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Abstract
When dealing with nominal categorical data, it is often desirable to know the degree of
association or dependence between the categorical variables.While there is literally no
limit to the number of alternative association measures that have been proposed over
the years, they all yield greatly varying, contradictory, and unreliable results due to
their lack of an important property: value validity. After discussing the value-validity
property, this paper introduces a newmeasure of association (dependence) based on the
mean Euclidean distance between probability distributions, one being a distribution
under independence. Both the asymmetric form, when one variable can be considered
as the explanatory (independent) variable and one as the response (dependent) variable,
and the symmetric form of the measure are introduced. Particular emphasis is given to
the important 2× 2 case when each variable has two categories, but the general case of
any number of categories is also covered. Besides having the value-validity property,
the newmeasure has all the prerequisites of a good association measure. Comparisons
aremadewith thewell-knownGoodman–Kruskal lambda and taumeasures. Statistical
inference procedure for the new measure is also derived and numerical examples are
provided.
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1 Introduction

As expressed by Upton and Cook [30], p. 19]:

Two variables are associated if they are not independent, i.e.,
if the value of one variable affects the value, or the distribution
of the values, of the other.

Measures of association, or of the synonymous term "dependence", reflect the extent
of the departure from independence. In the case of two nominal categorical variables X
and Y , with the respective number of categories I and J and with joint probabilities pij
and marginal probabilities pi+ = ∑J

j=1 pi j and p+ j = ∑I
i=1 pi j for i= 1,…, I and j

= 1,…, J , a wide variety of measures of association (dependence) have been proposed
over the years. Table 1 provides a concise historical account of such measures.

For an asymmetricmeasure of associationA(Y |X),X is considered to be the explana-
tory or independent variable and Y the response or dependent one. An example of such
a situation may involve different medical treatments (e.g., surgery versus radiation)
as explanatory variable X that has a potential causal effect on the medical outcome
(cancer being controlled versus not controlled) as response variable Y . Another exam-
ple of Y depending on X would be the potential relationship between an electorate’s
party identification (X) and voting pattern (Y ). However, in situations when one vari-
able cannot reasonably be assumed to depend upon the other, symmetric measures of
association A(X, Y ) have been introduced as in Table 1.

The large number of alternative association measures proposed to date has at least
two implications: first, it implies that the measurement of association is an important
subject matter; second, there is no clear consensus as to any generally preferred mea-
sure. There is also limited consistency between measures. Different measures may
produce widely differing results for the same data sets. As stated by Reynolds [24],
p. 55]:

[M]easures of association … sometimes mislead as much as
they inform. An index’s numerical value should, of course,
reflect the “true” relationship.

What is needed, as discussed in the present paper, is an additional requirement specif-
ically related to the potential values taken on by an association measure.

The additional property requirement is the value-validity property. Introduced by
Kvålseth [16] and based on 2 × 2 contingency tables with uniform (even) marginal
probabilities, the value-validity requirement is generalized to one involving nonuni-
form (uneven)marginal probabilities. Since the various proposed associationmeasures
do not meet the condition imposed by the value-validity property, an alternative mea-
sure with the requisite properties is discussed in this paper. With the exception of the
perhaps most popular Goodman–Kruskal measure λ(Y |X) in Table 1, other existing
measures from Table 1 are not able to distinguish between asymmetric and symmetric
measures unless the categories are I > 2 or J > 2or both. The new measure proposed
here has both an asymmetric and a symmetric form for the case of I = J = 2, which
is important for many real situations, as well as for I > 2 and J > 2. The new measure,
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Table 1 Historical account of asymmetric and symmetric associationmeasures between nominal categorical
variable X and Y

Measure formula References

P(X , Y ) =
√

φ2

φ2+1
, φ2 = ∑I

i=1
∑J

j=1

(
pi j−pi+ p+ j

)2

pi+ p+ j
=

∑I
i=1

∑J
j=1

p2i j
pi+ p+ j

− 1

Pearson [21]

T (X , Y ) =
√

φ2√
(I−1)(J−1)

Tschuprow [29]

S(X , Y ) =
√

mφ2

(m−1)
(
1+φ2

) , m = min{I , J } Sakoda [25]

V (X , Y ) =
√

φ2

m−1 , m = min{I , J } Cramér [8]

λ(Y |X) =
∑I

i=1 pim−p+m
1−p+m

, pim = max
j

{
pi j

}
, p+m = max

j

{
p+ j

} Goodman and
Kruskal [11]

τ(Y |X) =
∑I

i=1
∑J

j=1 p2i j /pi+−∑J
j=1 p2+ j

1−∑J
j=1 p2+ j

Goodman and
Kruskal [11]

λ(X , Y ) =
∑I

i=1 pim+∑J
j=1 pmj−p+m−pm+

2−p+m−pm+ , pmj = max
i

{
pi j

}
, pm+ =

max
i

{
pi+

}

Goodman and
Kruskal [11]

τ(X , Y ) =
∑I

i=1
∑J

j=1 p2i j /pi++∑I
i=1

∑J
j=1 p2i j /p+ j−

∑J
J=1 p2+ j−

∑I
i=1 p2i+

2−∑J
j=1 p2+ j−

∑I
i=1 p2i+

Goodman and
Kruskal [12]

I∗(Y |X) =
∑I

i=1
∑J

j=1 pi j log
(
pi j /pi+ p+ j

)

−∑J
j=1 p+ j log p+ j

Attneave [2]

I∗(X , Y ) = 2
∑I

i=1
∑J

j=1 pi j log
(
pi j /pi+ p+ j

)

