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Abstract
Weconsider the problemof finding, through adaptive sampling,which of n populations
(arms) has the largest mean. Our objective is to determine a rule which identifies the
best arm with a fixed minimum confidence using as few observations as possible. We
study such problems when the population distributions are either Bernoulli or normal.
We take a Bayesian approach that assumes that the unknown means are the values of
independent random variables having a common specified distribution. We propose to
use the classical vector at a time rule, which samples each remaining arm once in each
round, eliminating arms whose cumulative sum falls k below that of another arm. We
show how this rule can be implemented and analyzed in our Bayesian setting and how
it can be improved by early elimination. We also propose and analyze a variant of the
classical play the winner algorithm. Numerical results show that these rules perform
quite well, even when considering cases where the set of means do not look like they
come from the specified prior.

Keywords Best arm identification · Vector at a time · Bayesian format

1 Introduction

Let Fθ (x) be a family of distributions indexed by its mean θ. Suppose there are n
populations, and that each new observation from population i is independent of all
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previous observations and is the value of a randomvariablewith distribution Fθi ,where
θ1, . . . , θn are unknown. Furthermore, suppose that our objective is to decide which
population has the largestmean. It is supposed that a decision ismade at each stage as to
which population to next take an observation from,with the decisionmade according to
some rule which eventually calls for stopping and declaring which population has the
largest mean. Our objective is to determine a rule that makes a decision in a relatively
small expected time, subject to the condition that its probability of making a correct
choice is at least α. We will study such models both when the population distributions
are Bernoulli and when they are normal with a fixed variance. In the Bernoulli case,
we suppose that the result of an observation is either a success or a failure, and the
objective is to find the population having the largest success probability.

These type ofmodels havemany applications. Foremost is probably in clinical trials
to determine which of several medical approaches (e.g., drugs, treatments, and proce-
dures) yields the best results. Here, a population would refer to a particular approach,
with its use resulting in either a success (suitably defined) or not. Another application
is to online advertising, where a decision maker is trying to decide which of n dif-
ferent advertisements to utilize. For instance, the advertisements might relate to army
recruitment, and a success might refer to a subsequent clicking on the advertisement
to obtain additional information. Another application is to choose among different
methods for teaching a particular skill. Each day, a method can be used on a group of
students, with the students being tested at the end of the day with each test resulting
in a score which would be pass (1) or fail (0) in the Bernoulli case, and numerical in
the normal case.

It should be noted that these problems have been studied for quite some time.
However, the early work, such as in [3, 4, 8, 9, 11, 15, 16], was done under the
assumption that the difference between the largest and second largest population mean
was at least some known positive value. More recent work, such as [1, 5–7, 10, 13],
does not make this assumption. What primarily distinguishes our models from others
considered in the literature is that we take a Bayesian approach that supposes the
unknown means are the respective values of independent and identically distributed
(iid) random variables having a specified prior distribution F . Moreover, we present
numerical evidence that the rules obtained when we assume that F is the uniform
(0, 1) distribution tend to perform well for most sets of success probabilities.

In Sect. 2, we consider the Bernoulli case where we want to find rules whose
implementation results in a relatively small expected number of observations needed
before a decision ismade, subject to the condition that the rule results in the probability
of a correct choice being at least some specified value α. We reconsider the classical
“vector at a time" (VT) rule, which is such that each alive population is sampled
once in each round. At the end of a round, any population whose cumulative number
of successes is k less than another is no longer alive. The process ends when only
one population is alive. The appropriate value of k that results in the probability of a
correct choice being at least α was determined in [15] and [16] under the assumption
that the difference between the largest and second largest population mean is at least
some specified positive value d > 0. We show, in this section, how this rule can be
implemented and analyzed in our Bayesian setting. In particular, we present a lower
bound as well as an accurate approximation for the probability that VT using critical
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value kmakes the correct decision, aswell as an approximation for themean number of
observations it takes. These bounds and approximations can be evaluated by a simple
simulation, with each simulation run requiring either 2 or 3 random numbers. We also
present some numerical evidence, indicating that the version of this rule that results
when we assume a uniform (0, 1) prior appears to outperform more recently proposed
rules, even when the means do not come from the uniform prior.

In Sect. 3, we consider improving the VT rule by allowing for early elimination
if a population is j behind another after j rounds. (That is, if one population has
had 0 successes and another j successes in their first j observations, then the former
is no longer alive.) We show how to determine the probability that the population
with largest mean is eliminated early, as well as the mean number of the non-best
populations that are eliminated early.

In Sect. 4, we consider another classical rule: “play the winner" (PW). Our variant
of the PW rule is such that in all but the final round each alive population is continually
sampled until it has a failure, where a population is no longer alive if after a round its
cumulative number of successes is at least k smaller than that of some other arm. This
variant differs from the classical model of [15] which declared a population dead if
at some point—not necessarily at the end of a round—it has k fewer successes than
another population. We show how to analyze this rule in the Bayesian setting.

In Sect. 5, we consider the case of normal populations, where population distribu-
tions are all normal distributions with some fixed variance σ 2, and where the standard
normal is the prior distribution on the means. Among other things, by using that a nor-
mal conditioned to be positive has an increasing failure rate, we improve upon known
bounds for the probability that a random walk of normal random variables reaches a
before falling as low as −b for given positive numbers a, b.

Section 6 gives the paper’s conclusions.

2 The Vector at a Time Rule in the Bernoulli Case

Suppose there are n Bernoulli populations with respective means p1, . . . , pn , and
that at each stage we are allowed to make an observation from a population of our
choice, stopping these observations at some point and making a decision as to which
population has the largest mean. As noted earlier, we suppose that p1, . . . , pn are the
respective values of iid random variables having a specified distribution F . Subject to
the constraint that the policy used results in the probability of a correct choice being
at least α, the objective is to choose a policy whose mean number of observations is
relatively small.

Definition The vector at a time (VT) rule, introduced in [3], is defined as follows.
For a given positive integer k, depending on the desired accuracy α, the policy is as
follows.

