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Abstract
The blocked compound symmetric covariance structure for double multivariate obser-
vations is a multivariate generalization of the compound symmetric covariance
structure for multivariate observations. Many studies have investigated the blocked
compound symmetric covariance structure, some of which considered testing the
hypothesis of independence. Since the results for the likelihood ratio criterion obtained
for large samples cannot be used when the dimension is close to the sample size, we
derive a criterion for high dimensionality, which uses a normal approximation. The
probability of type I errors in the test using the criterion is found to be stable in
numerical simulations.

Keywords Blocked compound symmetric covariance structure · Hypothesis testing ·
Central limit theorem · Moderate deviation principals

Mathematics Subject Classification 62H15 · 62E20

1 Introduction

Recent developments in sensors and other devices have made it possible to obtain
multivariate data easily. As a result, it is sometimes necessary to handle multivariate
data with higher dimensions than before. On the other hand, depending on the experi-
mental design and characteristics of the survey subjects, a special covariance structure
may occur in the data. It must be respected in order to obtain valid results. Moreover,
such a special covariance structure reduces the number of parameters to be estimated,
thus reducing the required sample size.
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One such structure is the blocked compound symmetric (BCS) covariance structure.
The BCS covariance structure for double multivariate observations is a multivari-
ate generalization of the compound symmetric covariance structure for multivariate
observations. The BCS covariance structure is defined as follows:

� = Iu ⊗ (�0 − �1) + Ju ⊗ �1 =

⎛
⎜⎜⎜⎝

�0 �1 · · · �1
�1 �0 · · · �1
...

...
...

�1 �1 · · · �0

⎞
⎟⎟⎟⎠ , (1)

where Iu is the u × u identity matrix, 1u is a u × 1 vector of ones, Ju = 1u1′
u , and

⊗ denotes the Kronecker product. We assume that u ≥ 2, �0 is a positive definite
symmetric p × p matrix, �1 is a symmetric p × p matrix, and �0 − �1 and �0 +
(u − 1)�1 are positive definite matrices so that � is a positive definite matrix. The
diagonals �0 in � represent the covariance matrix of the p response variables at
any given site, whereas the off diagonals �1 represent the covariance matrix of the p
response variables between any two sites, and thematrices�0 and�1 are unstructured.

Leiva [11] derived maximum likelihood estimates (MLEs) of the BCS covariance
structure and provided a linear discrimination method for when the vectors in each
training sample are equicorrelated. Roy et al. [13] and Žežula et al. [16] studied
hypothesis testing for the equality of mean vectors in two populations under the BCS
covariance structure. Roy et al. [14] proved that the unbiased estimators of the BCS
covariance structure are optimal under normality. Coelho and Roy [2] have developed
hypothesis testing for the BCS covariance structure. Recently, Liang et.al. [10] consid-
ered hypothesis testing such that �0 and �1 are symmetric circular Toeplitz matrices,
or compound symmetric matrices.

Tsukada [15] considered hypothesis testing for independence under the BCS
covariance structure, i.e.,

H0 : �1 = O versus H1 : �1 �= O, (2)

where O is a p× p zero matrix, and proposed a likelihood ratio (LR) test. Fonseca et
al. [5] have proposed an F-test for this hypothesis testing.

TheLRcriterion is known toworkwell in large samples, but not in high-dimensional
settings. Therefore, in this study, we investigate the asymptotic properties of the LR
criterion under the assumption

p ≤ n, lim
n→∞

p

n
= y ∈ (0, 1], (3)

where n is the sample size, and provide hypothesis testing with the standard normal
distribution. We also investigate the moderate deviation principals as a property of the
hypothesis testing.

The remainder of this study is organized as follows. We show the notation, the
LR criterion, the moment of the LR criterion in Sect. 2. Section3 is devoted to the
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main results. The numerical simulation for our results is represented in Sect. 4. The
conclusions are presented in Sect. 5.

2 Preparation

We assume that xr ,s is a p-variate vector of measurements on the r -th individual at
the s-th site (r = 1, . . . , n; s = 1, . . . , u). The n individuals are all independent. Let
xr = (xr ,1, . . . , xr ,u)′ be the up-variate vector of all measurements corresponding to
the r -th individual. Finally,we assume that x1, x2, . . . , xn be a randomsample of sizen
drawn from the population Nup(μ,�), whereμ = (μ1, . . . ,μu)

′ is a up×1 vector and
� is a up× up positive-definite matrix that has the BCS covariance structure denoted
in (1). In this section, we discuss estimators under the BCS covariance structure, the
LR criterion, and the moment of the LR criterion. Roy et al. [14] derived unbiased
estimators as follows:

Theorem 1 (Roy et al. [13]) Assume that x1, x2, . . . , xn is a random sample of size n
drawn from the population Nup(μ,�). Let x̄ = (

x̄′
1, x̄

′
2, . . . , x̄

′
u

)′
,

S = 1

n − 1

n∑
i=1

(xi − x̄) (xi − x̄)′ =

⎛
⎜⎜⎜⎝

S11 S12 · · · S1u
S21 S22 · · · S2u
...

...
...

Su1 Su2 · · · Suu

⎞
⎟⎟⎟⎠ ,

where x̄s = ∑n
r=1 xr ,s/n (s = 1, . . . , u) and Si j is a p × p matrix. Then, x̄ is

distributed as Nup(μ,�/n) and is the unbiased estimator for the mean vector μ. The
estimators

�̃0 = 1

u

u∑
i=1

Si i , �̃1 = 1

u(u − 1)

u∑
i, j=1
i �= j

Si j

are unbiased estimators for �0 and �1, respectively.