−∑I
i=1 pi+ log pi+−∑J

j=1 p+ j log p+ j

Kvålseth [14]

I∗∗(X , Y ) =
∑I

i=1
∑J

j=1 pi j log
(
pi j /pi+ p+ j

)

min{log I ,log J }
Reshef [23]

I∗α (X , Y ) =
∑I

i=1
∑J

j=1 pi j log
(
pi j /pi+ p+ j

)

[(
−∑I

i=1 pi+ log pi+
)α

/2+
(
−∑J

j=1 p+ j log p+ j

)α
/2
]1/α

Kvålseth [15]

λ(2)(Y |X) =
√∑I

i=1 p2im/pi+−p+m

1−p+m

Kvålseth [16]

λ(2)(X , Y ) =
√∑I

i=1 p2im/pi++
√∑J

j=1 p2mj /p+ j−p+m−pm+
2−p+m−pm+

Kvålseth [16]

Sα(Y |X) =
∑I

i=1 pi+
∑J

j=1
(
pi j /pi+

)α+1
/
∑J

j=1
(
pi j /pi+

)α−∑J
j=1 pα+1

+ j /
∑J

j=1 pα+ j

1−∑J
j=1 pα+1

+ j /
∑J

j=1 pα+ j

, α ≥ 1

Särndal [26]
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Table 1 (continued)

Measure formula References

Vα(Y |X) =
∑I

i=1
∑J

j=1

pα+1
i j

pαi+ pα+ j
−1

∑J
j=1 p1−α

+ j −1
, α > 0

Särndal [26],
Tomizawa et al.
[28]

Vα(X , Y ) =
2

(
∑I

i=1
∑J

j=1

pα+1
i j

pαi+ pα+ j
−1

)

∑I
i=1 p1−α

i+ +∑J
j=1 p1−α

+ j −2
, α > 0

Tomizawa et al.
[28]

W (X , Y ) =
√
√
√
√

∑I
i=1

∑J
j=1

(
pi j−pi+ p+ j

)2

∑I
i=1

∑J
j=1 pi+ p+ j

(
pi+ p+ j−2pi j

)+min
{∑I

i=1 p2i+,
∑J

j=1 p2+ j

}

Kvålseth [17]

which is proved to have some clear advantages over λ(Y |X) and the symmetric λ(X,
Y ), also turns out to be closely related to the Goodman–Kruskal τ (Y |X) and τ (X, Y ) in
Table 1. Finally, statistical inferences are discussed for the new association measure.

2 Value Validity

2.1 Why?

As with any summary measure or descriptive statistic, the purpose of a measure of
association is to summarize by means of a single number the strength of the potential
relationship between variables X and Y for some given data set. Consider, for instance,
a cancer study involving medical treatment as the two-category explanatory variable
X (surgery, radiation) and the two-category response variable Y (patient survives after
5 years, patient dies within first 5 years). For an association-measure value of, say
A(Y |X) = 0.11, one would like to be able to interpret this result to mean that the
outcome of the medical treatment depends only to a very limited extent on the type of
treatment given. If another study using a different data set produced the value A(Y |X)
= 0.20, one would like to be justified in making the order ("larger than") comparison
that the second study showed greater dependence between treatment types and their
outcome and "substantially" so. Similarly, from a third data set with A(Y |X) = 0.15, it
would be informative to conclude that 0.20–0.11 > 0.20–0.15 provides a true difference
comparison.

However, there is no adequate or rigorous basis for assuming that such interpre-
tations and comparisons with existing association measures are valid or admissible
in the sense that they actually do provide true and realistic representations of the
attribute being measured, i.e., association (dependence) as opposed to simply being a
representation of a measure itself. Such concern is evidenced by the fact that different
measures can produce widely different results for the same data sets. It is not hard
to find data sets for which two measures such a λ(Y |X) and τ (Y |X) in Table 1 may
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produce entirely opposite results for even simple order comparisons. Such concern
about the considerable variation in values between measures and the unreasonable
values taken on by some has been expressed by various authors over the years (e.g.,
[6], pp. 302–303], [7], pp. 244–245], [9], p. 61], [24], pp. 55–57], [26]).

What is needed is some kind of condition or constraint on an association measure
such that its numerical values are indeed "reasonable" with respect to some generally
acceptable criterion. That is, ameasure has to have the value-validity property. Then, if
an association measure A has this and other desirable properties, there will be a sound
basis for making different types of comparisons between association values and for
interpreting the extent of association.

2.2 Condition

The term validity, an important concept in measurement theory and not the least for
the behavioral and social sciences, generally means that a measure has validity if it
measures what it is supposed to measure. This rather vague concept can be further
refined by defining different types of validity: content, construct, predictive, criterion,
and concurrent (e.g., [4], Ch. 11], [13], pp. 129–134]). These types of validity relate
to the indirect measurement of an attribute using intermediary variables. However,
none of these fit the present concern of determining if an association measure takes
on “reasonable” numerical values throughout its range. Hence, the term value validity
is chosen.

In order to address the value-validity property, let A(PI×J ) denote the value of an
association measure, either symmetric or asymmetric, for a joint distribution PI×J ={
pi j
}
for i = 1, …, I and j = 1, …, J as represented by an I × J contingency table.

Then for any PI×J and A(PI×J ) ∈ [0, 1], there necessarily exists a distribution P2×2
such that A(PI×J ) = A(P2×2). Thus, without any loss of generality, it is sufficient to
use A(P2×2) when considering any condition on value validity.

