.. ,β .j ) BRD5(αi. ,β .. )

BRD6(αi. ,β i. )

BRD9(α.j ,β i. )

BRD7(α.j ,β .j )

BRD9(α.j ,β i. )

BRD7(α.j ,β .j )

BRD8(αi. ,β .j )

BRD6(αi. ,β i. )

BRD8(αi. ,β .j )

Fig. 2 Schematic presentation of BRD models [23]
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In deriving the proposed models for this paper, the first procedure requires deriving
themodels’ likelihood functions and afterward solving the systemof equations for each
model’s maximum likelihood estimates. For illustrative purposes, we will use model
(αi ..) to show the parameter estimates α̂ and ̂Mi jk . The joint probability distribution
and the log-likelihood function is given in Eq. 1 and 2, respectively.

L �
⎧

⎨

⎩

∏

i, j,k

e−μi jk111 (μi jk111 )
ni jk111

ni jk111
×
∏

j,k

e−μ+ jk211 (μ+ jk211 )
n+ jk211

n+ jk211

⎫

⎬

⎭

− μ+++111
(5)

(6)

L �
∑

i

∑

j

∑

k

ni jk111 log(
�
mi jk ) +

∑

j

∑

k

n+ jk211 log

(

∑

i

(
�
mi jk

�
αi ..)

)

−
∑

i

∑

j

∑

k

{

�
mi jk (1 +

�
αi ..)
}

+ �

Further simplification of the model gives the parameter estimates
∑

i m̂i jk α̂i .. �
n+ jk211 ∀ α̂i .. and.

m̂i jk � ni jk111. (For a detailed derivation of these models, refer to the appendix.)
Table 2 illustrates the estimated expected cell counts using (αi ..)model for complete

cells andmissing counts for a three-way table. Table 3 illustrates the collapsed expected
cell counts for the three-way table into a 2 × 2 × 2 cross-classified table, obtained by
adding the cells for the estimated cell counts of the complete cells and missing cells.
Based on this estimated expected count, it can be expanded into a long-form of the data
and used for the analysis of fitting themediationmodels and estimating the coefficients
â̂, b, ĉ, c′, and the mediation effect estimate (̂âb) using logistic regressions.

We can find ad hoc boundary estimates if any solution is negative, as discussed
by Baker et al. [16]. Rochani et al. [19] proposed that the ML estimates can still be
computed by maximizing the likelihood function using the limited memory algorithm
for constrained optimization (Byrd et al., 1995).

Table 2 Estimated cell counts under model (αi..)

Variable Z Variable Y Variable X

Missing X � 1 X � 2

Z � 1
Z � 2

No Y � 1
Y � 2

m̂111

m̂121

m̂211

m̂222

Z � 1
Z � 2

Yes Y � 1
Y � 2

m̂111

m̂122

m̂211

m̂222

Z � 1
Z � 2

Y � 1
Y � 2

m̂111α̂1

m̂122α̂2

m̂211α̂1

m̂222α̂2
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Table 3 2 × 2 × 2 cross classified table of the estimated expected counts under model (αi..)

Variable Z Variable Y Variable X

Missing X � 1 X � 2

Z � 1
Z � 2

No Y � 1
Y � 2

m̂111

m̂121

m̂211

m̂222

Z � 1
Z � 2

Yes Y � 1
Y � 2

m̂111(1 + α̂1)

m̂122(1 + α̂2)

m̂211(1 + α̂1)

m̂222(1 + α̂2)

4 Simulations

A simulation study was conducted to evaluate the performance of estimating the
mediation effect under the non-ignorable missing mechanism by the BRD model
approach compared to the complete case method and commonly used Multiple impu-
tation method under MAR assumption. We will use the proposed model for handling
missingness in one categorical variable with the other two variables are fully observed.
Then under model (α. j .), the missing values were created for different percent missing
in such a way that missingness in the independent variable X depends on the depen-
dent variable Y . To model the missing probability for variable X, the following logistic
regression model was considered as follows:

Pr(X � missing|Y ) � exp(γ0 + β1Y )

1 + exp(γ0 + β1Y )
, (7)

where β1 � 1 and the choice of γ0, which was selected by simulation, depends on
the percent missing. For each iteration, sample sizes of 300, 500, and 1000 with mean