Therefore, the unbiased estimator for � is

�̃ = Iu ⊗
(
�̃0 − �̃1

)
+ Ju ⊗ �̃1.

Roy et al. [13] have also shown that

W1 = (n − 1)(u − 1)
(
�̃0 − �̃1

)
∼ Wp (�0 − �1, (n − 1)(u − 1)) ,

W2 = (n − 1)
{
�̃0 + (u − 1)�̃1

}
∼ Wp (�0 + (u − 1)�1, n − 1)

are independent, respectively. Tsukada [15] proposed the LR criterion for testing the
hypothesis (2) as follows:
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Theorem 2 (Tsukada [15], p.171) Assume that n − 1 ≥ p. Let

� = (nu)nup/2

{n(u − 1)}n(u−1)p/2nnp/2
· |W1|n(u−1)/2|W2|n/2

|W1 + W2|nu/2 ,

ρ = 1 − u2 − u + 1

(n − 1)u(u − 1)
· 2p

2 + 3p − 1

6(p + 1)
.

Under the null hypothesis H0 : �1 = O, the LR criterion Ln = −2ρ log� is
asymptotically distributed as a Chi-square distribution with p(p + 1)/2 degrees of
freedom for the large sample size n and fixed dimension p.

From Theorem 2, let

Vn = �1/n = (nu)up/2

{n(u − 1)}(u−1)p/2n p/2
· |W1|(u−1)/2|W2|1/2

|W1 + W2|u/2 . (4)

We obtained the h-th moment of Vn by the method of Section 10.4.2 in Anderson [1].
The moment of the LR criterion Vn is as follows:

E
[
V h
n

]
= (nu)uph/2

{n(u − 1)}(u−1)ph/2n ph/2
· �p

[ 1
2 (n − 1)(u − 1) + 1

2h(u − 1)
]

�p
[ 1
2 (n − 1)(u − 1)

]

× �p
[ 1
2 (n − 1) + 1

2h
]

�p
[ 1
2 (n − 1)

] · �p
[ 1
2 (n − 1)u

]

�p
[ 1
2 (n − 1)u + 1

2hu
] , (5)

where �p[·] is the multivariate Gamma function, which is defined as

�p[z] = π p(p−1)/4
p∏

i=1

�

[
z − 1

2
(i − 1)

]
(6)

for complex number z with Re(z) > (p − 1)/2. (See Section 2.1.2 in Muirhead [12])

3 Main Results

3.1 Hypothesis Testing in High-Dimensional Setting

The asymptotic results of the LR criterion obtained under a large sample are not
useful when the sample size n is close to the dimension p, because the LR criterion
uses determinants that are unstable in such a situation. We consider the asymptotic
result for the LR criterion in a high-dimensional setting (3). Our result is also derived
from the similar argument of Jiang and Yang [8].

Theorem 3 Assume that n − 1 ≥ p, u ≥ 2, and limn→∞ p/n = y ∈ (0, 1]. Let Vn be
defined as in (4). Then, under H0 : �1 = O, the criterion (log Vn −μn)/σn converges
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in distribution to N (0, 1) as n → ∞, where

μn = 1

2

{
(n − 1)u2 −

(
p + 1

2

)
u

}
log

{
1 − p

(n − 1)u

}

− 1

2

{
(n − 1)(u − 1)2 −

(
p + 1

2

)
(u − 1)

}
log

{
1 − p

(n − 1)(u − 1)

}

− 1

2

{
(n − 1) −

(
p + 1

2

)}
log

(
1 − p

n − 1

)
,

σ 2
n = 1

2

[
u2 log

{
1 − p

(n − 1)u

}

−(u − 1)2 log

{
1 − p

(n − 1)(u − 1)

}
− log

(
1 − p

n − 1

)]
.

Proof The proof is presented in detail in Sect. 6.1. ��
Remark 1 When the dimension p is close to the sample size n, the asymptotic variance
σ 2
n diverges, which makes the approximation unstable.

Next, we prove σ 2
n > 0 for n − 1 ≥ p and u ≥ 2 as n → ∞. From the mean-value

theorem, we have

f (b) − f (a) ≤ sup
a<x<b

f ′(x)

in the open interval (a, b). Letting f (x) = −x2 log [1 − p/{(n − 1)x}], we have

− u2 log

{
1 − p

(n − 1)u

}
+ (u − 1)2 log

{
1 − p

(n − 1)(u − 1)

}

= f (u) − f (u − 1) ≤ sup
u−1<x<u

f ′(x)

= sup
u−1<x<u

[
px

p − (n − 1)x
− 2x log

{
1 − p

(n − 1)x

}]
.

From the fact that f ′(x) is monotonically increasing and

lim
x→∞ f ′(x) = p

n − 1
,

because supu−1<x<u f ′(x) < p/(n − 1) < f (1), we have f (u) − f (u − 1) < f (1),
i.e., f (u) < f (u − 1) + f (1). This indicates that the asymptotic variance is positive.

3.2 Moderate Deviation Principle

Next, we investigate the derivation rate of the convergence as a property of the LR
criterion. The performance of the LR criterion can be measured by the exponential
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rate of decay (see Jurečková et al. [9]), i.e., for any x > 0,

lim
a→∞ lim

n→∞
1

a2
log Pr

( |log Vn − μn|
σn

≥ ax

)
= − x2

2
.