Specifically, consider theP2×2 distributions or the 2×2contingencyTables 2(a) and
2(b) with marginal probabilities r and 1 − r. Table 2(a) represents perfect association
with A

(
Pr1
2×2

) = 1 for the distribution denoted by Pr1
2×2 while Table 2(b) represents

A
(
Pr0
2×2

) = 0 for the independence distribution denoted by Pr0
2×2. Then, one can

define the distribution Prw
2x2 such that each component is the weighted mean of the

corresponding components of Pr0
2x2 and Pr1

2x2 represented as:

Prw
2x2 = wPr1

2x2 + (1 − w)Pr0
2x2, w ∈ [0, 1] (1)

and as the contingency table in Table 2(c). It is then postulated as a logical requirement
that such a weighted mean should similarly be reflected by an association measure A
as:

A
(
Prw
2x2

) = wA
(
Pr1
2x2

)
+ (1 − w)A

(
Pr0
2x2

)
, w ∈ [0, 1]

= w for A
(
Pr1
2x2

)
= 1 and A

(
Pr0
2x2

)
= 0 (2)
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Table 2 Binary tables with marginal probabilities r and 1 − r, with r ∈ [0, 1], and showing (a) perfect
association, (b) zero association, and (c) weighted mean of (a) and (b)

X Y X Y

1 2 Total 1 2 Total

(a) Perfect association Pr1
2x2 (b) Zero association Pr0

2x2

1 r 0 r 1 r2 r(1 − r) r

2 0 1 − r 1 − r 2 r(1 − r) (1 − r)2 1 − r

Total r 1 − r Total r 1 − r

X Y

1 2 Total

(c) Weighted mean Prw
2x2 of (a) and (b)

1 wr + (1 − w)r2 (1 − w)r(1 − r) r

2 (1 − w)r(1 − r) w(1 − r) + (1 − w)(1 − r)2 1 − r

Total r 1 − r

for all values of r ∈ [0, 1].
The expression in (2) may appropriately be called the mean-value condition (cri-

terion) for the value-validity property of an association measure A. For the particular

case of the simple arithmetic mean when w = 1/2, (2) requires that A
(
Pr(1/2)
2x2

)
= 1/2

as the arithmetic mean of A
(
Pr0
2x2

) = 0 and A
(
Pr1
2x2

) = 1 for any marginal distribution
(r , 1 − r). It is hard to imagine hat anyone would disagree with the proposition that
such a requirement is entirely appropriate. Nevertheless, most of the measures defined
in Table 1 fail to meet this requirement.

The weighting factor w in (1)–(2) can also be viewed as an association parameter
with w = 0 in the case of zero association and w = 1 in the case of perfect associa-
tion. Such an interpretation of w can be justified from metric distances between the
distributions in Table 2 considered as points in 4-dimensional Euclidean space. Thus,
in terms of the Euclidean distance d() (and for all other members of the Minkowski
family of distance metrics), it is seen that

d
(
Prw
2x2, P

r0
2x2

)

d
(
Pr1
2x2, P

r0
2x2

) = w (3)

which shows that w is the normalized distance between Prw
2x2 and the zero-association

distribution Pr0
2x2 in Table 2(b). The condition in (2) requires that A(Prw

2x2) should equal
the association parameter w, which seems entirely reasonable.

While Tables 2(a)–(c) all involve marginal homogeneity (i.e., p1+ = p+1 and
p2+ = p+2), permutations of the rows or columns of these tables should not affect
the values of an association measure. Also, note that the representations in Table
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2(a)–(c) are the most general ones that permit zero-association and perfect-association
distributions to be represented with the same marginal distributions.

2.3 Assessment of Current Measures

Of the various association measures defined in Table 1, only two measures can be
seen to meet the mean-value condition in (2): T and V . However, both of these have
other limitations related to their dependence on the number of categories I and J of
X and Y , respectively, and to their lack of any intuitively meaningful interpretations
[11], pp. 732–764; 17]. Neither of the two well-known measures λ and τ are seen to
satisfy the condition in (2). For example, with r = 0.80 and w = 0.50 in Table 2(c),
the values of λ and τ are, respectively, 0.20 and 0.25, substantially less than the 0.50
required by the condition in (2). Similarly, I ∗(Y |X) = 0.21.

Among the various measures proposed to date, the Goodman–Kruskal’s λ and
τ seem to be among the most popular ones because of their meaningful interpreta-
tions. Both of these measures have a so-called proportional reduction in error (PRE)
interpretation, i.e., they measure the relative decrease in the probability of incorrectly
predicting the Y -category of a random observation when its X-category is given versus
not given. Both measures use a different prediction strategy: λ(Y |X) is based on pre-
dicting only the modal (largest) Y -category whereas τ (Y |X) uses the more complex
strategy of making the predictions so as to reproduce the conditional and marginal
probability distributions. However, neither λ nor τ can be assumed to provide reliable
or representative association values since they, as well as nearly all other association
measures, fail to comply with the value-validity requirement in (2).

In spite of the large number of alternative association measures available, there
is clearly a need for a new measure with the requisite properties. Such a proposal
is developed next, starting with the important 2 × 2 case, i.e., when the number of
categories I = J = 2.