• Initially, all populations are alive
• A round consists of a single observation from each alive population.
• At the end of a round, a population is no longer alive if its cumulative number of
successes is k less than that of another population.
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• If only one population is alive, stop and declare it best. Otherwise, perform a new
round.

Let p[1] > p[2] > . . . > p[n] be the ordered values of the unknownmeans p1, . . . , pn,
and let C be the event that the correct choice is made. Under the assumption that there
is a known positive value d such that p[1] − p[2] > d, it was shown in [15] how to
determine k so that P(C) ≥ α. We now show how this can be done when p1, . . . , pn
are the values of independent and identically distributed random variables having
distribution F .

Notation:We use the notation I {A} to be the indicator of the event A, equal to 1 if A
occurs and to 0 otherwise. Also, we use the notation X =st Y to indicate that X and
Y have the same distribution.

Lemma 1 Let X1, . . . , Xn be independent and identically distributed random vari-
ables having distribution F, and let U ,U1, . . . ,Un be independent uniform (0, 1)
random variables. Then,

max
i

Xi =st F
−1(U 1/n)

Proof

max
i

Xi =st max(F−1(U1), . . . , F
−1(Un))

= F−1( max
i=1,...,n

Ui )

=st F
−1(U 1/n)

Wenow showhow to bound P(C), the probability that the correct population is chosen.
To begin, suppose that in each round we take an observation from each population,
even those that may be dead. Let 0 be the best population, namely the one with largest
mean, and randomly number the others as population 1, . . . , n − 1. Imagine that the
best population is playing a “gambler’s ruin game" with each of the others, with the
best one beating population i if the difference of the cumulative number of wins of the
best to that of i hits the value k before −k. Let Bi be the event that the best population
beats i, i = 1, . . . , n − 1, and note that the best population will be chosen if it wins
all of its games. That is, if we let B ≡ B1B2 · · · Bn−1, then B ⊂ C, giving that

P(C) ≥ P(B)

��
Lemma 2 P(B) ≥ (P(B1))

n−1

Proof Let U0,U1, . . . ,Un−1 and Ui, j , i = 0, 1, . . . , n − 1, j ≥ 1 all be indepen-

dent uniform (0, 1) random variables. Let X0 = F−1(U 1/n
0 ), Xi = F−1((1 −

Ui )U
1/n
0 ), i = 1, . . . , n − 1. Using Lemma 1 along with the fact that conditional on
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the maximum, call it M, of n independent uniform (0, 1) random variables, the n − 1
of these uniforms whose values are less than M are distributed as independent uniform
(0, M) random variables, it follows that the joint distribution of X0, X1, . . . , Xn−1 is
exactly that of the mean of the best population, followed by the means of the other
n − 1 populations in a random order.

Let I0, j = I {1 − U0, j < X0}, j ≥ 1, and Ii, j = I {Ui, j < Xi }, i = 1, . . . , n −
1, j ≥ 1. Note that Ii, j has the distribution of the j th observation of population
i, i = 0, . . . , n − 1, j ≥ 1, and also that I0, j is increasing in U0, j whereas Ii, j is
decreasing in Ui, j , i ≥ 1. Because Xi is decreasing in Ui for i > 0, it consequently
follows that, conditional on U0, the indicator variables I {B1}, . . . , I {Bn−1} are all
increasing functions of the independent random variables U1, . . . ,Un−1,Ui, j , i =
0, . . . , n − 1, j ≥ 1. Consequently, given U0, the indicators I {B1}, . . . I {Bn−1} are
associated, implying that

P(B|U0) ≥
n−1∏

i=1

P(Bi |U0)

which, by symmetry gives

P(B|U0) ≥ (P(B1|U0))
n−1.

Taking expectations gives

P(B) ≥ E[(P(B1|P0))n−1]
≥ (E[P(B1|P0)])n−1

= (P(B1))
n−1

where the last inequality follows from Jensen’s inequality. ��

To obtain an upper bound on P(B), let B∗ be the event that the population with
largest mean wins its gambler’s ruin game against the population with the second
largest mean. Because B ⊂ B∗, we have

Lemma 3 P(B) ≤ P(B∗)

Remark It is possible for the best arm to be chosen even if it does not win all its
games. Indeed, this will happen if the best arm loses to an arm that at an earlier time
had become dead. However, it is intuitive that this event has a very small probability
of occurrence. Consequently, P(C) ≈ P(B).

To compute P(B1) and P(B∗), we will use simulation with a conditional expectation
estimator. To begin, note that if populations with known probabilities x and y play a
game that ends when one has k more wins than the other, then the probability that the
one with probability x wins is the probability that a gambler, starting with fortune k,
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who wins each game with probability p = x(1−y)
x(1−y)+y(1−x) will reach a fortune of 2k

before 0. But, with

r ≡ 1 − p

p
= y(1 − x)

x(1 − y)

this gambler’s ruin probability is

P(x wins) = 1 − rk

1 − r2k
= 1

1 + rk
(1)

Also, using known results from the gambler’s ruin problem alongwithWald’s equation
(to account for the fact that not every round leads to a gain or a loss) it follows that
the mean number of plays is

E[number of plays] = k(1 − rk)

(rk + 1)(x − y)
(2)

Proposition 1 Let U and V be independent uniform (0, 1) random variables, and let

X = F−1(U 1/n) , Y = F−1(U 1/nV ) , W = F−1(U 1/nV 1/(n−1))

R = Y (1 − X)

X(1 − Y )
, S = W (1 − X)

X(1 − W )

then

P(B1) = E

[
1

1 + Rk

]
, P(B∗) = E

[
1

1 + Sk

]

Proof The result follows from Eq. (1) upon using that the joint distribution of X ,Y is
that of the largest and a random one of the other means, and the joint distribution of
X ,W is that of the largest and second largest means. ��

Letting N be the number of observations, we can approximate E[N ] by approx-
imating the mean number of plays of each of the non-best populations by the mean
number of plays in their game against the best population, and approximating the
mean number of plays of the best population by the mean number of plays in its game
against the second best one. Hence, using Eq. (2) we see that

E[N ] ≈ A ≡ (n − 1)E

[
k(1 − Rk)

(Rk + 1)(X − Y )

]
+ E

[
k(1 − Sk)

(Sk + 1)(X − W )

]
(3)

Using Proposition 1 and Eq. (3) enables us to efficiently estimate P(B1), P(B∗),
and A by a simulation. Indeed, a simulation of 1, 000, 000 runs, yielded that when
n = 10 and F(x) = x, 0 ≤ x ≤ 1, the value k = 50 resulted in the estimates
P(B1)

n−1 = .9885, P(B∗) = .9889, and that A ≈ 5460.4, with an estimate of the
standard deviation of the estimator of A being 26.7. Thus, .9885 < P(B) < .9889,
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Table 1 Algorithm comparison Case TS1 TS2 CR KL1 KL2

1 3968 4052 4516 8437 9590

2 1370 1406 3078 2716 3334

and E[N ] ≈ 5460.539.Amuchmore time consuming simulation (the preceding takes
a fraction of a second) consisting of 1,000,000 runs, each run generating a random
variable distributed as N , yielded that P(C) ≈ 0.9886, E[N ] ≈ 5466.318, with the
standard deviation of the estimate of E[N ] being 17.34.

For another illustration of the utility of the approximations of P(C) and of themean
number of observations, suppose n = 5 and VT with k = 10 is used. A simulation
based on Proposition 1 and Eq. (3) yielded that

0.9523404 < P(B) < 0.9561526, A ≈ 358.398320

with a standard deviation of the estimate of A being 0.8256477. A simulation with
500, 000 runs, with each run generating the value of N , yielded that

P(C) = 0.9540, E[N ] = 358.3993, sd = 1.156

where sd refers to the standard deviation of the estimator of E[N ].
The following example compares the performance of VT with some recently pro-

posed rules (Table 1).

Example 1 Comparison with Recent Literature One might hope that the vector
at a time rule assuming a uniform (0, 1) prior assumption performs well for any
set of probabilities p1, . . . , pn . The following compares its performance with some
recent algorithms—with names such as track and stop, Chernoff racing, andKullback–
Leibler racing (see [5]. [10], and [6]. These algorithms, some of which have some
asymptotic optimality features as the desired accuracy goes to 1, solve optimization
problems to determine which population to next observe (and, consequently, are much
more difficult to implement than is the VT rule). Table 1 is taken from [7]. It gives
the results of 5 of these algorithms for two cases: the first case having n = 4 with
probabilities: (0.5, 0.45, 0.43, 0.4), and the second having n = 5 with probabilities
(0.3, 0.21, 0.20, 0.19, 0.18). The parameters of the algorithms are chosen to guarantee
at least 90 percent accuracy. (TS1 and TS2 refer to two variants of the track and stop
algorithm; CR refers to the Chernoff racing algorithm, and KL1 and KL2 refer to two
variants of the Kullback–Leibler racing algorithm.

Because our algorithm assumes knowledge of a prior distribution, in cases where
there is no reason to assume that we know what the prior is, it seems reasonable to
assume a uniform (0, 1) prior and choose a larger accuracy than is actually desired. So
suppose we do so and require an accuracy, under a uniform (0, 1) prior, of 99 percent.
When n = 4, the vector at a time algorithm assuming a uniform prior requires k = 42,
and when n = 5, if requires k = 47. Simulation, using the probabilities in each case,
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yields that the average number of observations needed in case 1 is 2738 with the
correct decision being made with probability 0.9999; whereas the average number
of observations needed in case 2 is 2372 with the correct decision being made with
probability 0.9999. If we were to be less conservative and only require 97 percent
accuracy when assuming the uniform prior, then the required value of the vector at a
time rule is k = 15 when n = 4 and k = 16 when n = 5. Simulation yields that the
average number of observations needed in case 1 is 905 with the correct decision being
made with probability 0.9999; whereas the average number of observations needed in
case 2 is 832 with the correct decision being made with probability 0.998. Thus, the
vector at a time algorithm significantly outperforms the newer algorithms. (Though
to be fair we should mention that, under the uniform (0, 1) prior, k = 5 is sufficient
when either n = 4 or n = 5 to obtain 90 percent accuracy. Using k = 5 in Case 1
yields that the average number of observations needed is only 166, but the accuracy
is .601. Using k = 5 in Case 2 yields that the average number of observations needed
is 213.2, with accuracy .81.)

Remark The preceding example is very interesting in that it indicates that the vector
at a time algorithm that assumes a uniform (0, 1) prior can significantly outperform
the newer algorithms even in cases where the probabilities are highly unlikely to have
come from this prior. Thus, while we are not claiming that there are not cases where
assuming a uniform prior will lead to a poor result (for instance, for any value of
k chosen, if all the pi are approximately equal, then the VT procedure will yield
P(C) ≈ 1/n,) we do feel that it will typically perform quite well.

Remark on Variance Reduction:
In practice, we observe that the number of plays usingVTmay have a large variance.

In the case where F is the uniform (0, 1) distribution, we can reduce the variance of a
simulation estimator that on each run generates the value of N by using Y = 1

P1(1−P2)
as a control variable, where P1 and P2 are the means of the best and second best arms.
That is, if let T denote the raw estimator, then the new estimator is

T + c(Y − E[Y ])

where the variance is minimized when c = −Cov(T ,Y )

Var(Y )
. To obtain the mean value of

the control variable, we condition on P2,

E

[
1

P1(1 − P2)

]
= E

[
E

[
1

P1(1 − P2)
|P2

]]

= E

[
1

1 − P2
E

[
1

P1
|P2

]]

= E

[− log(P2)

(1 − P2)2

]
because P1|P2 ∼ unif(P2, 1)

= n(n − 1)
∫ 1

0

−xn−2 log(x)

(1 − x)
dx
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≈ n(n − 1)
1

r

r∑

i=1

h

(
i − 0.5

r

)

where r is a large integer, and h(x) = −xn−2 log(x)
(1−x) . The values of Cov(T ,Y ) and

Var(Y ) can be estimated from the simulation, and these can then be used to determine
c. In our numerical examples, we observe that the variance is reduced by between 50
and 60 percent.

