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Abstract
Mixture models occur in numerous settings including random and fixed effects mod-
els, clustering, deconvolution, empirical Bayes problems and many others. They are
often used to model data originating from a heterogeneous population, consisting of
several homogeneous subpopulations, and the problem of finding a good estimator
for the number of components in the mixture arises naturally. Estimation of the order
of a finite mixture model is a hard statistical task, and multiple techniques have been
suggested for solving it. We will concentrate on several methods that have not gained
much popularity yet deserve the attention of practitioners. These can be categorized
into three groups: tools built upon the determinant of the Hankel matrix of moments
of the mixing distribution, minimum distance estimators, likelihood ratio tests. We
will address theoretical pillars underlying each of the methods, provide some useful
modifications for enhancing their performance and present the results of the compar-
ative numerical study that has been conducted under various scenarios. According
to the results, none of the methods proves to be a “magic pill”. The results uncover
limitations of the techniques and provide practical hints for choosing the best-suited
tool under specific conditions.
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1 Introduction

1.1 Aim and Scope

Inmultiple applications the collected datamay be best described by amultimodal prob-
ability mass or density function meaning the empirical distribution contains several
regions with high probability mass. Mixture models are a powerful mathematical tool
that allows for characterizing such heterogeneous populations, which are believed to
consist of multiple homogeneous subpopulations. A great multitude of statistical prob-
lems can be cast into the mixture model framework: linear inverse and deconvolution
problems, random effects models, repeated measures and measurements error mod-
els, empirical and hierarchical Bayes, latent class and latent trait models, clustering,
robustness and contamination models, hidden mixture structures, random coefficient
regression models and many others [43]. A very important class of mixture models
is the class of finite mixtures. These models, which assume a finite number of com-
ponents, have proved to be very useful and flexible enough to model a vast range of
random phenomena thus receiving much attention from both theoretical and practical
viewpoints.

In some mixture models applications there is no uncertainty about the number of
components in the mixture. This is the case where the components correspond to a
well-known existing partition of the population. However, on many occasions this
situation is far from realistic and practitioners encounter either the lack or complete
absence of a priori information about the actual number of mixture components. In
such cases, this number has to be inferred from the data alongwith the parameters of the
component densities. Correct identification of mixture complexity may be of primary
interest in itself or may be followed by efficient estimation of all parameters. Due
to its practical importance the problem of selecting the optimal mixture complexity
has been addressed in numerous statistical publications, and we will point out many
seminal works as we proceed.

The objectives of the present survey are to

• provide the theoretical background of the reviewed methods for estimating the
complexity of a finite mixture;

• assess the performance of these methods under various scenarios;
• suggest modifications that enhance the performance of some of the methods in
particular settings;

• identify universal methods that provide stable and accurate results throughout
most of the scenarios for different distribution families or single out scenarios
under which certain approaches may be preferred to others.

The number of methods devoted to estimating the true number of components in
a mixture is undoubtedly too large to be thoroughly described in a single survey.
Thus, we restrict attention to a selected subset of approaches that have the merit of
being applicable in very general settings; i.e., for wide classes of finite mixtures of
distributions. One of the main goals of this survey is to uncover the extent to which
each of the methods is successful in consistently estimating the true complexity for
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various sample sizes. The estimation techniques reviewed below can be split into three
main categories:

1. methods built upon the determinants of theHankelmatrix ofmoments of themixing
distribution;

2. methods based on penalized minimum distance between the unknown probability
density and a consistent estimator thereof. The distances considered in this survey
are the Hellinger as well as the L2-distance;

3. likelihood ratio test (LRT) - based techniques.

Some of the key criteria we based our choice of the techniques upon were:

a) a cohesive mathematical theory behind the method, including the asymptotically
consistency;

b) infrequent reference in the literature as well as relatively rare usage in practice
despite of the coherent theoretical base;

c) feasibility of implementation using any programming language, e.g. Python, R,
Julia, Matlab, etc.

Pseudocodes for the algorithms discussed in this work are given in Appendix D in the
supplementary materials. For completeness, other interesting methods for estimating
the complexity of a finite mixture are mentioned in Sect. 8.

Although not strictly a part of a survey, the performance enhancement such as
the one we bring to some of the methods through specific modifications is almost
inevitable. In fact, the original version of some of the approaches reviewed here cannot
be of real practical value without any further adjustment. These modifications, which
will be described in separate subsections, include resorting to some judicious scaling in
the case of theHankel-based-methods or using bootstrap instead of penalization for the
approaches based on minimum distance estimation. In Sect. 6, we report the results of
an extensive numerical study which we carried out for different mixture distributions
and various number of components with the goal of comparing the performances of
the techniques reviewed in this survey.

Several examples involving the estimation of mixture complexity for real data sets
using the discussed methods are presented. The data sets were taken from various
fields such as geology, insurance and lexicography.

1.2 Organization of the Paper

The paper is organized as follows:

• Section 2 provides some basic background on mixture models, mentions major
works on mixture model estimation techniques and gives a brief overview of these
approaches.

• Section 3 outlines the theoretical foundation of the original method based on
the determinants of the Hankel matrix of moments of the mixing distribution as
proposed in [21]. In the same section, two modifications of this approach allowing
for obtaining improved results, are presented. The section also gives a concise
description of a neural network extensionof theHankelmatrix approach, proposing
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possible working configurations of a multilayer perceptron for the mixtures of
Gaussian, Poisson and geometric densities.

• Section 4 describes methods based on minimum distance estimation. The section
relies to a very large extent on the works [74], [69] and [20]. We re-examine the
estimation techniques that use the Hellinger and the L2 distances when combined
with twodifferent penalties. In the same section,motivated by the idea of enhancing
the original method, we propose a modification based on a bootstrap procedure
instead of penalization.

• Section 5 presents the estimation approach based on the LRT combined with a
bootstrap procedure as described in [38].

• Section 6 comprises the results of a comparative numerical study where all of the
above mentioned techniques are tested on simulated data under various scenarios.
Furthermore, the same section contains a discussion of the settings inwhich certain
methods can be favored as they seem to outperform their counterparts.

• Section 7 encompasses several real data sets that were analysed using the studied
approaches and compares the obtained results.

• Section 8 mentions a number of papers where other techniques for mixture com-
plexity estimation, not addressed in the present survey, are considered.

• Section 9 summarizes the findings and outlines the limitations of all methods
reviewed in this survey.

• Appendices A, B, C, D presented as supplementary materials to this paper include
additional examples, tables with detailed simulation results, proofs of the theo-
retical results that are relevant for the methods described in the manuscript and
pseudocodes clarifying and simplifying the implementation of the discussed tech-
niques.

2 Finite Mixture Models: General Scope

2.1 Notation and Basic Definitions

We start with defining the terminology that will be used throughout the survey. In
the sequel, a real vector of dimension r will be denoted vr and its components by
v1, . . . , vr . A class of real vectors of dimension r will also bear the subscript r in
its notation. When manipulating several vectors of dimension r we will index them
as vr ,1, vr ,2, . . .. A random sample of i.i.d. random variables are going to be denoted
(X1, . . . , Xn). Also, a sequence of random variables (for example converging weakly)
will be denoted for example by Y (n). A class of densities which depend on some vector
of parameters of dimension r will not necessarily bear the subscript r .

Suppose that some population of interest, represented abstractly by a random vari-
able X , consists of a finite number m ∈ N of subpopulations. Each subpopulation is
generated by some random process that can be modeled by an individual or compo-
nent distribution, e.g. normal, exponential, Poisson, geometric, etc. We will assume
that each of the component distributions admits a density with respect to some com-
mon dominating measure μ. Furthermore, the component density is assumed to be
parametrized through some unknown vector φd ∈ � ⊆ R

d , d ≥ 1. To keep the
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manuscript to a reasonable length, we confine our attention in this survey to the one-
dimensional case; i.e. the random variable X ∈ R. In the sequel, the dominating
measure μ is either the Lebesgue measure in case the distribution of the components
is absolutely continuous, or the counting measure in case this distribution is discrete.
In the latter case, all the examples considered here treat distributions that are supported
on the set of non-negative integers. LetF = {

fφd
: φd ∈ �

}
be the family of densities

which the components belong to. If X is the support of X , then the distribution of X
is said to have a m-component mixture distribution with density

fθ pm
(x) =

∫

�

fφd
(x)dG(φd) =

m∑

j=1

π j fφd, j
(x) (2.1)

for all x ∈ X , where

θ pm = (π1, . . . , πm,φT
d,1, . . . ,φ

T
d,m)T ∈ Sm−1 × �m := �pm ,

Sm−1 = {
(π1, . . . , πm)T ∈ [0, 1]m :

m∑

j=1

π j = 1
}
. (2.2)

Sm−1 is the (m − 1)-dimensional simplex and �m is the Cartesian product
{(φd,1, . . . ,φd,m)T : φd,i ∈ �, i = 1, . . . ,m} with pm = md + m − 1.