(μ) � [

0 0 0
]

and correlation matrix (ρ) �
⎡

⎣

1.000 0.612 0.125
0.612 1.000 0.612
0.125 0.612 1.000

⎤

⎦ were used. This

correlation matrix will give a 75% mediation effect [24]. Using a 75% mediation,
the population correlations ρXM � 0.612, ρMY � 0.612 and ρXY � 0.612 produce
0.612× 0.612� 0.3745, which is a 3:1 ratio to 0.125. These correlations produce path
coefficients of a � 0.612, b � 0.856 with the product of ab � 0.524. One thousand
iterations were performed for each simulation scenario for various sample sizes and
varying percentages of missingness. The multiple imputation (MI) method and the
BRD model (α. j .) were used for illustrative purposes to generate expected cell counts
for complete cells and missing counts. These expected counts were expanded into a
long-form and used to fit themediationmodels using logistic regression. Table 2 shows
the biases and mean squared errors (MSEs) of the mediation effect for the complete
case (CC) method, multiple imputation (MI) method, and the BRD models.

By examining the overall trend and performance in Table 4, as the percent missing
in the data increases, so does the bias andMSE of themediated effect for complete case
method, model-based method, and MI method, which uses the Markov Chain Monte
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Table 4 Bias and MSE comparison between complete case data, model case, and MI method data for the
model (.j.)

Relative bias (%) MSE

% Missing
in data

CC for
Mediated
effect

Proposed
Model for
Mediated
effect

MI for
Mediated
effect

CC for
Mediated
effect

Proposed
Model for
Mediated
effect

MI for
Mediated
effect

N � 300

10 5.7618 0.1076 9.9279 0.1664 0.1182 0.1504

20 12.6547 0.4861 30.2346 0.3983 0.1433 0.5527

30 21.0571 0.7684 50.4069 0.8041 0.1624 0.5369

40 31.5235 1.4036 76.7331 1.4183 0.1958 0.9799

50 46.7508 2.2605 103.5051 2.5061 0.2949 1.5571

N � 500

10 5.6587 0.0624 13.8346 0.2061 0.1162 0.1857

20 12.4971 0.3528 41.4305 1.1407 0.1629 1.1554

30 21.0095 0.1548 72.0637 2.5399 0.1991 2.5666

40 31.2458 0.7703 106.5526 4.8966 0.2527 4.8363

50 45.7996 1.2289 149.1987 7.7914 0.3665 7.8482

N � 1000

10 5.4894 0.1089 22.5950 0.5732 0.1185 0.5962

20 12.3680 0.1523 67.0049 2.1147 0.1456 2.1499

30 20.5467 0.2556 113.0949 4.8490 0.1937 4.8729

40 30.6577 0.3085 162.7302 9.2129 0.2487 4.8140

50 44.9761 0.4897 221.2242 14.8564 0.3629 7.7246

Carlo (MCMC) method for imputation. In general, the mediated effect estimates (̂âb)
for the proposed model under the non-ignorable missing mechanism shows decreased
relative biases and reduced MSE for different percent missing in the data compared
to the complete case method and multiple imputation method. This shows that the
application of this simulation to a simulated dataset using any of the proposed models
shown in this paper will at least fit that particular simulated model as shown in this
section.

5 Application toMultiple Risk Factor Intervention Trial (MRFIT) data

This section demonstrates the application of estimating the mediation effect by apply-
ing the BRD models using the Multiple Risk Factor Intervention Trial (MRFIT)
data. The MRFIT dataset was available by request from the Biologic Specimen and
Data Repository Information Coordinating Center (BioLINCC), which serves as the
National Heart, Lung, and Blood Institute (NHLBI) biospecimens and data under
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the Identifier no: NCT00000487. This dataset consisted of 12,866 men equally ran-
domized to either an intervention or usual care group after the first two screenings.
The primary endpoint in the study was death due to coronary heart disease. A total
of 12,866 men were assessed to be in the upper 10–15% of CHD risk based on high
serum cholesterol levels, diastolic blood pressure (BP), and cigarette use andwere ran-
domized into the study. After randomization, participants were screened annually and
assessed for changes in the risk factor. The usual care group (n � 6438) was referred
to their regular source of medical care and was examined annually. Participants in
the particular intervention group (n � 6428) participated in an in-depth sustained
multifactor intervention program to lower serum cholesterol and blood pressure and
promoting smoking cessation. Participants were followed up till February 1982. Each
participant was followed up for a minimum of 6 years, and the average follow-up
was seven years. During follow-up, deaths were ascertained by clinical center staff,
and the cause of death was determined by a committee blinded to the intervention
group. The primary endpoint was CHD death and included death from MI, sudden
death, Congestive heart failure (CHF), and coronary artery surgery. Other deaths from
cardiovascular diseases (CVD) were from stroke, hypertension with left ventricular
failure, pulmonary embolus, and unclassified CVD deaths.