This is the conventional local asymptotic analysis for log Vn , focusing on aσn-
neighborhoods. A further extension of this is the moderate deviation principle (MDP),
whereby one has

lim
an→∞ lim

n→∞
1

a2n
log Pr

( |log Vn − μn|
σn

≥ anx

)
= − x2

2
, (7)

for any sequence {an} with an → ∞. It is important to control the type I errors, i.e.,
the probability

Pr

( |log Vn − μn|
anσn

≥ x

)
, x > 0,

in hypothesis testing problems.
The LR criterion log Vn is satisfied (7) and the following theorem is obtained.

Theorem 4 Under the assumption

p ≤ n, lim
n→∞

p

n
= y ∈ (0, 1],

the following results are obtained.

(i) When y = 1, the statistic (log Vn − μn) / (anσn) satisfies the moderate deviation
principle with speed a2n and a good rate function x2/2 for all x > 0, where
{an | n ≥ 1} is a sequence of positive numbers satisfying

lim
n→∞ an = ∞, lim sup

n→∞
an
σn

= 0.

(ii) When y ∈ (0, 1), the statistic (log Vn − μn) / (anσn) satisfies the moderate devi-
ation principle with speed a2n and a good rate function x2/2 for all x > 0, where
{an | n ≥ 1} is a sequence of positive numbers such that

lim
n→∞ an = ∞, lim

n→∞
an
n

= 0.

Therefore, in both cases, we have

lim
n→∞

1

a2n
logPr

(
1

an

∣∣∣∣
log Vn − μn

σn

∣∣∣∣ ≥ x

)
= − x2

2
,

for any fixed x > 0.
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Proof The proof is presented in detail in Sect. 6.2. ��
Remark 2 The choices of the moderate deviation scale an are because of (i) if y = 1,
then σ 2

n tends to infinity as n → ∞, whereas (ii) if y ∈ (0, 1), then

σ 2
n → u2

2
log

(
1 − y

u

)
− (u − 1)2

2
log

(
1 − y

u − 1

)
− 1

2
log (1 − y) ,

that is, σ 2
n is bounded. Then we can choose an = √

σn for y = 1 and an = √
n for

y ∈ (0, 1).

Remark 3 When we take the rejection region {|(log Vn − μn)/σn| > can}, where c is
a constant and an is the scale number, for testing the null hypothesis H0 against H1,
the probability αn of the type I error is

αn = Pr (|(log Vn − μn)/σn| > can) .

From Theorem 4, we can see

lim
n→∞

1

a2n
log Pr

{∣∣∣∣
log Vn − μn

σn

∣∣∣∣ > can

}
= −c2

2
.

This implies that

αn = exp

(
−c2a2n

2

)
(1 + o(1))

as n → ∞, i.e., the probability αn of type I error decays to zero exponentially.

4 Numerical Simulation

In this section, we verify the results of Theorem 3 and Theorem 4 by numerical
simulations. The population mean vector is the p-variate zero vector 0p, and the
population covariance matrix is

� = Iu ⊗ (�0 − �1) + Ju ⊗ �1,

�0 =

⎛
⎜⎜⎜⎝

1 ω · · · ωp−1

ω 2 · · · ωp−2

...
...

...

ωp−1 ωp−2 · · · p

⎞
⎟⎟⎟⎠ ≡ �0,un, �1 = O p×p

with ω = 0.8 and u = 4, i.e., this assumes the null hypothesis H0. The number of
simulations is Ns = 100, 000.
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Table 1 Achieved significance
level of test using criteria Tn ,
Ln , and TF (sample size
n = 100, significance level α)

p α = 0.01 α = 0.05 α = 0.10

Tn Ln TF Tn Ln TF Tn Ln TF

10 .015 .010 .010 .058 .048 .050 .111 .098 .100

.006 .010 .031 .048 .076 .098

20 .012 .010 .010 .056 .051 .051 .108 .102 .100

.006 .010 .039 .049 .088 .099

30 .011 .012 .010 .055 .058 .050 .107 .113 .100

.007 .010 .044 .050 .093 .100

40 .012 .018 .010 .055 .077 .050 .107 .142 .100

.008 .011 .046 .051 .097 .102

50 .011 .032 .010 .054 .118 .051 .104 .203 .101

.008 .010 .047 .050 .095 .099

60 .011 .086 .010 .054 .238 .050 .106 .359 .101

.009 .010 .047 .051 .098 .101

70 .012 .292 .010 .053 .540 .051 .104 .671 .101

.009 .010 .047 .050 .097 .101

80 .010 .807 .010 .052 .932 .051 .103 .966 .100

.011 .009 .053 .050 .103 .099

90 .011 1.00 .010 .053 1.00 .051 .105 1.00 .100

.013 .010 .054 .050 .103 .101

98 .015 1.00 .010 .059 1.00 .050 .113 1.00 .099

.016 .010 .054 .050 .102 .100

The results of the F-test by Fonseca et al. [5] are also presented here for comparison.
We can perform the F test using the criterion

TF =
v′
{
�̂0 + (u − 1)�̂1

}
v

v′
(
�̂0 − �̂1

)
v

where v �= 0, is distributed as an F distribution with (n − 1, (n − 1)(u − 1)) degrees
of freedom. Similar to Fonseca et. al. [5], we also simulate using v = 1p.