3 VT with Early Elimination

Suppose we use VT but with an early elimination possibility in that if an arm is j
behind after the first j rounds (that is, if the arm had all failures in the first j rounds
while another arm had all successes), then that arm is eliminated. To see by howmuch
that can reduce the accuracy of VT, let us compute P(L),where L is the event that the
best arm is eliminated early. Let 0 be the best population, let 1, . . . , n− 1 be the other
populations in random order, and let X0, . . . , Xn−1 be their respective success prob-
abilities. With U ,U1, . . . ,Un−1 being iid uniform (0, 1) random variables, note that
(X0, . . . , Xn−1) =st (F−1(W ), F−1(WU1), . . . , F−1(WUn−1)) where W = U 1/n .

Consequently, with (X0, . . . , Xn−1) = (F−1(W ), F−1(WU1), . . . , F−1(WUn−1)),

we have

P(L) = E

⎡

⎣(1 − X0)
j (1 −

∏

i �=0

(1 − X j
i )

⎤

⎦

Let us now consider the expected number of non-best populations that are eliminated
early. Letting Ik be the indicator or the event that population k is eliminated early, we
have for k ≥ 1

E[Ik] = E

⎡

⎣(1 − Xk)
j (1 − (1 − X j

0)
∏

i �=0,k

(1 − X j
i )

⎤

⎦

Hence, with N∗ being the number of non-best populations that are eliminated early,
we have

E[N∗] = (n − 1)E

[
(1 − X1)

j (1 − (1 − X j
0)

n∏

i=2

(1 − X j
i )

]

P(L) and E[N∗] are easily evaluated by a simulation.
The formulas for P(L) and E[N∗] considerably simplify when F is the uniform

(0, 1) distribution. Let Ni , i = 0, . . . , n−1, be the number of successes of population
i in the first j rounds. Because F−1(x) = x, we obtain when i ≥ 1 that
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P(Ni = j |W ) = E[(UiW ) j |W ] = W j

j + 1

Using that N0, . . . , Nn−1 are conditionally independent givenW , the preceding gives

P(L|W ) = (1 − W ) j

(
1 −

(
1 − W j

j + 1

)n−1)

Taking expectations gives

P(L) = E

[
(1 − W ) j

(
1 −

(
1 − W j

j + 1

)n−1
)]

where W = U 1,n . Let us now consider E[N∗]. Again using that N0, . . . , Nn−1 are
conditionally independent given W , we have

P(N1 = 0, max
i �=1

Ni = j |W ) = P(N1 = 0|W )

⎛

⎝1 −
∏

i �=1

P(Ni �= j |W )

⎞

⎠ (4)

Now,

P(N1 = 0|W ) = E[(1 −U1W ) j |W ]
=

∫ 1

0
(1 − xW ) j dx

= 1 − (1 − W ) j+1

( j + 1)W

Also,

∏

i �=1

P(Ni �= j |W ) = (1 − W j )(E[1 − (U1W ) j |W ])n−2

= (1 − W j )

(
1 − W j

j + 1

)n−2

Hence, Eq. (4) yields

E[N∗] = (n − 1)E

[
1 − (1 − W ) j+1

( j + 1)W

(
1 − (1 − W j )

(
1 − W j

j + 1

)n−2)]

where W = U 1/n .

Thus, when F(x) = x, both P(L) and E[N ] are one-dimensional integrals, easily
evaluated by numerical methods.
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Example 2 The following are the values of P(L), the probability that the best popu-
lation is eliminated early, and E[N∗], the mean number of non-best populations that
are eliminated early, for a variety of values of n and j when F is the Uniform (0, 1)
distribution.

n j P(L) E[N∗]
5 2 .02053 1.317

3 .00336 0.851
4 .00059 0.590
5 .00011 0.432

10 2 .01278 3.234
3 .00201 2.310
4 .00033 1.731
5 .00006 1.343

20 2 .00429 6.659
3 .00053 4.978
4 .00007 3.942
5 .00001 3.229

For the cases considered in the preceding table, for a fixed j the probability that
the best population is eliminated early decreases in the number of populations n.

Intuitively, the reason for this is that although it becomes much more likely that at
least one of the non-best populations has j successes in its first j trials as n increases,
because the success probability of the best population is distributed as the maximum
of n independent uniform (0, 1) random variables—and thus stochastically increases
in n − −− the larger n is, the less likely it is that the first j observations of the best
population will all be failures. ��

Let Pk(C) be the probability of a correct choice when using VT with critical value
k, and suppose Pk−1(C) < α < Pk(C). The randomized rule that chooses VT with
critical value k with probability p = α−Pk−1(C)

Pk (C)−Pk−1(C)
or VTwith critical value k−1with

probability 1− p will yield the correct choice with probability α. Another possibility
is to use VT along with early elimination parameter j∗, where j∗is the smallest value
j for which using VT with critical value k along with early elimination if behind by
j after the first j rounds results in a correct choice with probability at least α. (Of
course, we could use a policy that randomizes between VT with critical value k and
early elimination at j∗ − 1 and VT with critical value k and early elimination at j∗.)
The following is an example where randomizing among VT rules results in a smaller
mean number of observations than does VT with early elimination.

Example 3 Suppose n = 5, α = .95 and F(x) = x, 0 ≤ x ≤ 1. The following
simulated results were based on 500, 000 runs. (The term sd refers to the standard
deviation of the estimator of E[N ].)

