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Abstract
Animal behaviour is often characterised by periodic patterns such as seasonality or diel
variation. Such periodic variation can be comprehensively studied from the increas-
ingly detailed ecological time series that are nowadays collected, e.g. using GPS
tracking. Within the class of hidden Markov models (HMMs), which is a popular tool
for modelling time series driven by underlying behavioural modes, periodic variation
is commonly modelled by including trigonometric functions in the linear predictors
for the state transition probabilities. This parametric modelling can be too inflexible to
capture complex periodic patterns, e.g. featuring multiple activity peaks per day. Here,
we explore an alternative approach using penalised splines to model periodic variation
in the state-switching dynamics of HMMs. The challenge of estimating the corre-
sponding complex models is substantially reduced by the expectation–maximisation
algorithm, which allows us to make use of the existing machinery (and software) for
nonparametric regression. The practicality and potential usefulness of our approach
is demonstrated in two real-data applications, modelling the movements of African
elephants and of common fruit flies.
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1 Introduction

Ecological time series data are often characterised by periodicities such as diel varia-
tion, i.e. recurrent patterns over a 24-hperiod. Ignoringperiodic variation can invalidate
statistical inference, e.g. standard errors might be underestimated due to residual
autocorrelation [1]. Perhaps more importantly, adequately modelling such periodic
variation is crucial to comprehensively understand behavioural dynamics, for exam-
ple to identify times of day at which individuals tend to be most active, allowing
inference on a species’ temporal niche [2, 3].

Fortunately, technological advances in, e.g. GPS tracking, accelerometry, and com-
puter vision allow ecologists to study diel variation in much more detail than was
previously possible [4, 5]. One popular tool for modelling ecological time series data
and the periodicities therein is given by the class of hidden Markov models (HMMs),
which links the observed ecological data (e.g. step lengths and turning angles in animal
movement) to underlying non-observable states (e.g. resting, foraging, travelling) [6].

In the existing literature, two different approaches have been used to infer periodic
variation using HMMs. First, relatively basic HMMs can be used to infer an animal’s
behavioural sequence (state decoding), based on which diel variation can be investi-
gated using simple visualisations [5, 7, 8] or an additional regression analysis [9, 10].
From the statistical perspective, such a two-stage approach will often not be ideal:
the uncertainty in the state allocation is not propagated, statistical inference on the
periodic effects is not straightforward, and the dimension of the state space may be
overestimated due to the misspecification of the basic model (see [11] for the latter).
Second, periodic variation is nowadays often directly incorporated in HMMs using
trigonometric modelling, for instance by relating the state transition probabilities to
the hour of the day using sine and cosine functions with 24-h periods [12–16]. While
this will often be sufficient, such a parametricmodelling of the periodic effectmay lack
flexibility to capture complex periodic variation, for example with multiple activity
peaks over the day. In principle, this limitation can be overcome by including multiple
sine and cosine basis functions, with different wavelengths [17–20]. However, this can
lead to numerical instability, and it can be tedious to select an adequate order.

In this contribution, we explore a more flexible, nonparametric estimation of peri-
odicities in the state-switching dynamics of an HMMusing cyclic splines. Thereby we
avoid making any a priori assumptions on the functional shape of the periodic effect,
thus allowing to infer arbitrarily complex behavioural diel patterns. For inference, we
devise an expectation–maximisation (EM) algorithm, thereby isolating the estimation
of the nonparametric periodic effect. This allows us to exploit the powerful machin-
ery available for nonparametric (regression) modelling, specifically P-splines or other
smoothing methods implemented in existing software packages such as mgcv [21].
The feasibility of the proposed approach is illustrated in two case studies, where we
investigate diel variation of African elephants (Loxodonta africana) and of common
fruit flies (Drosophila melanogaster).
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2 Methods

2.1 Notation and Basics

HMMs are used to model time series data x1, . . . , xT (e.g. step lengths of an animal)
driven by underlying states s1, . . . , sT (e.g. the behavioural modes). In a basic HMM,
the latent state process is assumed to be a Markov chain with N states, characterised
by the initial state probabilities

δ
(1)
j = Pr(S1 = j),

j = 1, . . . , N , and the transition probability matrix (t.p.m.)