Above, G is a discrete distribution defined on � with at most m jump points at
φd,1, . . . ,φd,m , and the integral representation in (2.1) is given here only to draw
attention that finite mixtures are part of a much bigger family of mixtures where G
can be any distribution function, known often under the name of “mixing distribu-
tion”. In the sequel, we will refer to either the probability density or probability mass
function defined in (2.1) as the mixed density and to π j , j = 1, . . . ,m as the mixing
probabilities.

We define the family of m-component mixture densities as the set

Fm =
{
π1 fφd,1 + . . . + πm fφd,m

, (π1, . . . , πm)T ∈ Sm−1, ( fφd,1 , . . . , fφd,m
) ∈ Fm

}

=
{
fθ pm

: θ pm ∈ �pm

}
,

where fθ pm
is given by (2.1).

Supposewe observe n random variables X1, . . . , Xn ∈ X which are i.i.d. according
to an unknown density ∼ f0 ∈ ⋃

m≥1 Fm . What is the value ofm that can be assigned
to this density based on the observed data? It is clear that such a value needs to target
themost parsimonious representation of themixture. Estimation of the true complexity
of f0 cannot be presented without touching upon this point, which is discussed in the
next section.
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2.2 Identifiability and Complexity of Mixture Models

We will now touch upon the identifiability issues arising within the mixture distri-
butions framework, which is a crucial point when the aim is to estimate the true
complexity. Identifiability of general mixtures of some additively closed family of
distributions was proved in the pioneer work of Teicher [65], who recognized the
importance of settling the issue of identifiability before launching into estimation of
the mixing distribution. Several articles have been devoted to proving identifiability
of finite mixtures of some particular classes of distributions such as finite mixtures of
normal or gamma distributions; see e.g. [66]. For identifiability results in other classes
or review papers on the subject we can refer to [19, 35, 36, 43, 49, 68].

The identifiability of a mixture is defined as follows: a finite mixture with respect
to the family F is said to be identifiable if for any m ≥ 1 and any two elements fθm
and fθ ′

m
in Fm satisfying the equality

fθ pm
(x) = fθ ′

pm
(x), x ∈ X

then there exists a permutation σ : {1, . . . , pm} �→ {1, . . . , pm} such that the compo-
nents of θ pm and θ ′

pm are equal up to the permutationσ ; i.e.,πσ(i) = π ′
i , φd,σ (i) = φ′

d,i
for i = 1, . . . , pm .

Different techniques have been developed to show identifiability. One of the most
important results is the one shown in [76], which says that the characterizing condi-
tion of identifiability is linear independence of the family F . Other characterizations
or sufficient conditions could be built upon this result by resorting for example to
using some additional properties of the elements of F or computing Fourier/ Laplace
transforms (see [5, 36, 39]).

When identifiability holds, it is natural to think of themost economic representation
of the finite mixture under study. Indeed, we have the inclusions

Fm ⊂ Fm+1 (2.3)

for all m ≥ 1, and hence we can introduce the following definition: the index of
economical representation for some finite mixture density f ∈ ⋃

m≥1 Fm is defined
as

m( f ) = min
{
m ∈ N : f ∈ Fm

}
.

This index is exactly what is called the complexity (or order). Note that this number
has to be unique, an immediate consequence of identifiability. Also, from a practical
point of view,m( f ) corresponds to the number of all the components that are actually
part of the total population: all the mixing probabilities π j , j ∈ {1, . . . ,m( f )} should
satisfyπ j > 0 by the very definition ofm( f ). The term identifiability is used here with
some abuse as the components of θ pm( f ) are unique up to some permutation (whereas
the mixed density is invariant under the m! permutations of the component labels).
One can of course require for example that the mixing probabilities are labeled so that
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π1 < · · · < πm in case they are all different. We will be following this convention
when reporting the simulation results in Sect. 6.

The discussion above lays the ground for this survey. In the sequel, we shall assume
that identifiability assumption holds. Also, the notation m( f0) = m0 will be used,
where f0 is the unknown density in Fm0 from which we observe a random sample.
The true complexity or order, m0, as well as the true parameter vector

θ0 := θ pm0
∈ �pm0

will be assumed to be unknown. The main goal of the methods reviewed further is to
consistently estimate m0. An estimation procedure can be (but does not necessarily
have to be) accompanied by the estimation of θ0.

2.3 Popular Approaches to Mixture Model Estimation

Mixture model estimation has a long history. The early mixture model estimation
techniques date back to the end of the 19-th century, when S. Newcomb [52] suggested
an iterative reweighting scheme to compute the Maximum Likelihood (ML) estimator
of the common mean of a mixture of a known proportions of a finite number of
univariate normal populations with known variances. This scheme is regarded by
many as a precursor of the well-known Expectation-Maximization (EM) algorithm.

A few years later K. Pearson [56] described an analytical and a graphical solutions
to estimating the first five moments of an asymmetrical empirical distribution, which
he was aiming to break up into two univariate normal curves. The graphical solutions
for mixture model estimation stayed in the focus of attention until the second half of
the 20-th century ([14, 34, 58]).

Between 1912 and 1922 R. Fisher [29] attempted to popularize the ML approach
to fitting the mixtures. The evolution of the ML approach is considered in detail in
[3]. In particular, Fisher made an analysis of the extensions of the method of moments
to the likelihood equations as a way of increasing the quality of the estimates, which
later caused a dispute with Pearson ([28, 57]). Around the 1950s C. R. Rao [59] used
Fisher’s scoring method to estimate the parameters of a mixture of two Gaussian
distributions with common variance, and soon after the ML estimation for identifying
the number of components as well as for parameter estimation in finite mixture models
was addressed in numerous publications, such as [22, 72, 73].

These days the most well-studied and widely-used approach to computing ML
estimates for finitemixturemodels as defined in (2.1), is the EMalgorithm, elaborately
described in [23], the seminal work that greatly exhilarated the efficient usage of
mixture models. The EM algorithm is implemented by assuming that there are latent
variables that link every observation to one of the components, which, together with
the observed data, yield complete data.

We will summarize the main idea behind this algorithm. To that end consider two
sample spaces within the mixture model framework:
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1. the sample space of the incomplete observations, where only the realizations of
the random variable X are observed, but no information on the mixing distribution
G(φd) is available;

2. the sample space of the complete observations, the estimation of which can be
performed explicitly.

For the sake of simplicity consider the one-dimensional case, � ⊆ R. In this case
we denote φd simply by φ. The extension to the multidimensional case is possible but
complicates the derivations.

Let x = (x1, . . . , xn) be the observed realizations of the random variable X , and let
z = (z1, . . . , zn) denote the realizations of the corresponding unobserved (or latent)
random vector Z indicating that the observation xi , i = 1, . . . , n comes from the j-
th component, j = 1, . . . ,m. In other words, zi , i = 1, . . . , n are realizations of a
multinomial distribution with probabilities π1, . . . , πm , and we have that

zi j =
{
1, if xi ∈ j th component

0, otherwise.

The pairs yi = (xi , zi ), for i = 1, . . . , n are i.i.d. and they are usually referred to
as the complete or augmented data. Let y = ( y1, . . . , yn). For a stipulated mixture
complexity m ∈ N, let us denote by lcθ pm

the log-likelihood of the complete data; i.e.,

lcθ pm
( y) =

n∑

i=1

m∑

j=1

zi j log
(
π j fφd, j

(xi )
)

=
n∑

i=1

m∑

j=1

zi j log( fφ j (xi )) +
m∑

j=1

log(π j )

n∑

i=1

zi, j .

On the other hand, the log-likelihood of the observed data x is given by

lθ pm
(x) =

n∑

i=1

log
( m∑

j=1

π j fφ j (xi )
)
.

It can be shown that the MLE

θ̂ pm = argmaxθ pm∈�pm
lθ pm

(x). (2.4)

can be obtained by alternating between an expectation and maximization steps involv-
ing both the complete log-likelihood lcθ pm

. This is precisely what the well-known

EM-algorithm does. In the first step, the conditional expectation of lcθ pm
( y) given the

observed data x is computed under the current parameter. Then, the obtained expres-
sion is maximized over the parameter space and the maximizer becomes the new
parameter. These two steps are repeated until convergence. If s is the number of the
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iteration of the current E-step, then it is easy to show that this step is completed by com-
puting the conditional expectation of the multinomial vectors zi given the observed
data x . This yields for i = 1, . . . , n and j = 1, . . . ,m

ẑ(si j =
π̂

(s−1)
j f

φ̂
(s−1)
j

(xi )

∑m
l=1 π̂

(s−1)
l f

φ̂
(s−1)
l

(xi )

where (π̂
(s−1)
1 , . . . , π

(s−1)
m , φ̂

(s−1)
1 , . . . , φ̂

(s)
m ) is theMLEobtained at the (s−1)-th step.