VT
k = 9 : P(C) = 0.948, E[N ] = 313.64, sd = 2.11
k = 10 : P(C) = 0.954, E[N ] = 358.40, sd = 1.156
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VT early elimination when k = 10
j = 2 : P(C) = 0.9385, E[N ] = 335.52, sd = 8.29
j = 3 : P(C) = 0.9523, E[N ] = 348.27, sd = 2.70

Consequently, randomizing among VT with k = 9 and k = 10 to obtain P(C) = .95
results in the mean number of observations being (2/3)313.64 + (1/3)358.40 =
328.56, which is smaller than what can be obtained with VT with early elimination.
(It is also better than the newer proposed rules. Of these, the Chernoff bound algorithm
performs best, giving a mean number of 423.4 with accuracy 0.953.)

4 Play theWinner Rule

Another older rule that can also be utilized in the Bayesian setting is the play the
winner (PW) rule, which in each but the last round continues to sample from each
alive population until it has a failure. Our variation of PW, which is somewhat different
than what has been previously considered, is as follows:

• All populations are initially alive.
• A round consists of subrounds. In a subround, each alive population is observed
once, with the successful ones continuing to the next subround. If there is only one
population that is successful in a subround, then if that population currently has a
cumulative number of successes that is at least k more than any other population
the process stops and that population is declared the best; if not, that population
moves to the next subround. If none of the populations in a subround are successful,
then the round ends.

• At the end of a round, any population whose cumulative number of successes is
less than that of another by at least k is no longer alive.

Remarks

1. Note that the process ends after a subround which had exactly one successful arm,
and that arm’s cumulative number of successes is now at least k higher than all
other populations and exactly k larger than at least one population.

2. If we had defined a round by saying that each alive population is observed until it
had a failure, then when F is the uniform (0, 1) distribution, the expected number
of plays until the first population used has a failure is infinite. On the other hand,
defining rounds using subrounds results in the mean number of plays being finite.
For instance, suppose the probabilities are the values of iid uniform (0, 1) random
variables. Let Ni denote the number of plays in the first round of the arm with i th

largest success probability. Denoting this probability by Yi , its density is

fYi (p) = n!
(i − 1)!(n − i)! p

n−i (1 − p)i−1dp , 0 < p < 1
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it follows that E[Ni ] ≤ E[ 1
1−Yi

] < ∞ when i > 1. In addition,

N1 ≤ k + max
2≤i≤n

Ni ≤ k +
n∑

i=2

Ni

giving that

E[N1] ≤ k +
n∑

i=2

E[Ni ] < ∞

3. The PW rule as defined in [15] and [16] was such that the populations are initially
randomly ordered. In each round, the alive populations were observed in that order,
with each population being observed until it had a failure. If at any time one of
the populations had k fewer successes than another population, then the former
is no longer alive. The process ends when only a single population is alive, and
that population is declared best. Thus, for instance, in the original version if the
first population observed has k successes in a row, then that population is declared
best.

4.1 Analysis of PW

To begin, suppose there are only 2 arms and that their success probabilities are p1 >

p2. Suppose we are going to choose an arm by using the procedure which in each
round plays each arm until it has a failure, and then stopping at the end of a round
if one of the arms has had a cumulative number of successes that is at least k more
than the other, with that arm then being chosen. Let qi = 1 − pi , i = 1, 2, and let
Xi,r , i = 1, 2, r ≥ 1, be independent with P(Xi,r = j) = qi p

j
i , j ≥ 0. Interpret

Xi,r as the number of successes of arm i in round r , and let Yr = X1,r − X2,r , r ≥ 1.
Then,

E[eθYr ] = q1
1 − p1eθ

q2
1 − p2eθ

It is now easy to check that E[eθYr ] = 1 if eθ = p2/p1. That is, E[(p2/p1)Yr ] = 1.
If we now let Sm = ∑m

i=1 Yi , then (p2/p1)Sm , m ≥ 1 is a martingale with mean 1.
Letting

N = min(m : Sm ≥ k or Sm ≤ −k)

it follows by the martingale stopping theorem (see [11]) that

E[(p2/p1)SN ] = 1
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Let p = P(SN ≥ k) be the probability that arm 1 is chosen. Then,

1 = E[(p2/p1)SN ]
= E[(p2/p1)SN |SN ≥ k]p + E[(p2/p1)SN |SN ≤ −k](1 − p)

Letting Xi , i = 1, 2, have the distribution of Xi,r , it follows, by the lack of memory
property of Xi , that

E[(p2/p1)SN |SN ≥ k] = (p2/p1)
k E[(p2/p1)X1 ] = (p2/p1)

k(q1/q2)

E[(p2/p1)SN |SN ≤ −k] = (p2/p1)
−k E[(p2/p1)−X2 ] = (p1/p2)

k(q2/q1)

Substituting back yields that

p = 1 − (p1/p2)k(q2/q1)

(p2/p1)k(q1/q2) − (p1/p2)k(q2/q1)
(5)

Conditioning on which arm wins yields that

E[SN ] = (k + E[X1])p + (−k − E[X2])(1 − p)

Letting mi = E[Xi ] = 1/qi − 1 = pi/qi , the preceding gives

E[SN ] = p(m1 + m2 + 2k) − (m2 + k)

Wald’s equation yields

E[N ] = p(m1 + m2 + 2k) − m2 − k

m1 − m2
(6)

Because X1,r + X2,r + 2 is the number of plays in round r , it follows that the total
number of plays, call it T , is

∑N
r=1(X1,r + X2,r + 2). Applying Wald’s equation and

using (6) gives

E[T ] = (p(m1 + m2 + 2k) − m2 − k)
m1 + m2 + 2

m1 − m2
(7)

Now, suppose that we utilize PW. Let B(p1, p2) and M(p1, p2) be, respectively, the
probability that the arm with value p1 is chosen and the mean number of plays before
stopping. From Eq. (5), we have

B(p1, p2) = 1 − (p1/p2)k(q2/q1)

(p2/p1)k(q1/q2) − (p1/p2)k(q2/q1)
(8)