3 Measure Derivation

3.1 2× 2 Case

Since association (dependence) between nominal categorical variablesX andY implies
departure from independence, it seems rather logical to consider a measure of associa-
tion between X and Y as reflecting the distance between the joint distribution {pij} and
the corresponding independence distribution

{
pi+ p+ j

}
. In the case of I = J = 2 cat-

egories, {pij} and
{
pi+ p+ j

}
can be considered as points in 4-dimensional Euclidean

space with the Euclidean distance between them being

d =
(∑2

i=1

∑2

j=1

∣
∣pi j − pi+ p+ j

∣
∣2
)1/2

= 2|p11 − p1+ p+1| (4)
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where the last term follows from the fact that all of the terms
∣
∣pi j − pi+ p+ j

∣
∣ in (4)

are equal. The second expression in (4) can equivalently be expressed as

d = 2|p11 p22 − p12 p21|. (5)

Note that because of the 4 terms
∣
∣pi j − pi+ p+ j

∣
∣ being equal, any member of

Minkowski’s class of metric distances would result in (5) except for the form of
the multiplicative factor.

The metric distance function in (5) can also be expressed as

d = 2|p11 p2+ + p22 p1+ − p1+ p2+| = 2p1+ p2+
∣
∣
∣
∣
p11
p1+

+ p22
p2+

− 1

∣
∣
∣
∣. (6)

Since the upper bound on the absolute-value term in (6) is clearly 1, d ≤ 2p1+ p2+
and hence

δ(Y |X) = |p11 p22 − p12 p21|
p1+ p2+

=
∣
∣
∣
∣
p11
p1+

+ p22
p2+

− 1

∣
∣
∣
∣ (7)

becomes the proposed measure of association when X is the explanatory variable and
Y is the response. This measure has an intuitively appealing interpretation: it is the
metric distance between {pij} and

{
pi+ p+ j

}
relative to the maximum distance when

both categories of X contain at most one pij �= 0.
Some important properties of δ(Y |X) are as follows:

(P1) δ(Y |X) is well defined unless all pij > 0 fall in one row.
(P2) δ(Y |X) has the value-validity property since it meets the condition in (2).
(P3) δ(Y |X) takes on values between 0 and 1, with δ(Y |X) = 0 if and only if X and

Y are independent and δ(Y |X) = 1 if and only if each row of the contingency
table contains at most one pij �= 0.

(P4) δ(Y |X) is invariant under permutations of rows or columns.

Interestingly, although derived entirely independently, the expression in (7), except
for the absolute value symbol, turns out to be the same as a formula proposed by Peirce
[22] and Youden [31] for evaluating the performance of a prediction rule (Peirce) and
a diagnostic test (Youden). However, the approach and context of their work differed
from the present one. See also [3]. Evidently, δ(Y |X) in (7) can then be viewed as the
distance of the Peirce-Youden statistic from zero.

3.2 Comparison with �(Y|X)

An important correspondence between δ(Y |X) in (7) and λ(Y |X) defined in Table 1 is
that even though their respective numerical values can differ greatly for any given 2
× 2 table, the two measures provide the same order ("larger than") comparisons. That
is, when reversing the roles of the variables X and Y in any given 2 × 2 table,

δ(Y |X) ≥ δ(X |Y ) implies λ(Y |X) ≥ λ(X |Y ) (8)
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where

δ(X |Y ) = |p11 p22 − p12 p21|
p+1 p+2

=
∣
∣
∣
∣
p11
p+1

+ p22
p+2

− 1

∣
∣
∣
∣ (9)

and

λ(X |Y ) = pm1 + pm2 − pm+
1 − pm+

, pmj = max
{
p1 j , p2 j

}
, pm+ = max{p1+, p2+}.

(10)

In order to prove this relationship property, note that for any 2× 2 table with λ(Y |X)
�= 0, p1m + p2m = pm1 + pm2 = pm so that

λ(Y |X) = pm − p+m

1 − p+m
, λ(X |Y ) = pm − pm+

1 − pm+
. (11)

Since (pm − a)/(1 − a) is strictly decreasing in a, it follows from (11) that

λ(Y |X) ≥ λ(X |Y ) if pm+ ≥ p+m, i.e., if pm+(1 − pm+) ≤ p+m(1 − p+m)

(12)

where the last inequality is the result of pm+ ≥ 1/2 and p+m ≥ 1/2. The last inequality
in (12) is obviously implied by p1+ p2+ ≤ p+1 p+2, which, together with (7), (9), and
(12) leads to (8), completing the proof.

Any relationship between δ(Y |X) in (7) and λ(Y |X) in Table 1 is fairly limited to
the order inequalities in (8). Since λ(Y |X) fails to meet the value-validity condition in
(2) and is well-known to be extremely sensitive to the unevenness (skewness) of the
marginal distributions (p1+, p2+) and (p+1, p+2), values of δ(Y |X) and λ(Y |X) can
differ greatly for the same 2 × 2 table. As an illustration, consider the following 2 ×
2 table:

p11 = 0.50 p12 = 0

p21 = 0.25 p22 = 0.25

for which δ(Y |X) = 0.50 whereas λ(Y |X) = 0 (and δ(X |Y ) = 0.67, λ(X |Y ) = 0.50).
This example also illustrates the fact that λ(Y |X) = 0 without statistical independence
(if p1m and p2m fall in the same column) whereas other association measures equal 0
if and only if X and Y are independent. For the λ(2)(Y |X) defined in Table 1, which is
most comparable to λ(Y |X), λ(2)(Y |X) = 0.16 for this 2 × 2 table. However, this value
is substantially less than δ(Y |X) = 0.50 and is explainable by the fact that λ(2)(Y |X)
does not meet the general condition in (2) except when r = 1/2.