Note that the maximizing mixing probabilities are easily obtained and are explicitly
given in the s-th M-step by the expression

π̂
(s)
j = 1

n

n∑

i=1

ẑ(s)i j ,

for j = 1, . . . ,m. To obtain φ̂
(s)
j , j = 1, . . . ,m, a numericalmethodmight be required

in case a a closed form is not possible. The optimization procedure then seeks to find
at least the local maximum as finding the global maximum is not always possible.
As noted in [50], the latter often occurs in the case of Gaussian mixtures with non-
homogeneous dispersions (unequal covariancematrices). Components that have either
one observation, or several identical observations or several nearly-identical observa-
tions, result in the estimated covariance matrices that are singular, which causes the
likelihood function to be unbounded. Gaussian mixtures with homogeneous compo-
nents result in covariance matrices that are restricted in the parameter space and thus
do not have this problem. For references on the EM-algorithm, see e.g. [23] and [48].

The description given above treats one given m, a candidate for the true mixture
complexity. To obtain an estimator for m0, the true complexity, one can resort to
maximizing a penalized version of the observed log-likelihood. This means that the
log-likelihood will be augmented by a penalty term depending on the model com-
plexity. Several widely used examples of this technique include Akaike Information
Criterion (AIC) [2], Bayes Information Criterion (BIC) [62], Integrated Completed
Likelihood (ICL) [10], Laplace-Empirical Criterion (LEC) [49], Normalized Entropy
Criterion (NEC) [9] and many others [50]. These only differ in the form of the penalty
function, and we will concentrate on the two criteria that have gained most popular-
ity in practice: The Bayesian Information Criterion (BIC) and Integrated Completed
Likelihood (ICL). While BIC is most widely used for performing model selection
tasks, ICL is most frequently applied for solving clustering problems.

The general idea is to treat the task of choosing the number of components in
the mixture as a model selection problem by considering a sequence of models
M1, . . . ,MM for m = 1, . . . , M with associated prior probabilities p(Mm), which
are often taken to be equal. By the Bayes’ Theorem, the posterior probability of model
Mm , given the observed data x is proportional to the probability of the data given the
model multiplied by the model’s prior. Under regularity assumptions, it can be show
than twice the posterior probability of the mixture model with m components can be
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well approximated by the

BICm = 2l
θ̂ pm

(x) − νMm log n

where νMm = pm is the number of independent parameters in the model and θ̂ pm is
the MLE of θ pm . The true complexity is then estimated by finding the integerm which
maximizes BICm .

Given the discussion above, finding the number of components in the mixture that
maximizesm �→ BICpm is equivalent to choosing the mixture model with the greatest
a posteriori probability. Some of the advantages of the BIC approach are that it is easy
to implement, can be used for comparing non-nested models and was shown to be
consistent for choosing the correct number of components in [40].

The ICL approach uses the log-likelihood of the complete data and replaces the
unobserved labels zi j , 1 ≤ i ≤ n, 1 ≤ j ≤ m by their maximum a posteriori (MAP)
estimator, that is

ẑ∗i j =
{
1, if ẑi j = argmax1≤k≤m ẑik
0, otherwise.

Thus, for the mixture model with m components

ICLm = 2lc
θ̂ pm

(
x, z∗

) − pm log n.

The very useful relationship between BICm and ICLm can be shown:

ICLm = BICm +
n∑

i=1

m∑

j=1

ẑi j log ẑi j .

It has been shown in [31] that in some cases (e.g. for the mixtures of Gaussians)
evaluating the likelihood at the a maximum a posteriori (MAP) estimator instead of
the MLE helps the EM algorithm to avoid singularities or degeneracies.

Regularization and variable selection techniques have also found their application in
this setting. For example, [55] proposed an estimation technique for Gaussianmixtures
in the context of a clustering problem, where the likelihood function is augmented by
an L1-norm penalty term −λ

∑m
j=1

∑p
k=1 |μ jk |, where μ jk is the k-th coordinate of

the j-th mean vector, and derived a modification of an EM algorithm fitted for the
purpose. The L1 penalty can shrink some of the fitted means toward 0, thus leading
to the most parsimonious model.

Example 1: EM solution for the mixture of Gaussian distributions. For a
finite mixture of univariate Gaussian distributions with the parameter vector θ =
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(
π1, . . . , πm, (μ1, σ1), . . . , (μm, σm)

)
and the mixture density given by

fθ (x) =
m∑

j=1

π j
1√
2πσ j

exp
− 1

2

(
x−μ j

σ j

)2

,

the E-step at the s-th iteration will update the probabilities given the current parameter
vector θ (s−1)

ẑ(s)i j =
π̂

(s−1)
j

1√
2πσ̂

(s−1)
j

exp
− 1

2

(
x−μ̂

(s−1)
j

σ̂
(s−1)
j

)2

∑m
j ′=1 π̂

(s−1)
j ′

1√
2πσ̂

(s−1)
j ′

exp
− 1

2

(
x−μ̂

(s−1)
j ′

σ̂
(s−1)
j ′

)2
.

The M-step provides the following solutions:

π̂
(s)
j =

∑n
i=1 ẑ

(s)
i j

n
, μ̂

(s)
j =

∑n
i=1 ẑ

(s)
i j xi

∑n
i=1 ẑ

(s)
i j

, σ̂
(s)
j =

∑n
i=1 ẑ

(s)
i j (xi − μ̂

(s)
j )2

∑n
i=1 ẑ

(s)
i j

.

Further examples (for the mixtures of geometric and Poisson distributions) can be
found in Appendix A in the supplementary materials.

Concluding this section it is necessary to point out that a great amount research has
been carried out in this area, and multiple software applications have been developed
for working with mixture models, in particular with the Gaussian mixture models that
are most frequently used in practice. Most of the software is suited for model-based
classification and in particular offering the opportunity to find the ML estimates via
the EM algorithm. We refer interested practitioners to R packages Mclust [63] and
mixtools [7] or the Matlab package MIXMOD [11].

3 Methods Based on the Hankel Matrices

The method of moments is generally considered to be less efficient when compared to
maximum likelihood. Nonetheless, as justly argued in [46], there are situations where
the method of moments reveals a nice mathematical structure. This is the case for the
problemof estimating the true complexity of somefinitemixture.Aswewill see below,
the number of support points of a discrete mixing distribution with a finite number
of jumps can be elegantly linked to whether the determinant of a special matrix of
moments is equal to zero. Such a matrix is known under the name of a Hankel matrix.

We devote this section entirely to the estimation approaches based on the determi-
nants of Hankel matrices of moments of the mixing distribution. The original method,
with which we will start, was proposed in [21]. Additionally to the original approach
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we will describe a couple of its possible extensions. [21] motivated the method with
a number of appealing features:

1. it gives consistent estimators under some mild conditions;
2. it requires no a priori upper bound on the unknown order of the mixture;
3. it comes with low computational time as it does not involve estimation of the

mixture parameters.

Another attracting property, not mentioned by the authors, is that the method bears
a universal character and can be applied to continuous distributions as well as discrete
distributions with no modifications, provided that the moment generating function of
the distribution exists.

For the reader to be able to appreciate the elegant argument standing behind the
method, we shall recall next the key theoretical results furnishing its basis.

3.1 TheMain Theoretical Results and Basic Approach

Recall that we have confined the present study to a one-dimensional case, where
� ⊆ R. For a given integer m ≥ 1 define the set

C2m =
{
(c1, . . . , c2m)T ∈ R

2m : ∃ some distribution function G on � such that

c j =
∫

�

φ j dG(φ) for j ∈ {1, . . . , 2m}
}
.

In other words, the component c j is equal to the j-th moment of some distribution
function G. For convenience, we will write c2m = (c1, . . . , c2m)T for any given real
numbers c j , j = 1, . . . , 2m. In [21] this set is defined more generally with non-
negative measure G.

For c2m ∈ R
2m , theHankelmatrix associatedwith this vector is the (m+1)×(m+1)

real symmetric matrix , denoted H(c2m) and given by

[H(c2m)]i, j = ci+ j−2, 1 ≤ i, j ≤ m + 1,

with [H(c2m)]1,1 = c0 = 1. More explicitly, we have that

H(c) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 c1 c2 . . . cm
c1 c2

c2
...

...
. . .

cm . . . c2m

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

Next we state the key result which links the true complexity of a finite mixture to
the Hankel matrix of moments. See also Proposition 1 in [21].