Based on thisMRFIT dataset, the variables of interest for this paper are the presence
of coronary heart disease, which will be the independent variable, smoking which
will be used as the mediating variable, and death due to myocardial infarction as the
dependent variable. We will use these variables to analyze the mediation models in
estimating the mediation effect using the MRFIT dataset, i.e., how smoking status
mediates the relationship between coronary heart disease in high-risk men and the
outcome of death due to myocardial infarction. Given the three variables of interest,
missingness is present in two (Smoking and presence of coronary heart disease) while
the third variable is completely observed. This is shown in Table 5.

For illustrative purposes, by focusing on one of the sixteen BRDmodels, say model
(αi ..,β...), where α represents the missing data parameter for the smoking variable and
β represents the missing data parameter for the presence of coronary heart disease
variable. Hence this model implies that the participant’s nonresponse on smoking
depends on their smoking status and implies that the probability of missingness in

Table 5 Three-way table data representation of the MRFIT dataset with missing

Presence of coronary heart
disease

Death due to myocardial infraction Smoking Yes No Missing

Yes Yes
No
Missing

4
4
1

105
89
16

97
70
42

No Yes
No
Missing

100
85
18

5031
5157
749

454
502
342
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Table 6 Model comparison and parameter estimates for the MRFIT dataset

Model Parameter
a

Parameter
c

Parameter
c′

Parameter
b

P-value
(two-sided)

Mediation
effect (If ab
> 20% ofc)

(α...,β...) 0.1634 − 0.8148 − 0.8049 − 0.2571 0.2893 TRUE

(α...,βi ..) 0.1737 − 0.8167 − 0.8091 − 0.1817 0.3896 TRUE

(α. j .,β...) 0.1784 − 0.8521 − 0.8412 − 0.2616 0.2502 TRUE

(α...,β..k ) 0.1662 − 0.8267 − 0.8197 − 0.1762 0.3395 TRUE

(α..k ,β...) 0.1749 − 0.7765 − 0.7658 − 0.2595 0.2661 TRUE

(α...,β. j .) 1.5365 − 2.0916 − 2.2846 0.5385 0.6808 TRUE

(αi ..,β...) 1.5369 − 2.3728 − 2.5371 0.4503 0.4157 TRUE

(αi ..,βi ..) 1.5443 − 2.2151 − 2.3559 0.3887 0.3780 TRUE

(α. j .,β. j .) 1.5201 − 2.0357 − 2.2014 0.4714 0.9177 TRUE

(α..k ,β..k ) 0.1685 − 0.8281 − 0.8209 − 0.1782 0.3335 TRUE

(αi ..,β. j .) 1.3644 − 2.1754 − 2.3878 0.6242 0.5386 TRUE

(α. j .,β..k ) 0.1649 − 0.8226 − 0.8156 − 0.1769 0.3402 TRUE

(α..k ,βi ..) 0.1685 − 0.8348 − 0.8277 − 0.1732 0.4140 TRUE

(α..k ,β. j .) 1.5085 − 2.0822 − 2.2627 0.5125 0.9488 TRUE

(α. j .,βi ..) 0.1723 − 0.1829 − 0.8166 − 0.8089 0.3900 FALSE

(αi ..,β..k ) 2.1749 − 1.1598 − 1.0435 − 0.2884 0.8232 FALSE

the presence of coronary heart disease is independent of either presence of coronary
heart disease or smoking status. This model was chosen as a more probable model
under the assumption that smokers are more likely not to respond to their smoking
status while missing in CHD is completely at random. However, it is always important
to evaluate our conclusion’s robustness by conducting a sensitivity analysis based on
other non-ignorable models.