The sensitivity of λ(Y |X) to the unevenness of the marginal distributions can also
be determined analytically be the use of Table 2(c). While δ(Y |X) = w for this table
irrespective of the marginal distribution (r, 1 − r) as required by the value-validity
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condition in (2), the expression for λ(Y |X) becomes

λ(Y |X) =
{
1 − 2(1 − w)r for r ≥ 1/2 and w ≥ 1 − 1/2r
0 for r ≥ 1/2 and w < 1 − 1/2r

(13)

where the restriction r ≥ 1/2 creates no lack of generality since the value of λ(Y |X) for
any r = r′ equals its value for r = 1 − r′. From (13) and � = w − [1 − 2(1 − w)r ] =
(1 − w)(2r − 1), it is seen that λ(Y |X) departs from the value-validity requirement in
(2) at a rate that increases with r, i.e., as the unevenness of the marginal distribution
(r, 1 − r) increases. It is only when r = 1/2 that λ(Y |X) complies with the condition
in (2) and when λ(Y |X) = δ(Y |X). Otherwise, λ(Y |X) understates the true extent of the
association and can generally be expected to have lower values than those of δ(Y |X).

3.3 Comparison with Odds Ratio

In order to provide a definition for the so-called odds ratio, consider that
"treatment 1" and "treatment 2" are the categories of X and that "success"
and "failure" are those of Y . Then, the odds (in favor) of success for treat-
ment 1 becomes (p11/p1+)/(1 − p11/p1+) and that of treatment 2 becomes
(p21/p2+)/(1 − p21/p2+) so that their ratio, the odds ratio OR, can be expressed
as

OR = p11 p22
p12 p21

. (14)

The OR = 1 under independence of X and Y and increasing |OR − 1| indicates
increasing degree of association.

However, since OR is unbounded above so that any interpretation of OR values as
reflecting the extent of association becomes difficult, alternative measures have been
proposed as functions of OR: Yule’s [32] Q = (OR − 1)/(OR + 1) and Yule’s [33]

Y =
(√

OR − 1
)
/
(√

OR + 1
)
. Both of these measures, however, fail to meet the

value-validity condition in (2). Note also that |OR − 1|(p12 p21/p1+ p2+) = δ(Y |X).
As an interesting example comparing OR and δ(Y |X) consider the data in Table 3

from a meta-analysis by Zheng et al. [34] comparing the outcomes of surgery versus

Table 3 Meta-analysis results of lung-cancer treatment of N = 11,921 patients after 1, 3, and 5 years post
treatment

Treatment Results after 1 year Results after 3 years Results after 5 years

Survive Die Survive Die Survive Die

Surgery 6569 502 5607 1464 4872 2199

Radiation 4045 805 2745 2105 1998 2852

Total 10,614 1307 8352 3569 6870 5051

Source: Zheng et al. [34]
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radiation for treating lung cancer at 1, 3, and 5 years after treatment. The surgery
data are based on the mean survival rates for surgeries involving both lobectomy and
limited lung resections. From the frequency data {nij} in Table 3 with sample size
N = ∑2

i=1
∑2

j=1 ni j = 11,921 and when replacing the pij’s in (7) and (14) with
frequencies to produce the following expressions:

δ(Y |X) =
∣
∣
∣
∣
n11
n1+

+ n22
n2+

− 1

∣
∣
∣
∣, OR = n11n22

n12n21
(15)

it is found that δ(Y |X) = 0.10, 0.23, and 0.28 and OR = 2.60, 2.94, and 3.16 after 1,
3, and 5 years post treatment.

These results would seem to indicate that the odds of successful treatment by
means of surgery is about three times that of radiation. Such results may seem to
favor surgery to a potentially misleading extent, especially when compared with the
δ(Y |X) values that show a rather limited degree of association between the two types of
cancer treatment (X) and the outcome (Y ). The consecutive values of δ(Y |X) indicate
that the strength of the causal relationship (dependence) between X and Y , although
rather low, increases with time since the treatment, with the absolute increase between
years 1 and 3 after treatment being more than twice that between years 3 and 5. Such
interpretation and comparisons are considered permissible due to the value-validity
property of δ(Y |X). Note also that, as pointed out by the authors of this paper [34], the
advantage of surgery becomes further reduced when adjusting for other factors such
as patients’ age and operability.

3.4 I× J Case

Just as δ(Y |X) in (7) for the 2 × 2 case is based on a metric-distance formula-
tion, a similar approach can be used for the case when either I or J or both are
greater than 2. Thus, consider the conditional probability distribution

{
pi j/pi+

} =
(pi1/pi+, . . . , pi J /pi+) for i= 1,…, I and the corresponding independence distribu-
tion

{
p+ j

} = (p+1, . . . , p+J ) as points or vectors in J-dimensional Euclidean space.
The Euclidean distance between the two points

{
pi j/pi+

}
and {p+j} is given by

di = d
({
pi j/pi+

}
,
{
p+ j

}) =
√
∑J

j=1

(
pi j/pi+ − p+ j

)2
, i = 1, . . . , I . (16)

Using the same order as in (16), the second-order weighted arithmetic mean of the
distances in (16) becomes

d =
√
∑I

i=1
pi+d2i =

√
√
√
√
∑I

i=1

∑J

j=1
p2i j

/

pi+ −
∑J

j=1
p2+ j . (17)
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From the inequality

I∑

i=1

J∑

j=1

p2i j

/

pi+ ≤
I∑

i=1

J∑

j=1

pi j pi+

/

pi+ = 1

the d in (17) can be normalized into the following measure:

δ(Y |X) =
√
√
√
√

∑I
i=1

∑J
j=1 p

2
i j/pi+ −∑J

j=1 p
2+ j

1 −∑J
j=1 p

2+ j

∈ [0, 1] (18)

which is proposed as a distance-basedmeasure of associationwhenX is the explanatory
variable and Y is the response. Also, by interchanging the roles of X and Y ,

δ(X |Y ) =
√
√
√
√
∑J

j=1
∑I

i=1 p
2
i j/p+ j −∑I

i=1 p
2
i+

1 −∑I
i=1 p

2
i+

∈ [0, 1]. (19)

The Euclidean distance is used in (16) since it is the standard distance metric used
in various scientific fields. Also, the second-order mean used in (17) is a commonly
used one. Although one could potentially consider other members of the power mean,
only the second-order member is seen to comply with the value-validity condition in
(2).

The δ(Y |X) in (18) has an intuitively appealing interpretation: it measures how far
the probability distribution between Y and X, conditional on X, is on the average
from the independence distribution relative to its maximum. It also has all the same
properties (P1)-(P4) as those of δ(Y |X) outlined above for the 2 × 2 case.

Interestingly, the δ(Y |X) in (18) has the same expression as the square root of
the Goodman–Kruskal τ (Y |X) in Table 1. However, τ (Y |X) was derived from a very
different approach based on PRE prediction as well as on an analysis of variance
approach [20].

3.5 Symmetric Case

When one variable cannot reasonably be assumed to depend on the other, a symmetric
association measure is needed. Such a measure A(X, Y ) may be formulated as some
mean of the corresponding asymmetric forms A(Y |X) and A(X |Y ) as the roles of X
and Y are interchanged. Such means can also be considered as weighted means as, for
example, in the case of λ(X, Y ), τ (X, Y ), I*(X, Y ), and I ∗

α (X ,Y ) in Table 1.
In the case of 2 × 2 contingency tables when I = 2 and J = 2, a most simple

symmetric equivalent of the new asymmetric measures δ(Y |X) in (7) and δ(X |Y ) in (9)
would be their arithmetric mean [δ(Y |X) + δ(X |Y )]/2. Another alternative would be
the geometric mean giving the following symmetric measure:
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δ(X ,Y ) = |p11 p22 − p12 p21|√
p1+ p2+ p+1 p+2

. (20)

It is interesting to note that this expression is the same as the absolute value |ρ| of
the Pearson product-moment correlation coefficient ρ obtained when denoting the
two categories of X and Y as 0 and 1 (e.g., [5], pp. 380–382], [18], pp. 43–44], [27],
pp. 54–55]). This δ(X, Y ) is also equivalent to Pearson’s φ in Table 1.

For the case when I ≥ 2 and J ≥ 2, a symmetric form δ(X, Y ) can be based on
the mean of δ(Y |X) in (18) and δ(X |Y ) in (19). Their simple arithmetric mean or their
geometric mean would be obvious potential choices. Alternatively, since δ(Y |X) and
δ(X |Y ) turn out to equal

√
τ(Y |X) and

√
τ(X |Y ) for the Goodman–Kruskal tau in

Table 1, one could consider the second-order weighted mean of δ(Y |X) and δ(X |Y )
using weights based on their respective denominators (i.e., weights d1/(d1 + d2)
and d2/(d1 + d2) from their denominators d1 and d2). The resulting weighted mean
becomes

δ(X , Y ) =

√
√
√
√
√

∑I
i=1

∑J
j=1 p

2
i j

/
pi+ +∑J

j=1
∑I

i=1 p
2
i j

/
p+ j −∑J

j=1 p
2+ j −∑I

i=1 p
2
i+

2 −∑J
j=1 p

2+ j −∑I
i=1 p

2
i+

(21)

which is also seen to equal the square root of τ (X, Y ) in Table 1.
In the case of I = J = 2, when Goodman–Kruskal’s τ (Y |X) = τ (X |Y ) for any 2 ×

2 table whereas δ(Y |X) and δ(X |Y ) may differ considerably, it can be verified that the
symmetric δ(Y , X) in (21) is, in fact, equivalent to the δ(X, Y ) in (20). Thus, δ(Y |X) in
(7) or (15) is an appropriate asymmetric measure when I = J = 2 and the symmetric
δ(X, Y ) in (21) can be used when I ≥ 2 and/or J ≥ 2.

The δ(X, Y ) in (21) represents the mean normalized Euclidean distance between
the joint probability distribution of X and Y and the corresponding independence dis-
tribution. Also, since δ2(X ,Y ) = τ(X ,Y ), δ2(X ,Y ) has the same PRE interpretation
as τ (X, Y ). Other properties of δ(X, Y ) are the same as those of δ(Y |X) in (7) and (18),
with obvious modifications. Also, being a mean of δ(Y |X) and δ(X |Y ), values of δ(X,
Y ) will always fall between those of δ(Y |X) and δ(X |Y ) inclusive.

4 Statistical Inferences About ı

4.1 ı(Y|X) in (7)

Consider now that δ(Y |X) is based on multinomial sample probabilities pi j = ni j/N
with sample size N = ∑2

i=1
∑2

j=1 ni j and let �(Y|X) denote the corresponding
population measure based on the population probabilities π ij for i = 1, 2 and j =
1, 2. One may then want to perform statistical inferences about �(Y |X), especially
the construction of confidence intervals, but also perhaps testing of hypotheses about
�(Y |X). Besides the use of resamplingmethods (jackknife, bootstrap), such inferences
can be done by using the delta method [1], Ch.16] as briefly outlined next.