Theorem 3.1 For a given c2m ∈ R
2m, the Hankel matrix H(c2m) is positive semidef-

inite if and only if c2m ∈ C2m. Furthermore, Dm := det
(
H(c2m)

) = 0 if and only if
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every distribution function G such that c j = ∫
�

φ j dG(φ), G is discrete with at most
m support points.

Now we explain how the result above can be applied in the context of estimating
the complexity of a finite mixture. Consider f0, a finite mixture of densities which
belong to some family F and let G0 be the associated discrete distribution function
with true complexity m0. Then, Theorem 3.1 says that

m0 = inf{m ∈ N : Dm = 0}, (3.1)

where Dm , as above in Theorem 3.1, is the determinant of H(c2m) with

c2m =
(∫

�

φdG0(φ), . . . ,

∫

�

φ2mdG0(φ)

)
.

In other words, the correct order of the mixture is the first integer which sets
the determinant to zero. But the theorem implies also that Dm = 0 for all m ≥
m0. This characterizing feature of the true complexity is exploited to construct a
sensible estimator. Indeed, assuming that it is possible based on the random sample
(X1, . . . , Xn) to obtain a strongly consistent estimator of any j-th moment of G0, ĉ j
say, then the Hankel estimator of m0 proposed in [21] is given by

m̂n = argminm∈N
{
|D̂m | + amln

}
(3.2)

where

D̂m = det
(
H(ĉ2m)

)
, with ĉ2m = (

ĉ1, . . . , ĉ2m)T ,

{am}m≥1 is a positive and strictly increasing sequence, and {ln}n≥1 a positive sequence
satisfying limn→∞ ln = 0 (we have omitted writing the subscript n in the notation of
the estimators of the moments and determinants).

Clearly, the term amln is acting as a penalty. Adding a penalty term to |D̂m | is nec-
essary because otherwise minimizing ofm �→ |D̂m | alone might yield an inconsistent
estimator. In fact, strong consistency of ĉ j implies that |D̂m | is a strongly consistent
estimator of the true value |Dm | = Dm (see our remark below). Since the latter is equal
to 0 for all m ≥ m0, |D̂m | will be close to 0 for all m ≥ m0, which might result in
choosing a value which is strictly larger thanm0. Under some additional assumptions,
consistency of m̂n as defined above in (3.2) can be established as shown in Theorem
1 of [21]. We recall this result below.

Theorem 3.2 If for all integers j,m ≥ 1 we have that

ĉ j → c j and
D̂m − Dm

ln
→ 0

almost surely as n → ∞, then m̂n → m0 a.s. as n → ∞.
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Remark 3.1 Recall that Dm = det
(
H(c2m)

)
. Thus, Dm seen as a multivariate real

function of c1, . . . , c2m (the components of c2m), is infinitely differentiable. Thus,
if ĉ j is a strongly consistent estimator of c j for any integer j ≥ 1, then D̂m =
det

(
H(ĉ2m)

)
is also a strongly consistent estimator of Dm . Furthermore, amultivariate

weak convergence of ĉ2m toward c2m as in the case where a multivariate Central Limit
Theorem applies, the estimator D̂m will converge weakly to Dm at a rate that is as fast
as that of ĉ2m . Typically, the estimators ĉ j will result from considering some empirical
estimators which we know to be asymptotically normal. Below, we will touch upon
this point in some more detail.

Remark 3.2 In the light of Remark 3.1, the condition (D̂m−Dm)/ln →a.s. 0, ∀m ∈ N

made in Theorem 3.2 is satisfied in case (ĉ j − c j )/ln →a.s. 0 for all j ∈ N. A typical
situation is when

√
n(ĉ j − c j ) →d N (0, σ 2

j ) (for some σ j > 0) and ln is such that√
nln → ∞ in addition to ln →d 0.

Without going into the full proof of Theorem 3.2, let us give some intuition for the
condition (D̂m − Dm)/ln →a.s. 0, ∀ m ∈ N. We have that

|D̂m | + amln =
⎧
⎨

⎩

ln
(∣∣∣ D̂m−Dm

ln
+ Dm

ln

∣∣∣ + am
)

, for m < m0

ln
(
| D̂m−0

ln
| + am

)
, for m ≥ m0.

From the characterization if m0 in (3.1), it follows that Dm �= 0 for m < m0
implying that

∣∣∣∣
D̂m − Dm

ln
+ Dm

ln

∣∣∣∣ → ∞

almost surely as n → ∞, whereas

∣∣∣∣
D̂m − 0

ln

∣∣∣∣ + am → am

for all m ≥ m0, with am > am0 ,∀ m > m0 since the sequence {am}m≥1 is assumed to
be strictly increasing. Thus, we expect that as n → ∞ the minimum of the penalized
criterion to be achieved at m0.

The statement about consistency of m̂n can be made more refined under additional
regularity conditions. More precisely, suppose that for any integer m ≥ 1 there exist
integrable functions ψ j and f j for j = 1, . . . , 2m such that the j-th moment of G0 is
given by

c j = f j
(
E[ψ2m(X)]),
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where E[ψ2m(X)] = (
E[ψ1(X)], . . . ,E[ψ2m(X)])T . Define the estimator m̂n the

same way as above with

ĉ j = f j

(

n−1
n∑

i=1

ψ2m(Xi )

)

, j = 1, . . . , 2m.

We have the following theorem. See also Theorem 2 in [21].

Theorem 3.3 Denote by f2m the multivariate function defined as f2m(t2m) =
( f1(t2m), . . . , f2m(t2m)) for t2m = (t1, . . . , t2m)T ∈ R

2m. Suppose that for any
m ≤ m0,

• t2m �→ det
(
H( f2m(t2m))

)
is Lipschitz with respect to some norm on R2m,

• for any m ≤ m0 the generating functions u �→ ∫
exp(uψ j (x)) f0(x)dμ(x) exist

in a neighborhood of 0 for all j = 1, . . . , 2m.

Furthermore, assume that n1/2ln → ∞. Then, there exists a constant d > 0 and
integer n0 > 0 such that for all n ≥ n0

P(m̂n ≤ m0) ≤ 4m0e
−dnl2n .

The main argument in the proof uses judicious upper bounds on the probabilities
P(m̂n ≤ m0) and P(m̂n > m0) based on concentration inequalities that involve the
Cramer transform of the logarithm of the generating function of the centered random
variables ψ j − E[ψ j (X)] for j ∈ {1, . . . , 2m} and m ≤ m0. Before commenting
on the result itself, we would like to give some examples, which are relevant for the
simulations section coming ahead.
Example 2:Mixture ofGaussiandistributions.Consider afinitemixture ofGaussian
distributions with density

f0(x) = π1ϕ(x − θ1) + . . . + πm0ϕ(x − θm0), x ∈ R

with ϕ(x) = 1/
√
2π exp(−x2/2), and θ1, . . . , θm0 ∈ R. If X ∼ f0, then X has the

same distribution as Z + Y where Z ∼ N (0, 1) and Y ∼ G0 with G0 the mixing
distributionwith support points θ1, . . . , θm0 andmixing probabilitiesπ1, . . . , πm0 such
that Y and Z are independent. Thus, for any j ≥ 1

E(X j ) =
j∑

k=0

(
j

k

)
E(Y k)E(Z j−k) =

j∑

k=0

(
j

k

)
ckμ j−k

where μ0 = 1 and for an integer r ≥ 1

μr =
{
0, if r is odd

(r − 1)!!, if r is even,

where x !! denotes the semifactorial of a number x .
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Thus, the vector of moments c2m satisfies the triangular linear system c2m = BV
where B = A−1 and A is the lower triangular (2m) × (2m) matrix

A =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
3 0 1 0 . . . 0 0
...

...
...

...
...

...
...

0
(2m
2

)
0

(2m
4

)
0

... 1

⎞

⎟⎟⎟⎟⎟⎟
⎠

and

V =
(
E[X ],E[X2] − 1, . . . ,E[X2m] − (2m − 1)!!

)T
.