Table 1shows the achieved significance level of the test using criteria Tn = (log Vn−
μn)/σn , Ln = −2ρ log�, and TF when the significance level α is set to 0.01, 0.05,
and 0.10, respectively. For the criterion Tn , we show the achieved significance level,
which is the probability that |Tn| is greater than the critical point z0 = 1.95996 of the
standard normal distribution. For the criterion Ln the achieved significance level is the
probability of taking a value greater than the critical point χ2

0.05( f ) of the Chi-square
distribution with degrees of freedom f = p(p + 1)/2, and the achieved significance
level for the criterion TF is similar. The sample size n is fixed at 100 and the dimension
p is varied from 10 to 90 in increments of 10. In order to examine the behavior of Tn
near the boundary of condition p < n − 1, we also simulated p = 98.
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According to Filipiak et al. [4], the exact distribution of the criterion� can be calcu-
lated by using the characteristic function and R package CharFunToolR developed
in Gajdoš [6].We show the achieved significance level using the exact percentile in the
bottom row of Tn and Ln . But since the exact percentile cannot be obtained using R
package when p = 80, 90 and 98, we use the percentiles by 100,000 times simulation.

It is well known that the LR criterion Ln converges quickly to the Chi-square
distribution in a large sample, but we can see that the convergence becomes worse
as the dimension p increases. In contrast, the criterion Tn converges to the standard
normal distribution slower than the criterion Ln in a large sample with low dimension,
but the overall convergence of the standard normal distribution is good. However, the
approximation becomes slightly worse when it is closer to the boundary of condition
p < n − 1. As both the dimension p and the sample size n are closer and larger, the
approximation is expected to become worse. Since the F-test is valid under normality,
the exact significance level can be obtained regardless of the size of the dimension.

Figure1represents a histogram of criteria Ln and Tn when n = 100, u = 4 and
p is varied with 10, 30, 60, and 90. Figure (a) to Figure (d) are histograms for Ln ,
and Figure (e) to Figure (h) are histograms for Tn . The red lines from (a) to (d) in
Fig. 1 are the curves of the probability density function of the Chi-square distribution
with p(p + 1)/2 degrees of freedom, and the red lines from (e) to (h) are the curves
of the probability density function of the standard normal distribution. The histogram
of criteria Ln , the curves deviate from each other when dimension p increases. In
contrast, when p = 10, the histogram of Tn deviates slightly from the red line, but
when p = 30 or more, the histogram of Tn coincides with the red line. Although the
figure is not shown, the shape of the histogram is almost the same as this figure, even
if we exchange u = 4 for u = 2 and u = 3.

We continue to examine the power of the test, using criteria Tn and TF in the range
where the LR criterion is not effective.We assume the following compound symmetric
matrix �0,cs and the following Toeplitz matrix �0,to for the covariance matrix �0:

�0,cs = 4I p + 0.8
(
J p − I p

)
, �0,to =

⎛
⎜⎜⎜⎝

5 ω · · · ωp−1

ω 5 · · · ωp−2

...
...

...

ωp−1 ωp−2 · · · 5

⎞
⎟⎟⎟⎠ ,

withω = 0.8. As the alternative hypothesis, the covariancematrix�1 is set as follows:

�1,1 = k

⎛
⎜⎜⎜⎜⎜⎝

0.2 0.1 · · · 0 0
0.1 0.2 · · · 0 0
...

...
. . .

...
...

0 0 0.2 0.1
0 0 · · · 0.1 0.2

⎞
⎟⎟⎟⎟⎟⎠

, �1,2 = k

p

⎛
⎜⎜⎜⎜⎜⎝

0.2p 0.1 · · · 0.1 0.1
0.1 0.2p · · · 0.1 0.1
...

...
. . .

...
...

0.1 0.1 0.2p 0.1
0.1 0.1 · · · 0.1 0.2p

⎞
⎟⎟⎟⎟⎟⎠

.

The value k was varied in the range such that � is a positive-definite matrix and we
also represent the power of test using Ln only when p = 10. The solid line, the thick
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(c) p = 90
Fig. 2 Proximity of P(x) and Q(x) for x ∈ [0, 1] (n = 100, u = 4)

dashed line, and the dashed line represent the power of the test using criteria TF , Tn ,
and Ln , respectively (Fig. 2).

All simulation results are represented from Figs. 3, 4, 5and 6. In all simulations,
the power of the test in the range of small values of k was smaller when the dimension
was larger. Testing hypothesis using Tn or Ln had approximately the same power for
p = 10.

Figures3 and 4 represent the power of the test for H1:�0 = �0,cs , �1 = �1,1 and
H1:�0 = �0,cs , �1 = �1,2, respectively. In these cases, the power of test using Tn
was largest and the power of the test using TF did not increase.

Figures5 and 6 represent the power of the test for H1:�0 = �0,to, �1 = �1,1
and H1:�0 = �0,to, �1 = �1,2, respectively. In these cases, the power of test using
TF was largest when the alternative hypothesis was close to the null hypothesis, i.e.,
until k = ±1.0. When the alternative hypotheses were further apart than k = ±1.0,
the power of the test using Tn was largest and the increase in the power of the test
using TF was gradual. The simulation result is not represented, but there was a similar
tendency in the case of �0 = �0,un .