�(t) = (
γ

(t)
i j

)
, where γ

(t)
i j = Pr(St = j | St−1 = i),

i, j = 1, . . . , N , t = 2, . . . , T . The state active at time t selects which of N possible
state-dependent distributions f1, . . . , fN generates the observation xt :

f (xt | st = j) = f j (xt ).

Covariates—including time of day—can be included in either the state-dependent
distributions f1, . . . , fN or the state transition probabilities γ

(t)
i j . We focus on the

latter, as in ecological applications the main interest typically lies in the state process
and its drivers, including temporal effects.

2.2 Trigonometric Modelling of Time-of-DayVariation

Including covariates in the state process amounts to regression modelling within
the HMM, where covariates affect the state transition probabilities and hence, the
behavioural decisions made by an animal. Specifically, if at time t − 1 the animal
is in state i , the categorical distribution of states at time t is given by the vector
(γ

(t)
i1 , . . . , γ

(t)
i N ). The covariate-dependence of this categorical distribution is typically

modelled using a multinomial logistic regression, which is achieved by applying the
inverse multinomial logit link to each row i of the t.p.m.,

γ
(t)
i j = eτ

(t)
i j

∑N
k=1 e

τ
(t)
ik

, (1)

defining τ
(t)
i i = 0 (reference category). The linear predictors τ

(t)
i j can include, inter

alia, simple linear effects, polynomial effects, interaction terms, and random effects.
Without the latter (for ease of notation), the general form of the linear predictor for
γ

(t)
i j is
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τ
(t)
i j = z′

tβ
(i j) = β

(i j)
0 + β

(i j)
1 zt1 + · · · + β

(i j)
p ztp,

where ztk are covariates. When the aim is to model periodic patterns in the state-
switching dynamics, the linear predictor can be extended by including trigonometric
basis functions with the desired periodicity. For example, for modelling diel variation
in a time series with hourly data, a possible simple form of the linear predictor is

τ
(t)
i j = z′

tβ
(i j) + ω(i j) sin

(
2π t

24

)
+ ψ(i j) cos

(
2π t

24

)
,

with the additional coefficients ω(i j) and ψ(i j) to be estimated alongside β(i j). Gen-
eral periodicities are modelled analogously, replacing the 24 in the denominator by
the period length (i.e. the number of sequential observations before completing one
period).

With only two harmonics, the flexibility of the periodic component of the linear
predictor is somewhat limited: for example, this formulation implies that the periodic
component has only one maximum turning point (such that patterns with multiple
activity peaks throughout a daymay not be adequately captured). The flexibility can be
increased by including additional trigonometric functions with different wavelengths:

τ
(t)
i j = z′

tβ
(i j) +

K∑

k=1

ω
(i j)
k sin

(
2πkt

24

)
+

K∑

k=1

ψ
(i j)
k cos

(
2πkt

24

)
, (2)

see for example [19, 20]. By increasing K , arbitrary (smooth)modelling of the periodic
effect can be achieved. However, when complex periodic patterns are to be modelled,
it can be tedious to select an adequate order K , with the risk of overfitting looming. It
may then be more straightforward to avoid making any assumptions on the functional
shape of the periodic effect, instead using nonparametric smoothing methods. Such an
approach to estimating periodic effects will be presented and explored in the following.

2.3 Cyclic Splines for Modelling Time-of-DayVariation

We now consider nonparametric modelling of the periodic effect, replacing the sum of
trigonometric basis functions in (2) by a spline. Specifically, we construct this spline
as a linear combination of Q basis functions,

τ
(t)
i j = z′

tβ
(i j) +

Q∑

q=1

a(i j)
q Bq(t mod 24), (3)

with the scaling coefficients a(i j)
1 , . . . , a(i j)

Q to be estimated. We use cubic B-spline
basis functions B1, ..., BQ , which are easy to compute and yield visually smooth
functions. To enforce the desired periodicity, these are wrapped at the boundaries of
the support [21]; see Fig. 1 for an illustrationwith Q = 8 and period length 24h—again
general periodicities are modelled analogously.
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Fig. 1 Example set of Q = 8 cyclic basis functions for modelling diel variation