In this case, we have c j = ∑2m
k=1 Bjk

(
E[Xk] − (k − 1)!! Ik∈2N

)
. Thus, for location

mixtures of Gaussian distributions we have shown that

ψ j (x) = x j , and f j (t2m) =
2m∑

k=1

Bjk (tk − (k − 1)!! Ik∈2N) (3.3)

for j ∈ {1, . . . , 2m}.
More examples are available in Appendix A in the supplementary materials.
Now we turn to commenting on Theorem 3.3. Although the result of that theorem

seems to give an actual guarantee on the consistency of m̂n , the exponential bound on
the probability of being wrong about m0 depends on n0 and a constant d which are
unknown. In case d is small and n0 quite big, then consistency will not be observed for
moderate and even big sample sizes: one would need an unrealistically huge number
of observations to find the true complexity. Another problem is the estimation of the
moments c j , j = 1, . . . , 2m for large values of m. Although the method does not
require to put an upper bound on m while finding the minimum of |D̂m | + amln one
has to choose some maximum admissible value for the mixture complexity. For large
values of m the j-th moment c j can become very large. When this is combined with
a low quality estimator ĉ j , D̂m may be far away from 0, which is known to be the
theoretical value for m ≥ m0. Such a phenomenon is illustrated using mixture of
Gaussian distributions

f0(x) = 0.3ϕ(x − 10) + 0.4ϕ(x − 13) + 0.3ϕ(x − 17). (3.4)

In Table 1 we give the first 8 theoretical moments c j of the mixing distribution and
the mean value of their estimates ĉ j based on 100 replications for each of the sample
sizes shown in the table. Table 2 gives the corresponding mean value of D̂m as well
as its penalized versions with am = m and ln = log n/

√
n or ln = √

log n/
√
n for

m ∈ {1, 2, 3, 4} computed on the basis of the same replications. It is clear from the
values of Table 2 that m̂n = 1 even for this very well-separated mixture and for the
large sample size n = 104.
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Table 1 The true and estimated moments c j and ĉ j for j ∈ {1, . . . , 8} of the mixing distribution of the
3-component mixture of Gaussian distributions given in (3.4)

Moment 1 2 3 4 5 6 7 8

True 13.3 184.3 2652.7 39480.7 604474.3 9471994.3 151201008.7 2449019520.7

n=100 13.283563 182.8470 2629.657 39006.33 595118.8 9353091 151033513 2431283379

n=1000 13.283277 184.4480 2652.951 39577.2 605040.4 9387062 150987763 2442459055

n=10000 13.305595 184.3422 2654.195 39501.67 604184.9 9493822 151502080 2446657287

Table 2 Themean value of |D̂m | and the penalized criterion |D̂m |+mln , m ∈ {1, 2, 3, 4}with the penalties
ln = log n/

√
n and ln = √

log n/
√
n, for the 3-component mixture of Gaussian distributions given in (3.4)

D̂m 1 2 3 4

n = 100 7.309245 239.1515 25703.188 81305942.21

n = 1000 7.413671 254.7251 8757.417 11693620.8

n = 10000 7.414803 254.6395 2690.280 1564924.88

D̂m + m log n/
√
n 1 2 3 4

n = 100 7.769762 240.0725 25704.57 81305944

n = 1000 7.632113 255.162 8758.072 11693622

n = 10000 7.506906 254.8237 2690.556 1564925

D̂m + m
√
log n/

√
n 1 2 3 4

n = 100 7.523842 239.5807 25703.832 81305943

n = 1000 7.496784 254.8913 8757.666 11693621

n = 10000 7.445152 254.7002 2690.371 1564925

The mean values were computed on the basis of 100 replications. In bold we indicate where the value at
which the penalized criterion is minimal

Next, we examine what happens in a 2-component mixture of geometric distribu-
tions. To this aim, we consider the pmf

f0(x) = 0.4(1 − 0.3)0.3x + 0.6(1 − 0.8)0.8x , x ∈ {0, 1, 2, . . .}. (3.5)

The parametrizationwe chose implies that f0 is amixture of geometric distributions
with success probability 0.7 and 0.2 respectively. In Table 3 one can see that the
moments are accurately estimated for all sample sizes. However, the results of Table 4
indicate that the estimator m̂n fails often to pick the correct mixture complexity, here
m0 = 2 for the penalties amln = m log n/

√
n and amln = m

√
log n/

√
n.

Our decision to take the penalty amln = m log n/
√
n is based on the recommen-

dation made in [21]. The second penalty amln = m
√
log n/

√
n was added in these

simulations in order to compare the results obtained with the basic approach of [21]
with the first modification we propose below and which is based on scaling the esti-
mates of the determinants.
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Table 3 The true and estimated moments c j and ĉ j for j ∈ {1, . . . , 6} of the mixing distribution of the
2-component mixture of geometric distributions given in (3.5)

Moment 1 2 3 4 5 6

True 0.6 0.42 0.318 0.249 0.197 0.157578

n=100 0.59540 0.4186 0.3184 0.2448 0.1966 0.157

n=1000 0.59520 0.417 0.3174 0.255 0.1922 0.1568

n=10000 0.597200 0.4198 0.331 0.2434 0.1906 0.1552

Table 4 The mean value of |D̂m | and the penalized criterion |D̂m | + mln ,m ∈ {1, 2, 3} with the penalties
ln = log n/

√
n and ln = √

log n/
√
n for the 2-component mixture of geometric distributions given in (3.5)

D̂m 1 2 3

n = 100 0.063841 0.0024611 8.2715310−5

n = 1000 0.05867468 0.0006766619 9.05786310−6

n = 10000 0.05940753 0.0002569579 1.02324210−6

D̂m + m log n/
√
n 1 2 3

n = 100 0.5243580 0.9234951 1.3816338

n = 1000 0.2771171 0.4375615 0.6553363

n = 10000 0.1515109 0.1844638 0.2763112

D̂m + m
√
log n/

√
n 1 2 3

n = 100 0.27843760 0.43165431 0.64387252

n = 1000 0.14178759 0.16690248 0.24934778

n = 10000 0.08975607 0.06095404 0.09104665

The mean values were computed on the basis of 100 replications
Bold are those obtained for the true complexity of the mixture

The inconsistency noted in these examples, despite the nice theoretical guarantees
of convergence of m̂n , are due to different reasons. In theGaussianmixture, the penalty
plays almost no role as |D̂m | dominates with values that are blowing up as we let m
take larger values. For this reason, the estimator picks m = 1 in all cases. In the
geometric mixture, the picture is completely reversed since the moments c j ∈ (0, 1)
and hence get smaller for larger orders j . This causes |D̂m | to decrease withm. In this
case, the penalty dominates and again m = 1 is often found as the minimizer of the
penalized criterion.

The basic approach of [21] can suffer from serious underestimation (or overestima-
tion) of the truemixture complexity evenwhen the sample size is very large.Moreover,
the question of how to choose the penalty term amln is not really settled in [21]. In fact,
a penalty which would work for a certain family of distributions could perform miser-
ably for another. A traditional approach here would be to resort to cross-validation to
decide on an optimal choice for the penalty. Although this is a very important aspect
of the problem, we choose not to pursue it here.
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3.2 Modification of the Basic Approach Using Scaling

Thediscussion above reveals thatwhile the estimator definedby [21] is quite appealing,
it is very difficult to achieve consistency in practice. The main problem resides in that
the method does not exploit any knowledge about the variability of |D̂m |. Without
integrating the information about how these random variables behave stochastically
(for n large enough), it would be almost impossible to say for example whether a
small value obtained for |D̂m | can be seen as an indication that the true determinant is
really equal 0. One way of circumventing the above issue is to use a rescaled version
of this estimator. The starting point here is to use the already noted fact that the true
determinant of theHankelmatrix ofmoments c2m �→ Dm is an infinitely differentiable
function on R

2m . Thus, assuming that we can use the Central Limit Theorem to the
vector of estimators ĉ2m , then for any fixed m > m0 we get by applying the δ-method
that

√
n
(
D̂1 − D1, . . . , D̂m0−1 − Dm0−1, D̂m0 − 0, . . . , D̂m − 0

)T →d Wm (3.6)

where Wm = (W1, . . . ,Wm)T ∼ N (0, �), with � some nonnegative definite matrix
of dimension m × m.

Although the covariance matrix � is unknown it can be estimated using re-
sampling techniques. Here, we focus only on estimating the diagonal elements of
�, σ 2

1 , . . . , σ 2
m . By sampling B times with replacement from the original sample

(X1, . . . , Xn) we obtain a new sample (X∗
1, . . . , X

∗
n) which can be used to compute

the bootstrap determinants {D̂∗
1 , . . . , D̂

∗
m}. Repeating this procedure B times allows

us to estimate σ j/
√
n by computing the standard deviation σ̂ ∗

j of the bootstrap sample

(D̂∗b
j , b = 1, . . . , B, j = 1, . . . ,m). As the setting here is very standard, it follows

that as n, B → ∞ σ̂ ∗
j ≈ σ j , j = 1, . . . ,m in probability.

As mentioned in the previous section, the true order of the mixture can be assumed
to be smaller than some given value m = mmax ; i.e., the search of the minimizer
of the penalized criterion will be performed in the set {1, . . . ,mmax }. Assuming that
mmax > m0, define the rescaled vector

(
D̂1

σ̂ ∗
1

, ...,
D̂m0−1

σ̂ ∗
m0−1

,
D̂m0

σ̂ ∗
m0

, ...,
D̂mmax

σ̂ ∗
mmax

)T

:=
(
Y (n)
1 , ..., Y (n)

m0−1,Y
(n)
m0

, ..., Y (n)
mmax

)T
.