Table 6 shows the model comparison and parameter estimates for the sixteen BRD
models discussed in earlier chapters using the MRFIT dataset. It is important to note
that conducting a sensitivity analysis aids in the confidence of the initial assumption
chosen and the conclusion made. Examining the other models will give the researcher
more confidence about their hypothetical level of confidence in sticking to the initial
conclusion if the conclusion does not change. Hence, from this table, there is no
mediation effect based on the BRDmodels’ p values. This implies that smoking status
is not amediating factor in the relationship between coronary heart disease in high-risk
men and the outcome of death due to myocardial infarction. However, it is essential
to note that in practice, decisions about having a mediation effect are often based on
if the indirect effect is more than 20% of the total effect or not and not solely on a
significant p-value (as shown in Table 6). Therefore, by considering this method for
conclusion purposes, it is left at the discretion of the researcher to decide on which
models with mediation effect is plausible for use or not.
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6 Conclusion

In this paper, we have shown the application of estimation of the mediation effect
under the non-ignorable missing data mechanism (MNAR) using the extension of
Baker, Rosenberger, andDersimonian (BRD)models. Generally, mediation analysis is
becoming very popular in several research areas. Investigators are interested in simply
knowing the cause-effect relationship between two variables; they want to understand
how and why a third variable mediates this relationship. This paper illustrated how
well the mediation effect’s estimation under the non-ignorable missing mechanism of
the BRDmodel approach produces accurate inference compared to either the complete
case method or the MI method. Performing a sensitivity analysis based on the non-
ignorable BRDmodels was used in evaluating the robustness of the initial assumption
chosen and the conclusion made. While this paper developed a sufficient method to
evaluate the performance of the estimation of the singlemediation effect under the non-
ignorable missing mechanism by the BRD model approach, it is recommended that
further research be conducted for scenarios of multiple mediation effects. In addition,
although this paper considered only categorical variables for the simple mediation
model, there is also a need for future research to accommodate the mediation model
variables to be a combination of continuous and categorical variables.
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Appendix

Model (˛:::)

L �
⎧

⎨

⎩

∏

i, j,k

e−μi jk111 (μi jk111 )
ni jk111

ni jk111
×
∏

j,k

e−μ+ jk211 (μ+ jk211 )
n+ jk211

n+ jk211

⎫

⎬

⎭

− μ+++111,

given μi jk111 � m̂i jk and μ+ jk211 � m̂+ jk α̂..., the above equation can be written
as

L �
⎧

⎨

⎩

∏
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e−mi jk (
�
mi jk )

ni jk111

ni jk111
×
∏
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m+ jk α... (

�
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α...)

n+ jk211

n+ jk211

⎫

⎬
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The log-likelihood function can be derived as

L �
∑
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∑

j

∑

k

ni jk111 log(
�
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∑
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∑
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�
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−
∑
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∑

j
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k
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�
mi jk (1 +

�
α...)
}

+ �
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By differentiating with respect to α̂..., we have:

∴ dL

d
�
α...

� n+ jk211
�
m+ jk

�
α...

• �
m+ jk − �

m+++

∴ 0 � n+ jk211
�
α...

− �
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∴ �
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�
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.

Given each cell count denoted by {nijkabc}, where i, j, and k represent the categories
for variables I, J, and K, respectively. Hence, we have

�
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By differentiating with respect to m̂+ jk, we have:
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�
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�
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�
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∴
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�
m+ jk

�
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(
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(
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)(
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)
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�
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This can be simplified further as

n+ jk+11n+++111
n++++11

�
(

n+ jk111 +
n++++11n+ jk211

�
mi jk

n+ jk+11n+++111

)

(

n+++111
n++++11

)

n+ jk+11n+++111
n++++11

�
(

n+ jk111n+ jk+11n+++111 + n++++11n+ jk211

�
mi jk

n+ jk+11n+++111

)

(

n+++111
n++++11

)

n+ jk+11n+++111
n++++11

�
(

n+++111n+ jk111n+ jk+11n+++111 + n+++111n++++11n+ jk211

�
mi jk

n++++11n+ jk+11n+++111

)

n+ jk+11n+++111n++++11n+ jk+11n+++111 � n++++11n+++111n+ jk111n+ jk+11n+++111 +

n++++11n+++111n++++11n+ jk211

�
mi jk

n+ jk+11n+++111n++++11n+ jk+11n+++111 − n++++11n+++111n+ jk111n+ jk+11n+++111

n++++11n+++111n++++11n+ jk211

� �
mi jk

n+ jk+11n+++111n++++11n+ jk+11n+++111 − n++++11n+++111n+ jk111n+ jk+11n+++111

n++++11n+++111n++++11n+ jk211

� �
mi jk
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∑
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