In practice, a large Q (e.g. 20) is typically used to guarantee sufficient flexibil-
ity. Overfitting is avoided by including a penalty on the sums of squared differences
between the coefficients a(i j)

q associated with adjacent B-splines—an approach com-
monly referred to as P-spline modelling, cf. [22]. While strictly speaking, this model
formulation is still parametric, it is commonly labelled as a nonparametric approach
because with a large Q the modelling flexibility is effectively unlimited, and there is
no meaningful interpretation of the coefficients a(i j)

q .

2.4 EM-Based Estimation of HMMswith Cyclic Splines

The model formulation presented in the previous section effectively involves non-
parametric regression modelling within HMMs. For example, in case of N = 2 states,
the model features a nonparametric logistic regression for each of the state-switching
probabilities γ

(t)
12 and γ

(t)
21 (see Eq. (1)). For such nonparametric regression modelling,

the inferential machinery (including software packages) is well-established. There-
fore, we apply the expectation–maximisation (EM) algorithm to isolate the estimation
of the logistic regression component from the estimation of the other parameters of
the HMM, in particular those associated with the state-dependent process. This allows
us to exploit the tools available for nonparametric logistic regression modelling.

To set up the EM algorithm, we consider the complete-data likelihood (CDLL) of
the HMM, i.e. the joint log-likelihood of the observations and the states,

	CDLL(θ) = log

(
δ(1)
s1

T∏

t=2

γ (t)
st−1,st

T∏

t=1

fst (xt )

)

= log δ(1)
s1 +

T∑

t=2

log γ (t)
st−1,st +

T∑

t=1

log fst (xt ), (4)

with θ the set of parameters necessary to define δ
(1)
j , �(t), and the state-dependent

distributions f j (x). Each iteration of theEMalgorithm involves anE-step, replacing all
functions of the unobserved states in theCDLLby their conditional expectations (given
the data and the current parameter values), and an M-step, optimising the resulting
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CDLLwith respect to θ . In the case ofHMMs, the appeal of theEMalgorithm lies in the
fact that the M-step neatly splits into several separate optimisation problems—namely
one for each the initial distribution, the t.p.m., and the state-dependent distributions—
which we exploit below to conveniently estimate the cyclic spline component.

To apply the E-step, we define the indicator variables

u j (t) =
{
1 if st = j,
0 otherwise,

and

vi j (t) =
{
1 if st−1 = i and st = j,
0 otherwise,

and rewrite the CDLL as

	CDLL(θ) =
N∑

j=1

u j (1) log δ
(1)
j +

N∑

i=1

N∑

j=1

T∑

t=2

vi j (t) log γ
(t)
i j

+
N∑

j=1

T∑

t=1

u j (t) log f j (xt ). (5)

In theE-step, the indicator variables are then replaced by their conditional expectations

û j (t) = Pr(St = j | x1, . . . , xT , θ)

and

v̂i j (t) = Pr(St−1 = i, St = j | x1, . . . , xT , θ),

with θ the current guess of the parameter vector. These conditional expectations are
calculated using the standard forward and backward recursions (see [23]).

The M-step then involves optimising the CDLL (5), with ui (t) and vi j (t) replaced
by ûi (t) and v̂i j (t), respectively, with respect to the parameter vector θ . The updated
estimates of the initial state distribution as well as the state-dependent distribution are
obtained as comprehensively described in [23]. For the particular model formulation
considered in this contribution, the interest (and challenge) lies in the update of the
parameters that affect the state transition probabilities, i.e. the second term in (5),

N∑

i=1

N∑

j=1

T∑

t=2

vi j (t) log γ
(t)
i j . (6)

The first summation in (6) corresponds to the N rows of the t.p.m., each of which
implies a categorical regression model for the transition to the next state. We can esti-
mate the associated parameters of each of these regressions separately. For example,
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for N = 2, (6) becomes

N∑

j=1

T∑

t=2

v1 j (t) log γ
(t)
1 j +

N∑

j=1

T∑

t=2

v2 j (t) log γ
(t)
2 j .