123



47 Page 14 of 19 Journal of Statistical Theory and Practice (2023) 17 :47

Accordingly, the following convergence-in-distribution holds:

√
N [δ(Y |X) − �(Y |X)] →d Normal

(
0, σ 2

δ

)
(22)

so that for a largemultinominal sample of sizeN , the estimator δ(Y |X) is approximately
normal with mean �(Y |X) and variance σ 2

δ /N , or standard error σδ/
√
N . By taking

the partial derivatives of �(Y |X) with respect to each π ij and then substituting those
with the corresponding sample estimates pij for all i and j, the estimated variance in
(22) becomes

σ̂ 2
δ =

∑2

i=1

∑2

j=1
pi jφ

2
i j −

(∑2

i=1

∑2

j=1
pi jφi j

)2

(23)

where φi j = ∂δ(Y |X)/∂ pi j for i = 1, 2 and j = 1, 2. From (7),

φ11 = p−2
1+ p12, φ12 = −p−2

1+ p11, φ21 = −p−2
2+ p22, φ22 = p−2

2+ p21. (24)

It is found that
∑2

i=1
∑2

j=1 pi jφi j = 0 as also follows from a theorem by Fleiss [10].
Therefore, from (23)–(24),

σ̂ 2
δ = p11 p12

p31+
+ p21 p22

p32+
= N

(
n11n12
n31+

+ n21n22
n32+

)

. (25)

Instead of performing statistical inferences directly on �(Y |X), it is preferable to
use the following logarithmic transformation and it inverse:

L = log

(
δ(Y |X)

1 − δ(Y |X)

)

, δ(Y |X) = exp(L)

1 + exp(L)
(26)

since this transformation (a) provides amore rapid convergence to normality, especially
for large or small δ(Y |X), and (b) ensures that a confidence interval will always fall
inside the [0, 1]-interval (e.g., [1], pp. 70, 618], [19], p. 106]). The estimated variance
of L becomes

σ̂ 2
L = [dL/dδ(Y |X)]2σ̂ 2

δ = [δ(Y |X)(1 − δ(Y |X))]−2σ̂ 2
δ (27)

with the following confidence interval (CI):

100(1− ∝)%C I for L�:L ± zα/2σ̂L/
√
N (28)

where zα/2 is the standard normal quantile (e.g., zα/2 = 1.96 for α = 0.05 and for 95%
confidence). The corresponding confidence interval for �(Y |X) is then obtained by
using the inverse transformation in (26) to each side of the interval in (28).

As a numerical example, consider again the data in Table 3 for the results after
5 years. From (7) or (15), δ(Y |X) = 0.2771 and, from (25), σ̂ 2

δ = 0.9567 so that
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from (27), σ̂ 2
L = 23.8422. Therefore, with L = − 0.9589 from (26), a 95% CI from

(28) becomes −0.9589± 1.96
√
23.8422/11, 921, i.e., [− 1.0466, − 0.8712], which,

from the inverse transformation in (26), gives the following 95% CI for �(Y |X) :
[0.26, 0.30].

4.2 ı(Y|X) in (18)

For the case when I > 2 and J > 2, it is found from the expression in (18) that

φi j = ∂δ(Y |X)

∂ pi j
= 1

δ(Y |X)
(
1 −∑J

j=1 p2+ j

)

⎡

⎣pi j /pi+ − (1/2)
J∑

k=1

(
pik/pi+

)2 −
(
1 − δ2(Y |X)

)
p+ j

⎤

⎦

(29)

or, in terms of frequencies,

φi j = N 2

δ(Y |X)
(
N 2 −∑J

j=1 n
2+ j

)

[

ni j/ni+ − (1/2)
J∑

k=1

(nik/ni+)2 −
(
1 − δ2(Y |X)

)
n+ j/N

]

.

(30)

The inference procedure is then equivalent to the one outlined above for the case I
= J = 2 (except for the summations now being from i = 1 to i = I and from j = 1
to j = J). Thus, the computed values for φij are used in (23) to obtain the variance
σ̂ 2

δ for δ(Y |X). Then, the logarithmic transformation in (26) leads to σ̂ 2
L in (27) and

CI in (28) from which the CI for the population measure �(Y |X) is derived from the
exponentiation in (26).

4.3 ı(X, Y) in (21)

The same inference procedure as that of δ(Y |X) can be used for the symmetric measure
δ(X, Y ) in (21) and its equivalent population measure �(X, Y ). For the estimated
variance σ̂ 2

δ for δ(X, Y ) in (21), it is found that

φi j = ∂δ(X , Y )

∂ pi j
= 1

δ(X , Y )
(
2 −∑I

i=1 p
2
i+ −∑J

j=1 p
2+ j

)

[

pi j

(
1

pi+
+ 1

p+ j

)

− (1/2)
J∑

k=1

(pik/pi+)2 − (1/2)
I∑

h=1

(
phj/p+ j

)2 − (
1 − δ2(X , Y )

)(
pi+ + p+ j

)
]

(31)

or, in terms of frequencies,
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φi j = N 2

δ(X , Y )
(
2N 2 −∑I

i=1 n
2
i+ −∑J

j=1 n
2+ j

)

[

ni j

(
1

ni+
+ 1

n+ j

)

− (1/2)
J∑

k=1

(nik/ni+)2

−(1/2)
I∑

h=1

(
nhj/n+ j

)2 − (
1 − δ2(X , Y )

)(
ni+ + n+ j

)
/N

]

. (32)

As a numerical example, consider the data in Table 3 (results after 5 years). It is
then found from (2) that δ(X ,Y ) = 0.2754 and, from (32), φ11 = − 0.9798, φ12
= − 2.7419, φ21 = − 2.8316, and φ22 = − 0.4741, which substituted into (23)
gives σ̂ 2

δ = 0.9441. From (27), σ̂ 2
L = 23.7055 and hence, from (28), a 95% CI for L�

becomes [− 1.1084, − 0.9336] and, from the inverse transformation in (26), a 95%
CI for �(X, Y ) becomes [0.25, 0.28].