Thus, we redefine the estimator m̂n as

m̂n = argminm∈{1,...,mmax }
{|Y (n)

m | + am
√
nln

}
. (3.7)

We will not give a formal proof of consistency of m̂n . The latter, however, can be
intuitively seen to hold since it follows from the weak convergence in (3.6) that

|Y (n)
m | → ∞, for m = 1, . . . ,m0 − 1,
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Table 5 Proportion of the time the scaled Hankel estimator is equal to m0 = 3 in the example of the finite
mixture of Gaussian densities given in (3.4)

n 100 1000 10000

ln = log n/
√
n 0 0.98 1

ln = √
log n/

√
n 0.63 0.99 1

The proportions are computed on the basis of B = 500 and 100 independent replications

Table 6 Proportion of the time the scaled Hankel estimator is equal to m0 = 2 in the example of the finite
mixture of geometric probability mass functions given in (3.5)

n 100 1000 10000

ln = log n/
√
n 0 0 1

ln = √
log n/

√
n 0.16 0.75 1

The proportion is computed on the basis of B = 500 and 100 independent replications

and

(|Y (n)
m0

|, . . . , |Y (n)
mmax

|)T →d (|Y1|, . . . , |Ymmax−m0+1|)T

where (Y1, . . . ,Ymmax−m0+1)
T is a multivariate Gaussian vector with a covariance

matrix having all its diagonal terms equal to 1. One the one hand, this implies that for
any integerm ∈ {1, . . . ,m0 −1} the probability thatm is the location of the minimum
should decrease as n → ∞. On the other hand, for m ≥ m0 the penalty am

√
nln

becomes the dominating term. Since am increases with m, the minimum is achieved
at m0 with increasing probability.

In the following, the examples considered above will be revisited using this mod-
ified approach to see to what extent the estimation accuracy is ameliorated. More
specifically, we use the scaling approach described above to compute the proportion
of times the alternative estimator m̂n defined (3.7) is equal to the true complexity
in 100 independent replications. In both examples, we have taken mmax = 8. The
number of bootstrap replications was taken to be B = 500. From Table 5 and 6 , we
see how the results drastically improve with the scaling method for the sample sizes
n = 1000, 10000 with 100% or close for the recovery of the true complexity. The
improvement seems to be more pronounced with the choice of penalty m

√
log n/

√
n.

Thus, one conclusion that can be drawn here is that the method would greatly benefit
from comparing the performance of different penalties. As mentioned above, such a
comparison can be done using some cross-validation approach.

3.3 Modification of the Basic Approach Using Bootstrap

A specific feature of the Hankel matrix of moments methods discussed previously is
the possibility to estimate the order of the mixture without estimating the parameters.
However, it seems that there might be a high price to pay for avoiding this part: some
of the essential features of the mixture may not be captured by the determinant alone,
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Table 7 Proportion of the time the modified Hankel estimator is equal to m0 = 3 in the example of the
finite mixture of Gaussian densities given in (3.4)

n 100 1000 10000

Proportion of times m̂n = 3 0 0 0

The proportions are computed on the basis of B = 500 and 100 independent replications

which can lead to the wrong answer with a “bad” penalty, even for very large sample
sizes. Furthermore, in many applications it may be desirable to obtain the estimator
of the order of the mixture as well as the estimators of all the parameters. We describe
here another modification that is suited for this purpose. It is in essence a sequential
testing procedure in which some statistic computed from the data is compared with a
critical value obtained e.g. by re-sampling from the assumed theoretical model.

The said statistic can be taken to be either the determinant of the Hankel matrix
D̂m as in the basic approach proposed by [21] or its rescaled version as described in
the previous section. The idea is to replace minimizing the objective function in (3.2)
or (3.7) by taking a reject/accept decision regarding whether the current value of m
is equal to the true complexity. We describe this procedure only when the statistic
is taken to be equal to D̂m since the modifications are rather obvious for the scaled
version thereof:

• for m ∈ {1, . . . ,mmax }, compute D̂m and the maximum likelihood estimator
(MLE) θ̂m of θm0 based on the given sample X1, . . . , Xn ;

• from f
θ̂m
, the corresponding estimate of the mixture density, generate a large

number, B, of samples of size n to obtain a sequence of statistics {D̂∗b
m }1≤b≤B .

Let q̂m,B,α/2 and q̂m,B,1−α/2 be the the empirical (α/2)- and (1−α/2)−quantiles
based on this bootstrap sample;

• if m = mmax or q̂m,B,α/2 ≤ D̂m ≤ q̂m,B,1−α/2, then take m̂n = m, otherwise
repeat the previous steps with m + 1.

The procedure described above is not new in the context of estimating a mixture
complexity. In fact, a similar approach will be encountered below with the only differ-
ence that it is based either on some minimum distance estimation or likelihood ratio
statistic (see Sects. 4 and 5 ). In a nutshell, one sequentially tests

Hm
0 : m0 = m versus Hm

1 : m0 > m (3.8)

and declares as an estimate for m0 the first value of m for which Hm
0 is not rejected.

In Table 7 and 8 we report the proportion of the time the sequential procedure
described above gives the correct mixture complexity for the same finite Gaussian and
geometric mixtures given in (3.4) and (3.5) respectively.

From the simulations results obtained in Table 7 and 8 we can see that this other
modification of the original Hankel matrix method is less successful for the Gaussian
mixture but still works well for the geometric one. This might be explained again
by the large values of the higher-degree moments of the Gaussian distribution which
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Table 8 Proportion of the time the modified Hankel estimator is equal to m0 = 2 in the example of the
finite mixture of geometric probability mass functions given in (3.5)

n 100 1000 10000

Proportion of times m̂n = 2 0.25 0.96 0.94

The proportion is computed on the basis of B = 500 and 100 independent replications

impact heavily the quality of estimating the determinants. This is not at all an issue
with the geometric distribution whose moments are much easier to estimate.

3.4 Extension of the Hankel Matrix Approach using Neural Networks

The conclusions achieved on the basis of the simulation study, summarized in Sect. 6,
stipulate that there is a need of search for a more reliable and universal mixture
order estimation technique that would yield more precise estimates irrespectively of
the underlying scenario. Obviously, the approaches we have already examined yield
estimators which depend on the features involved in a non-linear fashion. To this
extent we decided to turn our attention the popular statistical tool designed specifically
for modelling nonlinearities between the sets of input and output variables - Neural
Networks (NNs), in the hope that they might identify patterns and relationships that
the other approaches cannot capture.

For the past decade the amount of research carried out in the field of NNs has expe-
rienced exponential growth, and a great multitude of NN types and classes have been
designed to successfully solve a wide range of problems. The simplest of these tasks
like image labelling or pattern recognition are usually solved by feed-forward network
architectures such as the multi-layer perceptron (MLP), convolutional neural network
(CNN) or radial basis function network (RBFN). More sophisticated tasks such as
speech recognition or text translation require more complex interactions between the
layers of the network, which are implemented in such architectures as long-short-term
memory (LSTM).

At this stage of our research we are not aiming at estimating the whole mixture
model (finding the optimal complexity as well as all its parameters) but only pursue the
goal of identifying the number of subgroups in the population based on the observed
data. Thus, when cast into the NN framework, the problem of estimating the number
of components in a mixture can be viewed as a supervised multiclass classification
problem and the relevant questions that need to be addressed are

• discovering the most informative features to be fed into the NN and
• devising an adequate design for the training set;
• proposing the optimal NN architecture;
• choosing the learning algorithm;
• determine whether a universal architecture for multiple families of distributions
can be found;

• understanding whether using NNs is beneficial compared to the other methods.
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Fig. 1 Sample MLP architecture

It seems natural to start the search for a well-suited network by browsing first
thorough the simplest class of the NNs: the multilayer perceptron (MLP). Despite of
their relative simplicity, networks with just two layers can approximate any continuous
functional mapping [12]. One of the simplest possible architectures of the considered
model with only two hidden layers is depicted in Fig. 1.

The input features x1, . . . , xd , d ≥ 1, the first and the second hidden layers consist
of u and r neurons respectively, the weights vector ω is learned by optimizing the loss
function J (ω = (ω

(1)
1,1, . . . , ω

(3)
6,r )

T ), which is taken to be the cross entropy function,
which is most often used in multiclass classification tasks such as ours:

J (ω) = 1

m

m∑

k=1

[
zk log

(
p̂k(ω)

) + (1 − zk) log
(
1 − p̂k(ω)

)]
,

where

zk =
{
1, if m0 = k, with k = 1, 2, 3, 4, 5, 6,

0, otherwise

are known labels for each of the generated vector of features in the training sample.
To this end, the choice over the optimal configurations is restricted to deciding on

the number of hidden layers in the network, the number of neurons in each layer and
the corresponding activation functions, the loss function and the learning algorithm.