Each of these two terms is the log-likelihood of a logistic regression model. For
example, the first term can be rewritten as

T∑

t=2

v11(t) log
(
1 − γ

(t)
12

) +
T∑

t=2

v12(t) log γ
(t)
12 . (7)

In logistic regression terminology, the sum
∑T

t=2 v12(t) gives the number of “suc-
cesses” (here, the number of switches from state 1 to state 2), and

∑T
t=2 v11(t) is

the number of “failures” (here the number of instances when the process remains in
state 1). Within EM, the indicator variables vi j (t) are replaced by their conditional
expectations v̂i j (t), such that (7) becomes a weighted log-likelihood.

The time-varying transition probability γ
(t)
12 in (7) is modelled using cyclic P-

splines, see (1) and (3). As described in Sect. 2.3, a wiggliness penalty is added to
the weighted log-likelihood, for example

−λi

2

Q∑

q=3

(�2a(i j)
q

)2
,

with �2 denoting the second-order difference operator and λi the (state-dependent)
smoothing penalty (see [22]). The estimation of this weighted nonparametric logistic
regression can conveniently be conducted usingwell-establishedmachinery, including
existing software. In the case studies below, we implemented this part of the M-step
in the EM algorithm using the mgcv package in R [21].

The updated parameter estimates are then used in the E-step of the next iteration.
The E and M steps are repeated until a convergence criterion defined by the user
is reached [24], e.g. that the difference between the likelihood values obtained in
two consecutive iterations is below some threshold. This iterative scheme identifies
a (local) maximum of the likelihood function. To increase the chances of finding the
global maximum, several initial starting values for θ should be tested.

3 Case Studies

3.1 African Elephant

We consider hourly GPS data collected for an African elephant in Etosha National
Park, Namibia, from October 2008 to August 2010. The data are available from the
Movement Bank Repository [25, 26], cf. [27]. From the positional data, we calculate
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Fig. 2 Boxplots of the elephant’s step lengths for each time of day. Outliers in the right tail are not shown
for visual clarity

the Euclidean step lengths as well as the turning angles between consecutive compass
directions. From these two metrics, we aim to investigate diel patterns in the ele-
phant’s behaviour. The empirical step length distributions throughout the day indicate
a relatively complex diel variation with two activity modes, which may be difficult to
adequately model using parametric periodic effects (Fig. 2).

Wemodel the data using 2-stateHMMswith gamma and vonMises distributions for
the step lengths and turning angles, respectively, assuming conditional independence
of the two variables, given the states [28, 29]. For modelling diel variation in the
state-switching dynamics, we consider the cyclic P-spline approach (using the default
options implemented in mgcv), the trigonometric approach (2) with K = 1, 2 and (3),
and, as an additional benchmark, a model with homogeneous Markov chain (i.e. no
diel variation). All fitted models feature an “encamped” state with relatively short step
lengths and frequent reversals in direction (state 1) and an “exploratory” state with
longer steps and higher persistence in direction (state 2)—see Fig. 6 in Appendix.

Figure 3 displays the time-varying probabilities of switching states (left panel: from
state 1 to state 2, right panel: vice versa) as estimated under the nonparametric as well
as the parametric approach.Allmodels detect a reduction in exploratory activity during
the night. However, the flexible P-spline approach additionally captures a bimodal diel
variation, with more frequent switching to the exploratory mode in the early morning
hours but also in the early afternoon. In contrast, the commonly used trigonometric
effect modelling with K = 1 (i.e. one sine and one cosine basis function) is not
sufficiently flexible to identify this bimodality. When increasing the order to K = 2,
the bimodality can be identified, however, only with K = 3 the parametric approach
produces results similar to those obtained using splines (thus indicating that even with
K = 2 the parametric model might be too inflexible). Furthermore, the proportion
of time spent in the exploratory state, for each time of day calculated based on the
Viterbi-decoded states, varies notably across the five models fitted (see Fig. 4). This
underlines the importance of adequately modelling diel variation, as inflexible models
can invalidate inference on the state process.
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Fig. 3 Estimated transition probabilities of the elephant as a function of time of day, for the different HMMs
considered. For the P-spline model, the pointwise 95% confidence intervals (CIs) based on the Bayesian
posterior covariance matrix, as provided by mgcv, are shown. The other CIs are omitted for visual clarity