Next, we investigate the moderate deviation result in Theorem 4. We choose an =√
n and define

P(x) = 1

Ns
#
{
|log V (k)

n − μn| ≥ anσnx; k = 1, . . . , N
}

,

Q(x) = exp

(
−a2n

2
x2
)
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for all x > 0, where N is the number of simulations, i.e., a hundred thousand, and
V (k)
n (k = 1, . . . , N ) is the sample value of the LR criterion in the k-th independent

simulation. Figure2 represents the curve of P(x) and Q(x), where the blue dashed
line is P(x) and the red solid line is Q(x). These two lines are always close and both
lines are rapidly approaching zero. This confirms the MDP result in Theorem 4.

5 Conclusions

In this study, using the asymptotic expansion of the gamma function by Stirling’s
formula, we derived the limiting distributions of the LR criterion in high dimensions
and the moderate deviation principle of the LR criterion. Numerical simulations show
that the probability of the type I errors in the test using Tn is stable even when the
dimension is low and the sample size is moderate. Hypothesis testing using Tn is
recommended except when the dimension p is low and the sample size n is large, and
when the dimension p is very high and very close to the sample size n.

The subject for future studies will also be the hypothesis testing method for high-
dimensional samples in the case of limn→∞ p/n > 1 and hypothesis testing under
non-normality.

6 Proof of Theorem

In this section, we show the proofs of Theorem 3 and Theorem 4.

6.1 Proof of Theorem 3

Initially, we introduce the lemma needed to obtain the expansion of the logarithmic
moment generating function.

Lemma 1 (Lemma 5.4 in Jiang and Yang [8]) Let n > p = pn and rn = [− log{1 −
p/n}]1/2. Assume p/n → y ∈ (0, 1] and s = sn = O(1/rn) and t = tn = O(1/rn)
as n → ∞. Then, we have

log
�p[n/2 + t]
�p[n/2 + s] = p(t − s)(log n − 1 − log 2)

+ r2n

[
(t2 − s2) −

(
p − n + 1

2

)
(t − s)

]
+ o(1) (8)

as n → ∞.

To prove (log Vn − μ)/σn
d→ N (0, 1), we need to show that there exits δ0 > 0 such

that

E

[
exp

{
log Vn − μ

σn
s

}]
→ es

2/2 (9)

123



33 Page 16 of 26 Journal of Statistical Theory and Practice (2023) 17 :33

(a
)
p
=

10
(b
)
p
=

50
(c
)
p
=

90
Fi
g.
6

Po
w
er

of
te
st
us
in
g
cr
ite
ri
a
T n

,L
n
,a
nd

T
F
(
H
1

:�
0

=
�
0,
to

,
�
1

=
�
1,
2
,s
am

pl
e
si
ze

n
=

10
0,

si
gn
ifi
ca
nc
e
le
ve
lα

=
0.
05

)

123



Journal of Statistical Theory and Practice (2023) 17 :33 Page 17 of 26 33

as n → ∞ for all |s|< δ0.
Under the assumption, we have

σ 2
n → u2

2
log

(
1 − y

u

)
− (u − 1)2

2
log

(
1 − y

u − 1

)
− 1

2
log (1 − y)

as n → ∞ for y ∈ (0, 1), σ 2
n → ∞ as n → ∞ for y = 1. Therefore, we know that

δ0 := inf{σn : n ≥ 3} > 0 is well defined. Fix |s|< δ0/2 and set t = tn = s/σn .
Then, {tn : n ≥ 3} is bounded and |tn|< 1/2 for all n ≥ 3. From the moment result
(5), we have

E
[
et log Vn

]
= E

[
V t
n

]

= (nu)upt/2

{n(u − 1)}(u−1)pt/2n pt/2

�p

[
(n−1)(u−1)

2 + (u−1)t
2

]

�p

[
(n−1)(u−1)

2

]

× �p
[ n−1

2 + t
2

]

�p
[ n−1

2

] ·
�p

[
(n−1)u

2

]

�p

[
(n−1)u

2 + ut
2

] (10)

for all n ≥ 3. Let r2p,n,u = − log{1 − p/(nu)}. Notice

1

4
t2r2p,n−1,1

= s2

4σ 2
n

·
{
− log

(
1 − p

n − 1

)}

→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s2

2
· log(1 − y)

−u2 log
(
1 − y

u

) + (u − 1)2 log
(
1 − y

u−1

)
+ log (1 − y)

y ∈ (0, 1),

s2

2
y = 1

as n → ∞. Thus, we have t = O(1/rp,n−1,1) as n → ∞. Similarly, t =
O(1/rp,n−1,u) and t = O(1/rp,n−1,u−1) can be also obtained. Using Lemma 1, we
have

log
�p

[ 1
2 (n − 1)u

]

�p
[ 1
2 (n − 1)u + 1

2ut
]

= −1

2
utp

[
log{(n − 1)u} − 1 − log 2

]

+ r2p,n−1,u

[
−1

4
u2t2 + 1

2
ut

{
p − (n − 1)u + 1

2

}]
+ o(1), (11)
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log
�p

[ 1
2 (n − 1)(u − 1) + 1

2 (u − 1)t
]

�p
[ 1
2 (n − 1)(u − 1)

]

= 1

2
(u − 1)tp

[
log{(n − 1)(u − 1)} − 1 − log 2

]

+ r2p,n−1,u−1

[
1

4
(u − 1)2t2 − 1

2
(u − 1)t

{
p − (n − 1)(u − 1) + 1

2

}]
+ o(1),

(12)

log
�p

[ 1
2 (n − 1) + 1

2 t
]