Because PW would stop play once the winning arm is ahead by k, whereas E[T ]
is the mean number of plays when we continue on until a failure occurs, we obtain by
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conditioning on which arm wins that

M(p1, p2) = E[T ] − B(p1, p2)

q1
− 1 − B(p1, p2)

q2

= (B(p1, p2)(m1 + m2 + 2k) − m2 − k)
m1 + m2 + 2

m1 − m2

− B(p1, p2)

q1
− 1 − B(p1, p2)

q2
(9)

where mi = pi/qi .
Now, suppose there are n arms whose means are the values of independent random

variables with distribution F , and let C be the event that the PW policy chooses the
best arm. As in our analysis of VT, suppose that all arms participate in each round.
Let arm 0 be the best arm, and randomly number the other arms as 1, . . . , n − 1. Say
that the best arm beats arm i if the end of round difference between the cumulative
number of successes of arm 0 and arm i is at least k before it is less than or equal to
−k. Letting Bi , i = 1, . . . , n − 1, be the event that arm 0 beats arm i , we have, by the
same arguments as in Sect. 1, the following.

Lemma 4 With B ≡ B1B2 · · · Bn−1,

P(C) ≥ P(B) ≥ (P(B1))
n−1

Also, P(B) ≤ P(B∗), where B∗ is the event that 0 beats the best of arms 1, . . . , n−1.

Our preceding analysis yields the following corollary.

Corollary 1 With U and V being independent uniform (0, 1) random variables, and

X = F−1(U 1/n) , Y = F−1(U 1/nV ) , W = F−1(U 1/nV 1/(n−1))

P(B1) = E[B(X ,Y )]
P(B∗) = E[B(X ,W )]

Also, if we let M denote the mean number of plays, then

M ≈ A = (n − 1)E[M(X ,Y )] + E[M(X ,W )]

4.2 PWwith Early Elimination

Suppose we use PW with critical number k and add an early elimination on any
population whose first j observations are all failures. Let Be be the event that the best
population is eliminated early. Letting f (p) = F ′(p) be the density function of the
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prior distribution, the success probability of the best population has density function
fb(p) = nFn−1(p) f (p), 0 < p < 1. Consequently, it follows that

P(Be) =
∫ 1

0
(1 − p) j nFn−1(p) f (p)dp

Let Nnb be the number of nonbest populations that are eliminated early. To compute
E[Nnb], note that the probability a randomly chosen population is eliminated early is∫ 1
0 (1 − p) j f (p)dp, giving that

n
∫ 1

0
(1 − p) j f (p)dp = E[number eliminated early] = E[Nnb] + P(Be)

Hence,

E[Nnb] = n
∫ 1

0
(1 − p) j f (p)dp −

∫ 1

0
(1 − p) j nFn−1(p) f (p)dp

When F is the uniform (0, 1) distribution

P(Be) =
∫ 1

0
(1 − p) j npn−1dp = n! j !

(n + j)!
and

E[Nnb] = n

j + 1
− n! j !

(n + j)!
For instance, if F is the uniform (0, 1) distribution, then when n = 10, j = 5, we

have P(Be) = 0.000333 and E[Nnb] = 1.666.

4.3 VTVersus PW

Based on numerical experiments, VT and PW have roughly similar performances
when F(x) = x .

Example 4 When n = 5, simulation yielded the following results for PW.

PW:
k = 42 : P(C) = 0.9494, M = 319.78, sd = 1.64
k = 43 : P(C) = 0.9502, M = 327.80, sd = 1.65
k = 48 : P(C) = 0.9543, M = 375.4, sd = .899

Thus, choosing PW with k = 42 with probability .25 and k = 43 with probability
.75 results in P(C) = .950, and requires, on average, 325.795 observations, which is
slightly less than the average of 328.56 which, as shown in Example 3, can be obtained
by a randomization of VT rules to obtain P(C) = .95.On the other hand, if we wanted
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α = .954, then both VT with k = 10 and PW with k = 48 achieve that, with VT
having amean of 358.4 observations, compared to 375.4 for PW. (Because the average
number of trials needed for PWwith k = 47 is 367.05, randomizing between PW(47)
and PW(48) still would not be as good as VT(10).)

5 The Normal Case

5.1 VT Rule in the Normal Case

Suppose that observations on population i are the values of independent normal ran-
dom variables with mean μi and variance σ 2, i = 1, . . . , n, where σ 2 is known and
μ1, . . . , μn are the unknown values of n independent standard normal random vari-
ables. As before our objective is to determine, using relatively few observations, the
population i∗ such that i∗ = argmaxμi under the proviso that the probability of a
correct decision is at least some specified value α. The VT rule with parameter c > 0
is as follows:

• Initially, all populations are alive
• A round consists of a single observation from each alive population.
• At the end of a round, a population is no longer alive if its cumulative sum of
observed values is more than c less than that of another population. (That is, if A
is the set of alive populations after round k−1, and Si (k) is the cumulative sum of
the first k observations of population i , then i ∈ A would no longer be alive after
round k if Si (k) < max j∈A S j (k) − c.)

• If only one population is alive, stop and declare it best. Otherwise perform a new
round.

Before showing how to determine the appropriate value of c, we present some prelim-
inaries concerning normal partial sums.

5.2 Some Preliminaries

Let � be the standard normal distribution function. Define

R(a) = �(a)

1 − �(a)
(10)

Lemma 5 If W is a normal random variable with mean μ and variance 1, then

E[e−2μW |W > 0] = R(−μ)

E[W |W > 0] = μ + e−μ2/2

√
2π�(μ)

E[e−2μW |W < 0] = R(μ)

E[W |W < 0] = μ − e−μ2/2

√
2π(1 − �(μ)
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Proof

E[e−2μW |W > 0] = 1√
2π P(W > 0)

∫ ∞

0
e−2μx e−(x−μ)2/2dx

= 1√
2π�(μ)

∫ ∞

0
e−(x+μ)2/2dx

= 1 − �(μ)

�(μ)

Let Z = W − μ.