Fig. 4 Proportion of time spent in state 2 (“exploratory”) by the elephant according to Viterbi state decoding
based on the different models considered

To formally compare spline-based models with parametric alternatives using
trigonometric base functions, we consult the Akaike information criterion (AIC) and
the Bayesian information criterion (BIC; see Table 1). The AIC and the BIC favour
the trigonometric models with K = 5 and K = 3, respectively, with the spline-based
approach arriving at a similarly complex model as measured by the effective degrees
of freedom (edf). Notably, this demonstrates that the penalised spline approach cor-
responds to data-driven model selection since the choice of the wiggliness penalty λ

aims at achieving a favourable balance between underfitting and overfitting.
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Table 1 AIC and BIC values of the different HMMs considered for the elephant data

AIC BIC edf Log-likelihood

Homogeneous 44357.54 44433.91 10 −22168.77

trigon. (K = 1) 44179.49 44286.41 14 −22075.74

trigon. (K = 2) 43904.38 44041.85 18 −21934.19

trigon. (K = 3) 43824.09 43992.11 22 −21890.04

trigon. (K = 4) 43824.65 44023.22 26 −21886.32

trigon. (K = 5) 43814.77 44043.89 30 −21877.39

trigon. (K = 6) 43819.93 44079.60 34 −21875.97

splines 43826.85 44021.45 25.48 −21887.95

Models favoured by the criteria are highlighted in bold font

3.2 Common Fruit Flies

In the second case study, we consider the locomotor activity of laboratory wild type
Drosophila melanogaster (iso31) [30]. We collected 2- to 3-days-old male flies and
trained them individually to a standard 12-h-light and 12-h-dark condition (LD) for
4.5 days in locomotor tubes. Subsequently, we subjected them to 6 days of constant
darkness (DD). The temperature was kept constant (25◦C). During these 10 days,
locomotor activitywas recorded using theDrosophilaActivityMonitor (DAM) system
(TriKinetics Inc), by counting the times each fly interrupts the infrared beam passing
the middle of the locomotor tube. We consider two time series—one under light
condition LD and the other under condition DD—for each of 15 individuals. Each
observation is the count of beams crossed over a period of 30min.

The time series of half-hourly counts are modelled using a 2-state HMM with
negative binomial state-dependent distributions. For the state transition probabilities,
we consider the same time-varying predictors as in the elephant example, addition-
ally allowing for different periodic effects under the two light conditions. The fitted
models’ states are associated with low and high activity, with state-dependent mean
counts of 2.7 and 54.9, respectively, obtained for the spline-based model (see Fig. 7
in Appendix.).

Figure 5 shows the time-varying probability of occupying the high-activity state as
obtained for the different models considered. Note that these are effectively summary
statistics implied by the time-varying t.p.m., which are shown here to facilitate the
comparison between the two light conditions. The results emphasise the importance
of allowing for sufficient modelling flexibility in the periodic effects, as the commonly
used approach with only one sine and one cosine basis function fails to capture several
key characteristics: (1) the bimodal activity pattern over the course of the day; (2) the
near-certain occupancy of the high-activity state in the evening hours (and of the low-
activity state during the night) in the DD condition; (3) the fact that the first activity
peak is less pronounced, and the second more pronounced, in the DD condition. The
other threemodels—i.e. thosewith trigonometric effectmodelling and either K = 2 or
K = 3 as well as the spline-based model—all yield similar results. The slight midday
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Fig. 5 Model-implied probability of the fruit flies occupying the high-activity state for conditions LD (left)
and DD (right), as implied under the different models fitted. For the P-spline model, the pointwise 95% CIs
are shown, obtained via Monte Carlo simulation using the Bayesian posterior covariance matrix provided
by mgcv. The other CIs are omitted for visual clarity. Horizontal bars indicate the light–dark cycle (LD)
in black and white, while under constant darkness (DD), the previous times of light are indicated in grey