�p
[ 1
2 (n − 1)

]

= 1

2
tp

[
log(n − 1) − 1 − log 2

]

+ r2p,n−1,1

[
1

4
t2 − 1

2
t

{
p − (n − 1) + 1

2

}]
+ o(1). (13)

From the expansions (11), (12), and (13), the log moment generating function of the
criterion Vn is as follows:

log E
[
et log Vn

]
= 1

2
utr2p,n−1,u

{
p − (n − 1)u + 1

2

}

− 1

2
(u − 1)tr2p,n−1,u−1

{
p − (n − 1)(u − 1) + 1

2

}

− 1

2
tr2p,n−1,1

{
p − (n − 1) + 1

2

}

+ 1

4
t2
{
(u − 1)2r2p,n−1,u−1 + r2p,n−1,1 − u2r2p,n−1,u

}
+ o(1).

Let

μn = 1

2

[
ur2p,n−1,u

{
p − (n − 1)u + 1

2

}

− (u − 1)r2p,n−1,u−1

{
p − (n − 1)(u − 1) + 1

2

}

−r2p,n−1,1

{
p − (n − 1) + 1

2

}]
,

σ 2
n = 1

2

[
u2 log

{
1 − p

(n − 1)u

}

−(u − 1)2 log

{
1 − p

(n − 1)(u − 1)

}
− log

(
1 − p

n − 1

)]
.
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Then, we have

log E
[
et log Vn

]
= μnt + 1

2
σ 2
n t

2 + o(1), (14)

i.e., this implies (9). The proof of Theorem 3 is complete.

6.2 Proof of Theorem 4

First, we show three lemmas used in the proof.

Lemma 2 (Lemma 4.2 in Jiang andWang [7]) Let λn, n ≥ 1, be a sequence of positive
numbers satisfying

λn → ∞,
λn

n
→ 0, n → ∞.

Assume that

p → ∞,
p

n
→ y ∈ (0, 1], n → ∞.

Then, for any a ∈ R, as n → ∞, we have

log
�p [n + aλn]

�p[n] =
p∑

i=1

{
log

(
n − i − 1

2

)
− 1

2 {n − (i − 1)/2}
}

λna

+
p∑

i=1

1

2n + 1 − i
λ2na

2 + max
{
O(1/n), O(λ3n/n

2)
}

,

where the function �p[z] is defined as

�p[z] = π p(p−1)/2
p∏

i=1

�

[
z − i − 1

2

]
.

Lemma 3 For any positive integer p with n > p and n > 1, we have

1 − p − (n − p + 1) log

(
1 − p − 1

n

)
≤

p∑
i=1

log

(
1 − i − 1

n

)

≤ 1 − p + (n − 1) log

(
1 − 1

n

)
− (n − p) log

(
1 − p

n

)
.

Proof From the idea of a Riemann sum, we have

∫ p−1

0
log

(
1 − x

n

)
dx ≤

p∑
i=1

log

(
1 − i − 1

n

)
≤
∫ p

1
log

(
1 − x

n

)
dx .
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From

∫ p−1

0
log

(
1 − x

n

)
dx = 1 − p − (n − p + 1) log

(
1 − p − 1

n

)
,

∫ p

1
log

(
1 − x

n

)
dx = 1 − p + (n − 1) log

(
1 − 1

n

)
− (n − p) log

(
1 − p

n

)
,

Lemma 3 is obtained. ��

Lemma 4 Let p, n, and u be positive integers with n ≥ p and u ≥ 2. Assume that
p/n → y ∈ (0, 1) as n → ∞, Then, we have

(1) lim
n→∞

p∑
i=1

u

2(n − 1)u − 2(i − 1)
= −u

2
log

(
1 − y

u

)
,

(2) lim
n→∞

p∑
i=1

u − 1

2(n − 1)(u − 1) − 2(i − 1)
= −u − 1

2
log

(
1 − y

u − 1

)
,

(3) lim
n→∞

p∑
i=1

1

2(n − i)
= −1

2
log (1 − y) .

Proof

(1)
p∑

i=1

u

2(n − 1)u − 2(i − 1)
= u

2
· 1
n

p∑
i=1

1

u − u
n − i−1

n

→ u

2

∫ y

0

dx

u − x
= −u

2
log

(
1 − y

u

)
.

(2)
p∑

i=1

u − 1

2(n − 1)(u − 1) − 2(i − 1)
= u − 1

2
· 1
n

p∑
i=1

1

(u − 1) − u−1
n − i−1

n

→ u − 1

2

∫ y

0

dx

(u − 1) − x
= −u − 1

2
log

(
1 − y

u − 1

)
.

(3)
p∑

i=1

1

2(n − i)
= 1

2
· 1
n

p∑
i=1

1

1 − 1
n − i−1

n

→ 1

2

∫ y

0

dx

1 − x
= −1

2
log (1 − y) .