For estimating the order of a mixture using a NN, one needs an appropriate assump-
tion on the possible maximal number of components. We take the maximum number
of components to be 6 for our task.
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Recall from Sect. 3 that Hankel’s criterion is backed by elegant, orderly statistical
theory, however the method’s performance turns out to be rather poor in practice. We
use Hankel matrix determinants as inputs to the MLP to try to improve the estimation
results by exploiting the information concentrated in the determinants without resort-
ing to the use of any penalty function. Our experience reveals that using sequences
of the first 6 Hankel matrix determinants of the mixing distribution as inputs leads to
improved results when compared to other tested options. For this reason we regard
this approach as an extension to the original Hankel technique.

Using the sequence of the Hankel determinants as inputs produced resulted in
high performance for the Geometric mixtures, but showed poorer performance for the
Poisson mixture due to the fact that the determinants for the Poisson mixtures tend to
blow up while those for the Geometric mixtures stay bounded within a [0, 1] interval.
For that reason the inputs for the Poisson mixture had to be modified. One of the
modifications led to good performance was the relative changes in the absolute values
of the Hankel determinants:

xk =
⎧
⎨

⎩

|D̂1|, k = 1
|D̂k |−|D̂k−1|

|D̂k−1| , k ∈ 2, . . . , 6.
(3.9)

To ensure the variety of the training examples, the characteristics and structure
of the data that is used for prediction should be scrutinized and taken into account.
The training set should be designed to be as representative as possible of the data of
interest. The following procedure can serve as a useful example. For the considered
mixtures distributions the parameters for each mixture component is chosen without
replacement from a grid with a pre-specified step to insure that these are distinct. A
grid on [0.05, 1] with step 0.05 for the geometric distribution should do well in most
of the applications. A grid on [1, 20] with step 1 for the Poisson can be taken if the
expected rate of occurrences is believed not to exceed 20 by much and the parameters
of subpopulations are separated by at least 1 unit. The step value can be reduced if
more precision is desired. The mixing proportions can be taken on a gird with an
appropriate step size in a similar way, in this case replacement is allowed and the
generated results should be normalized. The mixtures with the parameters obtained
in this way are then used for generating samples. It seems to be useful to enrich the
training data set by simulating several times from each of the resulting mixtures to
account for possible variation in the sample populations during the training.

The 6 output neurons of the output layer is further processed by softmax activation
function σ : R6 −→ [0, 1]6, which ensures that the estimated class probabilities live
between 0 and 1 and sum up to 1:

p̂k = σ(q̂)k = eq̂k
∑6

k′=1 e
q̂ ′
k
,

where q̂k us the resulting value of the k-th output neuron.
Whenever optimizing the loss function, the value of the learning rate becomes of

importance: when too small, the weights of the NN are hardly updated, and much time
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is needed for the network to find a solution; when too large, the weights are updated in
large increments, and overshooting the optimum becomes highly probable. In the case
of mixture order estimation the value of the learning rate is influenced by the values
of the parameters of the mixtures in the training set: an efficient learning rate for the
geometric mixtures, where the parameters lie within (0, 1] and thus higher precision
is required to separate the components, will be smaller than for Poisson or Gaussian
mixtures where the parameters can range from 0 to 20.

The output of the MLP is a vector of estimates of the class probabilities, that is,
the probabilities of an observation (represented by either a sample from a mixture
distribution or a vector of alternative relevant features) belonging to each of possible 6
classes: p̂k, k ∈ {1, 2, 3, 4, 5, 6}. The predicted number of components in the mixture
is taken to be the class with the highest estimated probability:

m̂ = argmaxk p̂k .

The search for a successful model (done using KerasTuner library [54]) requires
examination of a large parameter space even for a simple network such as a MLP.
Combinations of several hyperparameters of the NN were kept track of in order to
identify the optimal NN architecture:

• activation function: relu, tanh, sigmoid
• number of layers: 1, 2, . . . , 9, 10
• neurons in each hidden layer: 10, 25, 40, . . . , 280, 295, 310
• dropout layer after the last hidden layer: dropout rate between 0 and 0.1
• learning rate for the optimization algorithm: 10−2, 10−3, 10−4

A set of 10000 samples was used for training the NN, the motivation being that
taking the mo- ments and determinants as the features requires quality estimation
thereof. Therefore, while a sample of this size is rarely available in real-world datasets,
the emphasis was placed on finding a neural network that would perform well if the
estimates are good. In practice, a neural net- work trained with 10000 samples still
predicts well when the test sample size is much smaller.

Unfortunately, we were not able to find a single MLP specification that would work
equally well for all considered families of distributions - Gaussian, geometric and
Poisson. Table 9 presents three different MLP configurations for Gaussian, geometric
and Poisson mixtures that achieved satisfactory performance in our simulations. The
predicted class probabilities as well as prediction accuracy on a number of test cases
for networks with the denoted specifications can be found in Sect. 6.

4 Methods Based onMinimumDistance Estimators

4.1 General Setting

The estimation techniques discussed in this section are mainly based on the works
[69, 74, 75]. Additional relevant references will be mentioned below. In a nutshell,
these techniques use the minimal distance between a consistent estimator of f0, f̂n
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Table 9 NN configurations for Gaussian, geometric and Poisson mixtures

NN characteristics Gaussian Geometric Poisson

Inputs Relative changes in
Hankel determinants

Moments Relative changes in
Hankel determinants

Activation function relu relu sigmoid

Hidden Layers 4 3 2

Neurons in Layer 1 205 200 200

Neurons in Layer 2 115 150 200

Neurons in Layer 3 70 100 –

Neurons in Layer 4 70 100 –

Dropout rate 0.03 0.03 –

Learning rate 0.0001 0.0001 0.001

say, and an estimator of the latter in the class of finite mixtures with m components
m ≥ 1. Using the notation of Sect. 2, this means that the estimator of the true m0
will be based on the projection of f̂n on the class Fm,m ≥ 1 in a sense that will be
determined. As noted above, these classes are nested; i.e., Fm ⊂ Fm+1. Thus, the
basic approach stops at the first m where the projection on Fm+1 does not bring a
substantial improvement over the projection on Fm . One main feature of the methods
investigated in this section is that one performs estimation of the parameters of the
mixture as well as the mixture complexity.

In the above mentioned papers, the projection of Fm makes use of the Hellinger or
the L2 distances. The estimation method suggested in [74] is built upon a model selec-
tion procedure by sequentially fitting the nested mixture models. Thus, the method
is reminiscent of the sequential testing approach already encountered above for the
second modified version of the determinant of the Hankel matrix of moments. The
procedure allows at each iteration to search over a higher class by adding one com-
ponent to the mixture and find the best model within each class until adding another
component brings no more benefit in the sense that it decreases the objective loss
function by an amount smaller than a specified tolerance level. In the sequel, we con-
sider only the situation where the dominating measure, μ, is either the counting or
Lebesgue measure. In the first case, the nonparametric estimator of f0 is the empirical
probability mass function given by

f̂n(x) = 1

n

n∑

i=1

I(Xi = x), x ∈ X . (4.1)

In the second one where X is absolutely continuous, we consider a kernel density
estimator with fixed or random bandwidth cn :

f̂n(x) = 1

ncn

n∑

i=1

K

(
x − Xi

cn

)
, (4.2)

123



Journal of Statistical Theory and Practice (2022) 16 :60 Page 27 of 49 60

where K is some standard kernel function.

4.2 TheMinimumDistance Estimator: The Basic Approach

In the following, let F denote the class of densities that are mixed. Also, let D be
either the Hellinger or L2 distance, that is for two densities f and g with respect to μ

we have either

D2( f , g) = 1

2

∫

X

(√
f (x) − √

g(x)
)2

dμ(x)

= 1 −
∫

X

√
f (x)

√
g(x)dμ(x) = H2( f , g)

or

D2( f , g) =
∫

X
( f (x) − g(x))2 dμ(x) = L2

2( f , g).