Table 2 AIC and BIC values of the different HMMs considered for the fruit fly data

AIC BIC edf log-likelihood

Homogeneous 42192.76 42233.74 6 −21090.38

trigon. (K = 1) 41655.55 41764.84 16 −20811.77

trigon. (K = 2) 41169.03 41332.97 24 −20560.52

trigon. (K = 3) 41108.98 41327.55 32 −20522.49

trigon. (K = 4) 40949.16 41222.38 40 −20434.58

trigon. (K = 5) 40936.27 41264.13 48 −20420.13

trigon. (K = 6) 40896.75 41279.26 56 −20392.38

splines 40951.58 41227.66 40.42 −20435.38

Models favoured by the criteria are highlighted in bold font

peak only revealed by the spline-based approach—as well as by trigonometric models
with K ≥ 4 (not displayed in the figure)—was also found in another study on activity
patterns of fruit flies, albeit under varying temperature conditions [31]. Furthermore,
the model comparison shows that the spline-based approach leads to a similar fit as the
trigonometric approach, with the BIC favouring the latter with K = 4 (see Table 2).

4 Conclusion

Periodic variation in time series data is often of key interest but can be challenging
to adequately incorporate in state-switching models. To reveal potentially complex
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patterns, e.g. multiple activity peaks throughout the day, we explored a flexible non-
parametric approach using cyclic P-splines. As illustrated in two case studies, such
flexibility in the modelling of periodic variation can uncover relevant patterns that
may otherwise go unnoticed, emphasising the potential usefulness of the approach, in
particular in settings where periodic variation is of primary interest (cf. [32–34]).

We implemented theHMMwith cyclic P-splines buildingon themgcv functionality
within the EM algorithm. However, this is not the only option for conducting infer-
ence for such a model. In particular, optimisation of the HMM’s marginal likelihood,
obtained by integrating out the spline coefficients using the Laplace approximation
[35], has recently been explored and is already implemented in the immensely flexible
R package hmmTMB [36]. Moreover, both hmmTMB and the presented EM algorithm
are not limited to P-spline modelling but could also incorporate other functional rela-
tionships within HMMs, such as random effects or more complex smoothing functions
provided by mgcv.

The manifold possibilities of flexibly modelling covariate effects further compli-
cate the already difficult task of model selection in HMMs, which is aggravated by the
interplay of the number of states and the modelling of the state process [37]. Although
information criteria offer some guidance in identifying an adequately complex model,
additional considerations regarding interpretability and computational costs need to
be taken into account. For example, even if a spline-based model fits the data slightly
better than a simpler parametric one, this advantage may be outweighed by the addi-
tional computational burden. Therefore, HMMs demand a holistic approach to model
selection, that is to pragmatically balance goodness of fit and study aims.

In practice, nonparametric modelling of periodic variation allows to investigate
temporal patterns without making any restrictive assumptions a priori. When used as
an exploratory tool, the approach may of course also show that simple trigonometric
modelling is sufficient. In both case studies presented in this contribution, information
criteria did indeed favour trigonometric modelling of the periodic variation, though
only when using considerably more basis functions than are commonly applied in
ecological modelling. Selecting an adequate number of basis functions can be tedious
in practice, such that the spline-based approach, with its automated optimisation of
the bias-variance trade-off via penalised likelihood, may sometimes be more con-
venient to implement. In any case, incorporating the required flexibility to capture
periodic variation—whether using nonparametric or parametric modelling—is crucial
for guaranteeing valid inference on behavioural processes.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s42519-023-00342-7.
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Appendix A

See Figs. 6 and 7.

Fig. 6 Histogram of elephant step lengths and turning angles, together with the estimated state-dependent
distributions (weighted according to the time the states are active) of the 2-state HMMwith cyclic P-splines

Fig. 7 Histogram of the flies’ activity counts and the estimated state-dependent distributions (weighted
according to the time the states are active) of the 2-state HMM with cyclic P-splines
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