5 Concluding Comments

When seeking a way to measure the degree of association or dependence between
two nominal categorical variables X and Y , one is faced with an effectively infinite
number of choices of alternative measures. Furthermore, different measures may yield
widely different results for the same data sets so that the results may depend as much
on the measure chosen as on the true relationship between the variables. One way to
deal with such overabundance of measures producing potentially greatly varying and
misleading results is to introduce an additional requirement on such measures as done
in this paper.

The value-validity property with potentially nonuniform marginal distributions is
introduced here as such an additional requirement to ensure that all values of an associ-
ation measure provide true and realistic representations of this characteristic between
categorical variables. Since only two of the existing measures meet the value-validity
condition, but both have other limitations, a new measure, δ, has been introduced in
this paper: the asymmetric δ(Y |X) in (7) and (18) when the number of categories I =
J = 2 and I , J > 2, respectively; the symmetric δ(X, Y ) in (20) and (21) when I = J =
2 and I , J > 2, respectively. The new measure would seem to have all of the properties
required of an appropriate association measure.

When comparing δwith the apparentlymost popularmeasure, Goodman–Kruskal’s
λ, δ has some clear advantages. First, δ satisfies the value-validity condition in (2)
while λ does not. Second, δ equals 0 only under independence as is the case with
all association measures with the exception of λ for which the asymmetric λ(Y |X)
= 0 when the largest row probabilities fall in a single column of the contingency
table. Third, as explained above in some detail, λ is very sensitive to the unevenness
(skewness) of themarginal distributions, resulting in values thatmaypotentially appear
to be unreasonably low. The δ does not suffer from any of those limitations. There is
every reason to suggest that δ is to be generally preferred over λ.

Because of its unique value-validity property as well as other necessary properties,
the asymmetric δ(Y |X) and the symmetric δ(X, Y ) are designed to provide true and
valid representations of the association attribute. Thus, values of this measure can be
used to make reliable and meaningful interpretations, comparisons, and conclusions
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about the extent or strength of association and about various comparisons. In order
for the interpretation of the extent or strength of an association to be consistent, the
following guideline is offered as verbal descriptions:

0 ≤ A ≤ 0.20:Very low
0.20 < A ≤ 0.40:Low
0.40 < A ≤ 0.60:Moderate

0.60 < A ≤ 0.80:High
0.80 < A ≤ 1.00:Very high.

As with any measure that summarizes results into a single number, the new δ may,
of course, be supplemented by more extensive analyses. However, there may be any
number of real situations in which summary information as provided by δ can be inter-
esting and useful. The results from the meta-analysis of lung cancer discussed above is
one such example, showing a clear, although rather low, degree of association (depen-
dence) between treatment (surgery, radiation) and medical outcome (survival, death).
This causal relationship tended to favor surgery over radiation and increasingly so
with time. Specifically, the greatest relative increase in δ(Y |X) at 130% occurred from
year 1 to year 3 after treatment as compared to about 22% from year 3 to 5. Because
of the properties of δ, including the value-validity property, such relative comparisons
can be expected to provide true representations of the association characteristic and
not simply such changes in a measure itself.

Such medical information would certainly be of considerable help when making
important decisions by both medical providers and patients. As other real and diverse
examples of the potential utility of an association measure such as δ, consider the data
relating different types of office work involving VDU screens (explanatory variable
X) and eyestrain (response variable Y ) reported by Lloyd [19], pp. 131–132]. Those
data show that δ(Y |X) = 0.85, which can be interpreted as a "very high" degree of
association and as a potentially serious problem. By comparison, the λ(Y |X) = 0 as
an entirely unreasonable and misleading result.

As an example of particular interest to political scientists, Reynolds [24], pp. 1–2]
reported data on party identification X (democrat, republican. independent) and vote Y
(democrat, republican).When the value of δ(Y |X) is computed from those data, a "high"
degree of association is established as δ(Y |X) = 0.62. As a comparison, the τ (Y |X)
defined in Table 1, which lacks the value-validity property, shows a misleadingly low
value of τ (Y |X) = 0.38. In an example given by Tang et al. [27], p. 61] relating gender
(X) to different levels of depression (Y), the result δ(Y |X) = 0.15 indicates a very low
association, but females tended to have more severe depression than males. However,
λ(Y |X) and τ (Y |X) provide the even lower values of 0 and 0.02, respectively.

In conclusion, the new association measure δ, whether in asymmetric or symmetric
form, would seem to meet all of the requirements expected of a good association mea-
sure. It has an intuitively appealing interpretation in terms of normalized Euclidean
distances between joint probability distributions. In addition to sharing the appropriate
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properties with other measures, it has the important value-validity property. Conse-
quently, there would appear to be no particular reason why δ should not become the
measure of choice for the association between nominal categorical variables.
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