��

According to the Gärtner-Ellis theorem (see Section 2.3 in Dembo and Zeitouni
[3]), we only need to show that

lim
n→∞ �n(λ) = lim

n→∞
1

a2n
log E

[
exp

(
λan

log Vn − μn

σn

)]
= λ2

2
(15)
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for any fixed λ ∈ R. We consider the following two cases. Case 1: The case that
p/n → y = 1 as n → ∞. In this case, since

σ 2
n ∼ n2

2

[
−(u − 1)2 log

(
1 − y

u − 1

)
− log(1 − y) + u2 log

(
1 − y

u

)]
→ ∞,

we have

λan
σn

→ 0 as n → ∞

for any sequence {an} satisfying the assumption of the theorem. Therefore, from
Theorem 3, we have

�n(λ) = 1

a2n
log E

[
V λan/σn
n

]
− λμn

anσn

= 1

a2n

[
μn · λan

σn
+ 1

2
σ 2
n

(
λan
σn

)2

+ o(1)

]
− λμn

anσn

= λ2

2
+ o(1),

this implies (15).
Case 2: The case for which p/n → y ∈ (0, 1) as n → ∞. In this case, we have

lim
n→∞ σ 2

n = 1

2

[
−(u − 1)2 log

(
1 − y

u − 1

)
− log(1 − y) + u2 log

(
1 − y

u

)]
> 0,

and this implies that the variance σ 2
n is uniformly bounded. We have |λanσ−1

n | → ∞
as n → ∞. Therefore, the proof of Theorem 3 cannot be used, and so we need a more
detailed analysis.

For convenience, let λn = λanσ−1
n . From the assumption, an � n and |λn| � n.

This means that we can use the result (5) to compute the moments of Vn . From the
result (5), we have

log E[V λn
n ] = 1

2
upλn log(nu) − 1

2
(u − 1)pλn log{n(u − 1)}

− 1

2
pλn log n + log

�p
[ 1
2 (n − 1)(u − 1) + 1

2 (u − 1)λn
]

�p
[ 1
2 (n − 1)(u − 1)

]

− log
�p

[ 1
2 (n − 1)u + 1

2uλn
]

�p
[ 1
2 (n − 1)u

] + log
�p

[ 1
2 (n − 1) + 1

2λn
]

�p
[ 1
2 (n − 1)

] .
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To analyze the logarithm of the multivariate gamma function in more detail, using
Lemma 2, we have the following expansions:

log
�p

[ 1
2 (n − 1)u + 1

2uλn
]

�p
[ 1
2 (n − 1)u

] = 1

2
uλn

p∑
i=1

log {(n − 1)u − (i − 1)}

+ 1

2
uλn p log

(
1

2

)
− λn

p∑
i=1

u

2(n − 1)u − 2(i − 1)

+ λ2n

p∑
i=1

u2

4(n − 1)u − 4(i − 1)
+ max

{
O(1/n), O(λ3n/n

2)
}

,

log
�p

[ 1
2 (n − 1)(u − 1) + 1

2 (u − 1)λn
]

�p
[ 1
2 (n − 1)(u − 1)

]

= u − 1

2
λn

p∑
i=1

log {(n − 1)(u − 1) − (i − 1)} + u − 1

2
λn p log

(
1

2

)

− λn

p∑
i=1

u − 1

2(n − 1)(u − 1) − 2(i − 1)
+ λ2n

p∑
i=1

(u − 1)2

4(n − 1)(u − 1) − 4(i − 1)

+ max
{
O(1/n), O(λ3n/n

2)
}

,

log
�p

[ 1
2 (n − 1) + 1

2λn
]

�p
[ 1
2 (n − 1)

] = 1

2
λn

p∑
i=1

log {(n − 1) − (i − 1)}

+ 1

2
λn p log

(
1

2

)
− λn

p∑
i=1

1

2(n − 1) − 2(i − 1)

+ λ2n

p∑
i=1

1

4(n − 1) − 4(i − 1)
+ max

{
O(1/n), O(λ3n/n

2)
}

.

Then, we obtain the following expansion:

log E[V λn
n ] = −u

2
λn

p∑
i=1

log

{
1 − i − 1

(n − 1)u

}
+ λn

p∑
i=1

u

2(n − 1)u − 2(i − 1)

+ u − 1

2
λn

p∑
i=1

log

{
1 − i − 1

(n − 1)(u − 1)

}

− λn

p∑
i=1

u − 1

2(n − 1)(u − 1) − 2(i − 1)
+ 1

2
λn

p∑
i=1

log

(
1 − i − 1

n − 1

)

− λn

p∑
i=1

1

2(n − 1) − 2(i − 1)
− λ2n

p∑
i=1

u2

4(n − 1)u − 4(i − 1)
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+ λ2n

p∑
i=1

(u − 1)2

4(n − 1)(u − 1) − 4(i − 1)
+ λ2n

p∑
i=1

1

4(n − 1) − 4(i − 1)

+ max
{
O(1/n), O(λ3n/n

2)
}

. (16)

So, we represent this expansion as follows.

log E[V λn
n ] = λn (A1 + A2) + λ2n A3 + max

{
O(1/n), O(λ3n/n

2)
}

, (17)

where

A1 = −u

2

p∑
i=1

log

{
1 − i − 1

(n − 1)u

}

+ u − 1

2

p∑
i=1

log

{
1 − i − 1

(n − 1)(u − 1)

}
+ 1

2

p∑
i=1

log

{
1 − i − 1

n − 1

}
,

A2 =
p∑

i=1

u

2(n − 1)u − 2(i − 1)

−
p∑

i=1

u − 1

2(n − 1)(u − 1) − 2(i − 1)
−

p∑
i=1

1

2(n − 1) − 2(i − 1)
,

A3 = −
p∑

i=1

u2

4(n − 1)u − 4(i − 1)

+
p∑

i=1

(u − 1)2

4(n − 1)(u − 1) − 4(i − 1)
+

p∑
i=1

1

4(n − 1) − 4(i − 1)
.