E[W |W > 0] = μ + E[Z |Z > −μ]
= μ + 1√

2π�(μ)

∫ ∞

−μ

xe−x2/2 dx

= μ + e−μ2/2

√
2π�(μ)

Because E[e−2μW ] = 1, the third equality follows from the first upon using the
identity

1 = E[e−2μW |W > 0]�(μ) + E[e−2μW |W < 0](1 − �(μ))

Similarly, the fourth equality follows from the second since μ = E[W |W >

0]�(μ) + E[W |W < 0](1 − �(μ)). ��
Lemma 6 Let Sn = ∑n

i=1 Wi , n ≥ 1, where Wi , i ≥ 1 are independent normal
random variables with meanμ > 0 and variance 1. For given b > 0, let N = min{n :
either Sn < −b or Sn > b}.
(a) R(−μ)e−2μb < E[e−2μSN |SN > b] < e−2μb

(b) e2μb < E[e−2μSN |SN < −b] < e2μbR(μ)

Proof The right hand inequality of (a) is immediate sinceμ > 0. To prove the left side
of (a), note that conditional on SN > b and on the value SN−1, that SN is distributed as
b plus the amount by which a normal with mean μ and variance 1 exceeds the positive
amount b − SN−1 given that it does exceed that amount. But a normal conditioned
to be positive is known to have strict increasing failure rate (see [2]), implying that
SN |{SN > b, SN−1} is stochastically smaller than b+Wi |{Wi > 0}. As this is true no
matter what the value of SN−1, it follows that SN |{SN > b} is stochastically smaller
than b+Wi |{Wi > 0}, implying that E[e−2μSN |SN > b] > e−2μbE[e−2μWi |Wi > 0].
The result now follows from Lemma 5.

The left hand inequality of (b) is immediate. To prove the right hand inequality,
note that the same argument as used in part (a) shows that SN |{SN < −b} >st

−b + Wi |{Wi < 0}, implying that E[e−2μSN |SN < −b] < e2μbE[e−2μWi |Wi < 0].
Thus, the result follows from Lemma 5. ��
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Proposition 2 Let Sn = ∑n
i=1 Wi , n ≥ 1, where Wi , i ≥ 1 are independent normal

random variables with meanμ > 0 and variance 1. For given b > 0, let N = min{n :
either Sn < −b or Sn > b}.

e2μb − 1

e2μb − R(−μ)e−2μb < P(SN > b) <
e2μbR(μ) − 1

e2μbR(μ) − e−2μb (11)

Proof Let p = P(SN > b). Because E[e−2μWi ] = 1, it follows that {e−2μSn , n ≥ 1}
is a martingale with mean 1. Hence, by the martingale stopping theorem

1 = E[e−2μSN ]
= E[e−2μSN |SN > b]p + E[e−2μSN |SN < −b](1 − p)

Hence,

p = E[e−2μSN |SN < −b] − 1

E[e−2μSN |SN < −b] − E[e−2μSN |SN > b] (12)

Because x−1
x−y , 0 < y < 1 < x, increases in both x and y, the inequalities (11) now

follow from Lemma 6. ��
Although we do not directly use the following proposition, it is of independent

interest.

Proposition 3 With N as previously defined.

E[N ] ≤ e2μbR(μ) − 1

e2μbR(μ) − e−2μb

(
2b

μ
+ e−μ2/2

μ
√
2π�(μ)

+ 1

)
− b

μ
(13)

E[N ] ≥ e2μb − 1

e2μb − R(−μ)e−2μb

(
2b

μ
− 1 + e−μ2/2

μ
√
2π (1 − �(μ))

)
− b

μ

+ 1 − e−μ2/2

μ
√
2π(1 − �(μ))

(14)

Proof Wald’s equation gives

E[N ]μ = E[SN |SN > b]p + E[SN |SN < −b](1 − p)

≤ (b + E[W |W > 0])p − b(1 − p)

= p

(
2b + e−μ2/2

√
2π�(μ)

+ μ

)
− b

where the first inequality used, as shown in Lemma 6, that SN |{SN > b} is stochasti-
cally smaller than b + W |{W > 0}. Inequality (13) now follows from Proposition 2.
The lower bound follows from

E[N ]μ = E[SN |SN > b]p + E[SN |SN < −b](1 − p)
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≥ bp + (−b + E[W1|W1 < 0])(1 − p)

=
(
2b − μ + e−μ2/2

√
2π(1 − �(μ)

)
p − b + μ − e−μ2/2

√
2π(1 − �(μ)

where the inequality used that SN |{SN < −b} is stochastically larger than −b +
Wi |{Wi < 0}. Inequality (12) now follows from Proposition 2. ��
Remark Oneway to approximate p = P(SN > b) and E[N ] is to “neglect the excess”
and assume SN |SN > b ≈st b and SN |SN < −b] ≈st −b. From (12), this gives that

p ≈ e2μb − 1

e2μb − e−2μb (15)

Also, μE[N ] ≈ bp − b(1 − p), and so (15) gives that

E[N ] ≈ 2b(e2μb − 1)

μ(e2μb − e−2μb)
− b

μ
(16)

Example 5 If b = 3, μ = 1, then (13), (14), and (16) yield that

2.9838 ≤ E[N ] ≤ 4.2842, E[N ] ≈ 2.9852

Corollary 2 Let Sn = ∑n
i=1 Vi , n ≥ 1, where Vi , i ≥ 1 are independent normal

random variables with mean μ > 0 and variance 2σ 2. For given c > 0, let Nσ =
min{n : either Sn < −c or Sn > c}.

eμc/σ 2 − 1

eμc/σ 2 − R
(
− μ

σ
√
2

)
e−μc/σ 2

< P(SNσ > c) <
eμc/σ 2

R
(

μ

σ
√
2

)
− 1

eμc/σ 2 R
(

μ

σ
√
2

)
− e−μc/σ 2

Moreover,

E[Nσ ] ≈ 2c (eμc/σ 2 − 1)