From Lemma 3, we have the following three inequalities:

(1) 1 − p − {(n − 1)u − p + 1} log
{
1 − p − 1

(n − 1)u

}
≤

p∑
i=1

log

{
1 − i − 1

(n − 1)u

}

≤ 1 − p + {(n − 1)u − 1} log
{
1 − 1

(n − 1)u

}

− {(n − 1)u − p} log
{
1 − p

(n − 1)u

}
,

(2)1 − p − {(n − 1)(u − 1) − p + 1} log
{
1 − p − 1

(n − 1)(u − 1)

}

≤
p∑

i=1

log

{
1 − i − 1

(n − 1)(u − 1)

}

≤ 1 − p + {(n − 1)(u − 1) − 1} log
{
1 − 1

(n − 1)(u − 1)

}
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− {(n − 1)(u − 1) − p} log
{
1 − p

(n − 1)(u − 1)

}
,

(3) 1 − p − (n − p) log

(
1 − p − 1

n − 1

)
≤

p∑
i=1

log

(
1 − i − 1

n − 1

)

≤ 1 − p + (n − 2) log

(
1 − 1

n − 1

)
− (n − p − 1) log

(
1 − p

n − 1

)
. (18)

From these inequalities, we obtain

A1 − μn ≥ −u

2

[
1 − p + {(n − 1)u − 1} log

{
1 − 1

(n − 1)u

}

−{(n − 1)u − p} log
{
1 − p

(n − 1)u

}]
+ u − 1

2

[
1 − p

−{(n − 1)(u − 1) − p + 1} log
{
1 − p − 1

(n − 1)(u − 1)

}]

+ 1

2

{
1 − p − (n − p) log

(
1 − p − 1

n − 1

)}

− 1

2
u

{
(n − 1)u − p − 1

2

}
log

{
1 − p

(n − 1)u

}

+ 1

2
(u − 1)

{
(n − 1)(u − 1) − p − 1

2

}
log

{
1 − p

(n − 1)(u − 1)

}

+ 1

2

{
(n − 1) − p − 1

2

}
log

(
1 − p

n − 1

)
≡ B1,

A1 − μn ≤ −u

2

[
1 − p − {(n − 1)u − p + 1} log

{
1 − p − 1

(n − 1)u

}]

+ u − 1

2

[
1 − p + {(n − 1)(u − 1) − 1} log

{
1 − 1

(n − 1)(u − 1)

}

−{(n − 1)(u − 1) − p} log
{
1 − p

(n − 1)(u − 1)

}]

+ 1

2

{
1 − p + (n − 2) log

(
1 − 1

n − 1

)

− (n − p − 1) log

(
1 − p

n − 1

)}

− 1

2
u

{
(n − 1)u − p − 1

2

}
log

{
1 − p

(n − 1)u

}

+ 1

2
(u − 1)

{
(n − 1)(u − 1) − p − 1

2

}
log

{
1 − p

(n − 1)(u − 1)

}

+ 1

2

{
(n − 1) − p − 1

2

}
log

(
1 − p

n − 1

)
≡ B2,
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and

lim
n→∞ B1 = u

4
log

(
1 − y

u

)
− 3(u − 1)

4
log

(
1 − y

u − 1

)
− 3

4
log (1 − y) ,

lim
n→∞ B2 = 3u

4
log

(
1 − y

u

)
− u − 1

4
log

(
1 − y

u − 1

)
− 1

4
log (1 − y) .

Therefore, limn→∞(A1 − μn) is bounded. From Lemma 4, we have

lim
n→∞ A2 = −u

2
log

(
1 − y

u

)
+ u − 1

2
log

(
1 − y

u − 1

)
+ 1

2
log (1 − y) , (19)

lim
n→∞ A3 = u2

4
log

(
1 − y

u

)
− (u − 1)2

4
log

(
1 − y

u − 1

)
− 1

4
log (1 − y) . (20)

We can see that

λn

a2n
(A1 + A2 − μn) = o(1).

It follows by (20) and the fact limn→∞(A3/σ
2
n ) = 1/2 that

�n(λ) = λ2n

a2n
A3 + o(1) = λ2

σ 2
n
A3 + o(1).

Then, we can reach (15). The proof of Theorem 4 is completed.
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9. Jurečková J, KallenbergW,VeraverbekeN (1988)Moderate andCramér- type large deviation theorems

for M-estimators. Stat Probabil Lett 6(3):191–199
10. Liang Y, Coelho CA, von Rosen T (2021) Hypothesis testing in multivariate normal models with block

circular covariance structures. Biometrical J 64(3):557–576
11. Leiva R (2007) Linear discrimination with equicorrelated training vectors. J Multivariate Anal

98(2):384–409
12. Muirhead RJ (2005) Aspects of multivariate statistical theory. Wiley-Interscience, Hoboken, N.J.

123

https://doi.org/10.1007/s00362-022-01335-7
https://github.com/gajdosandrej/CharFunToolR
https://github.com/gajdosandrej/CharFunToolR


33 Page 26 of 26 Journal of Statistical Theory and Practice (2023) 17 :33

13. Roy A, Leiva R, Žežula I, Klein D (2015) Testing the equality of mean vectors for paired doubly
multivariate observations in blocked compound symmetric covariance matrix setup. J Multivariate
Anal 137:50–60
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