μ(eμc/σ 2 − e−μc/σ 2
)

− c

μ

Proof Let Wi = Vi
σ
√
2
, note that E[Wi ] = μ

σ
√
2
. Now, using b = c

σ
√
2
, apply Proposi-

tion 2 and Eq. (16). ��

5.3 Analyzing theVT Rule in the Normal Case

We can obtain a lower bound and an effective approximation to P(C), the probability
that the correct choice is made, by a similar argument as in the Bernoulli case. Letting
population 0 be the one with the largest mean, and randomly numbering the others
as 1, . . . , n − 1, we imagine a “gambler’s ruin" game between populations 0 and i in
which the winner is the first one whose cumulative sum is at least c more than that of
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the other. With Bi being the event that the best wins this game against population i ,
and B the event that the best wins all these games, we can show exactly as before that

P(C) ≥ P(B) ≥ (P(B1))
n−1, P(B) ≤ P(B∗)

where P(B∗) is the probability that the best beats the population with second largest
mean. Given the values μ0, μ1, . . . , μn−1, the difference between the value of a pop-
ulation 0 observation and one from a different population is a normal random variable
with variance 2σ 2. Letting

L(μ) = eμc/σ 2 − 1

eμc/σ 2 − R(− μ

σ
√
2
)e−μc/σ 2 , U (μ) =

eμc/σ 2
R(

μ

σ
√
2
) − 1

eμc/σ 2 R(
μ

σ
√
2
) − e−μc/σ 2 (17)

be the lower and upper bounds on P(SNσ > c), Corollary 2 yields the following
proposition.

Proposition 4 Let U and V be independent uniform (0, 1) random variables, and let

X = �−1(U 1/n) − �−1(U 1/nV ), Y = �−1(U 1/n) − �−1(U 1/nV 1/(n−1))

Then,

P(C) ≥ P(B) ≥ (E[L(X)])n−1 and P(B) ≤ E[U (Y )]

Letting N be the number of observations, we can approximate E[N ] by approximating
the mean number of plays of each of the non-best populations by the mean number of
plays in their game against the best population, and approximating the mean number
of plays of the best population by the mean number of plays in its game against the
second best one. Hence, using Eq. (16) we see that

E[N ] ≈ A ≡ (n − 1)E[M(X)] + E[M(Y )] (18)

where

M(μ) = 2c (eμc/σ 2 − 1)

μ(eμc/σ 2 − e−μc/σ 2
)

− c

μ

The following table compares the performance of VT with the most quoted algo-
rithms of the recent literature: LIL-UCB, TrackAndStop, and Chernoff. The LIL-UCB
algorithm (see [10]) uses upper confidence bounds (UCB) based on the law of the iter-
ated logarithm for the expected reward of the arms. At each stage, it uses the arm
with the largest upper bound, similar to the UCB algorithm of bandit problems. We
use a heuristic variation of the LIL-UCB which has been shown to perform some-
what better than the original [10]. The TrackAndStop algorithm in [7] tracks lower
bounds on the optimal proportions of the arm draws and uses a stopping rule based on

123



71 Page 22 of 24 Journal of Statistical Theory and Practice (2022) 16 :71

Table 2 N̄ is the average
number of plays in 10,000
simulation runs

n α Algorithm c N̄ p

2 0.9 VT 5 15 0.9068

TrackAndStop – 1351 0.9988

LIL – 505 0.9989

Chernoff – 1476 1

0.95 VT 11 35 0.9504

TrackAndStop – 1545 1

LIL – 504 0.999

Chernoff – 1546 1

0.99 VT 40 489 0.9913

TrackAndStop – 1759 1

LIL – 503 0.9989

Chernoff – 1760 1

5 0.9 VT 7.8 62 0.910

TrackAndStop – 1748 1

LIL – 1657 0.9979

Chernoff – 1703 1

0.95 VT 16.3 143 0.9537

TrackAndStop – 1961 1

lilUCB-H – 1654 0.9979

Chernoff – 1872 1

0.99 VT 85 979 0.9909

TrackAndStop – 2209 1

lLIL – 1651 0.9979

Chernoff – 2151 1

10 0.9 VT 10.3 138 0.911

TrackAndStop – 2071 1

LIL – 2008 0.9989

Chernoff – 1965 1

0.95 VT 20.6 304 0.9502

TrackAndStop – 2173. 1

LIL 28 – 2005 0.9989

Chernoff – 2055 1

Chernoff’s work on Generalized Likelihood Ratio statistic. The Chernoff algorithm
is similar to TrackAndStop, but rather than track the optimal proportions it instead
chooses between the empirical best and second-best. In each of 10, 000 simulation
runs, we generate the n means by generating n standard normals and then, simulate
the results of the different algorithms (Table 2).
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6 Conclusions

We have presented a Bayesian model for finding the population having the largest
mean when the populations under consideration are either all Bernoulli or all normal
with a fixed variance. In both cases, we take a Bayesian approach that assumes the
unknown means are the values of independent random variables having a specified
distribution F . We consider two old rules that had previously been analyzed under
the assumption that the largest mean differs from the second largest mean by at least
some known positive number. The first of these rules is the vector at a time rule (VT)
which in each round takes a sample from each population, eliminates any population
whose cumulative sum after a round is at least k less than that of another population,
and continues until one population is left. The second old rule, applicable in the
Bernoulli case, is play the winner rule which in each, but the last round continues to
sample from each remaining population until it has a failure. For a given constant k,
we present easily computed bounds and approximations of the probability these rules
yield the correct choice and themean number of observations that are required.We also
present numerical evidence showing in the Bernoulli case that the VT rule resulting
when F is the uniform (0, 1) distribution has good results, when compared with more
recent algorithms that make no assumptions about the set of means, even when the
set of means does not look like it came from a uniform (0, 1) distribution. Although
we recommend in any problem instance that one utilizes one’s prior knowledge to
determine the appropriate prior F , it is comforting to know that the method appears to
work well even in cases when the actual means do not appear to have come from F .
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