Recall the following notation from Sect. 2: For a given

tpm = (π1, . . . , πm,φd,1, . . . ,φd,m)T ∈ �pm

where pm = m(d+1)−1, we denote by f tpm them-component mixture density given
by f tpm (x) = π1 fφd,1(x)+ . . .+πm fφd,m

(x). For a given density f , we now consider
the functional

θDpm ( f ) =
{
θ pm ∈ �pm : D( fθ pm

, f ) = min
tpm∈�pm

D( f tpm , f )
}
.

provided that the minimum exists. Here, θDpm ( f ) denotes the set of all minimizers
as uniqueness of the solution is not guaranteed. Note that our notation is different
from the one used in [8], [74], [75] and [69]. In case f = f̂n , we have the following
definition: for a given m and the non-parametric estimator f̂n defined above in (4.1)
or (4.2), the minimum distance estimator with respect to D of θ pm is defined as

θ̂
D
pm = θDpm ( f̂n) (4.3)

provided that a minimizer exists.
Proving existence of a minimizer θDpm ( f ) for some given density f requires careful

argumentation under some regularity conditions. When D is the Hellinger distance,
Theorem1 in [8] gives a proof of this existence under the condition that tpm �→ f tpm (x)
is continuous for almost every x ∈ X , that themixture is identifiable and the parameter
space �pm = Sm−1 × �m is compact. Also, the same theorem proves uniqueness of
θDpm ( f ) in case f is itself a finite mixture. In order words, if f = fθ pm

, then θDpm ( f ) =
θ pm . This can be easily seen as an immediate consequence of identifiability. When D
is the L2 distance and μ is the counting measure on the set of non-negative integers,
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then [69] show a similar theorem while relaxing the condition of compactness on the
parameter space. The main building block in the proof is to show that the mapping

tpm �→
∞∑

x=0

(
f (x) − f tpm (x)

)2 = ‖ f − f tpm ‖22

is continuous. In the discrete setting considered in [69], a proof of the continuity prop-
erty can be based on a slightly different argument. Indeed, if t(k)pm is a sequence converg-
ing to tpm as k → ∞, then byMinkowski’s inequality (also used in page 4252 of [69])

∣∣∣‖ f − f tpm ‖2 − ‖ f − f t(k)pm
‖2

∣∣∣ ≤ ‖ f tpm − f t(k)pm
‖2

≤
∞∑

x=0

| f tpm (x) − f t(k)pm
(x)|,

using that a pmf is always bounded by 1.

The latter sum converges to 0 by continuity of tpm �→ f tpm (x) and application of
the Sheffé’s Theorem. For existence of a minimizer when D is the L2-distance, [69]
makes the assumption that for the pmf f to be projected, for any m there exist some
compact C (which depends onm but we omit writing this dependence explicitly), and
θ∗
pm such that

inf
g∈�pm \C D( f , g) > D( f , fθ∗

pm
).

Such an assumption is not needed in case �pm is itself compact. Also, the compact
C is rather abstract and one only needs to exhibit its existence in some way. It is
clear that even when θDpm ( f ) is not a singleton, we have fθ pm

= fθ ′
pm

a.e. for two

minimizers θ pm , θ ′
pm ∈ θDpm ( f ). When f = f̂n , we will denote the corresponding

density fθ pm
(or fθ ′

pm
) by f̂ Dm . Note that we have omitted the subscript n, and replaced

pm by m for the sake of a lighter notation. By definition of θDpm ( f ) we have

f̂ Dm = argming∈Fm
D( f̂n, g). (4.4)

For f = f0 ∈ Fm0 we write

f Dm = argming∈Fm
D( f0, g). (4.5)

Note that f Dm = f0 for all m ≥ m0. The roles of f̂ Dm and f Dm will become clear
below. Although our notation for those projections is different from the one used in the
aforementioned papers, our choice is driven by our desire to maintain some notational
coherence throughout this survey.

Now, we describe how the basic approach works with the minimum distance esti-
mators. The estimation procedure as outlined in [74] is much inspired by the work of
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[37]. The latter paper is however mainly focused on estimating the true complexity
of a finite mixture of Gaussian distributions using the Kullback-Leibler divergence
instead of the Hellinger (or L2) distance. There are two starting points of the basic
approach. The first one is to note that the true mixture complexity m0 satisfies

m0 = min{m : D2( f0, f Dm ) = 0} (4.6)

= min{m : D2( f0, f Dm ) = D2( f0, f Dm+1)}
= min{m : D2( f0, f Dm ) ≤ D2( f0, f Dm+1)}. (4.7)

While the identity in (4.6) is a direct consequence of identifiability, the one in (4.7)
is less obvious. Note that this identity is proved if we show that for m ≤ m0 − 1,
D( f0, f Dm ) > D( f0, f Dm+1). A proof of this fact whenD is the Hellinger distance can
be found in p. 1485 of [74], where an auxiliary lemma (Lemma A.4) was used. For
the case whereD is the L2 distance, and for the sake of completeness, we give a proof
in Appendix C in the supplementary materials.

Based on the discussion above, it seems natural to search for the first m which
minimizes some empirical version of the distance D2( f0, f Dm ), namely D( f̂n, f̂ Dm ).
The second one is to recall once more the inclusion Fm ⊂ Fm+1. This implies that

D( f̂n, f̂ Dm+1) ≤ D( f̂n, f̂ Dm ).

The inequality abovemeans that without penalization it is in principle impossible to
find afinite orderwhich canbe taken as an estimator ofm0. This overfitting is accounted
for by adding a penalty term which is proportional to the number of parameters in the
mixture model. This yields the following criterion

D2( f̂n, f̂ Dm ) + bnvm, (4.8)

for some chosen sequences {vm}m and {bn}n such that the former is increasing and
the latter satisfies limn→∞ bn = 0. Note that in the works [74], [75] and [69], bnvm/n
is taken instead. Now, mimicking the property in (4.7) gives rise to the following
definition of the minimum distance estimator

m̂n = min
{
m : D2( f̂n, f̂ Dm ) + bnvm ≤ D2( f̂n, f̂ Dm+1) + bnvm+1

}

= min
{
m : D2( f̂n, f̂ Dm ) ≤ D2( f̂n, f̂ Dm+1) + αn,m

}
,

with αn,m = bn(vm+1 − vm).

If this minimum does not exist, then m̂n = ∞. The term αn,m can be seen as a
threshold so that an integer m is declared to be the estimator when the projection of
f̂n on the class Fm+1 yields an insignificant change in comparison with its projection
on the previous class Fm .

Strong consistency of the minimum distance estimator defined above result was
stated in Theorem 1 in [75] for the Hellinger distance and in the Consistency
Theorem Section in [69]. In the former, the nonparametric estimator f̂n is taken
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to be a kernel estimator, as defined above in (4.2), with bandwidth cn such that
limn→∞

(
cn + (ncn)−1

) = 0. In the latter, f̂n is the empirical probability mass func-
tion as given in (4.1). Now, the only condition assumed on αn,m in these convergence
theorems is that αn,m → 0 as n → ∞. This is of course guaranteed by the fact that
limn→∞ bn = 0. However, we believe that this statement is not accurate as is, since
the penalty needs to depend on the rate of convergence of f̂n to the true density f0.
This rate of convergence is known to depend on the smoothness of f0 and the ker-
nel K . In Appendix C in the supplementary materials, we explain why the condition
limn→∞ αn,m = 0 is not enough.

4.3 Modification of the Basic ApproachVia Bootstrap

In this section we propose a modification of the basic approach based on minimal
distance between the projection of a non-parametric estimator on the class of m-
component mixtures and this estimator augmented with some given threshold. We
resort in this modification to a parametric bootstrap procedure in order to avoid the
bad choice of a threshold. For a given integer m ≥ 1, consider the hypothesis testing
as in (3.8)

Hm
0 : m0 = m vs. Hm

1 : m0 > m,

and recall the estimator f̂ Dm as defined in (4.3). Let us now define

�m = D( f̂ Dm , f̂n) − D( f̂ Dm+1, f̂n).

To obtain the distribution of�m under the null hypothesis Hm
0 , we draw B indepen-

dent samples of size n from the fitted density f̂ Dm . For b = 1, . . . , B, we compute the

non-parametric estimators f̂ (b)
n , f̂ D,(b)

m and f̂ D,(b)
m+1 and the corresponding difference

�(b)
m = D( f̂ D,(b)

m , f̂ (b)
n ) − D( f̂ D,(b)

m+1 , f̂ (b)
n ).

If q̂B,α/2 and q̂B,1−α/2 denote the empirical α/2 and (1− α/2)-quantiles based on

the bootstrap sample (�
(1)
m , . . . ,�

(B)
m ), then Hm

0 is rejected if

�m /∈ [q̂B,α/2, q̂B,1−α/2]

and the current candidate m is replaced by m + 1. We take as our estimator for m0 the
firstm for which the null hypothesis is not rejected. Here, we report simulations results
for the two examples for finite mixtures considered above; see (3.4) and (3.5). In these
simulations, B = 500 and the sample sizes considered are n = 100, 1000, 10000. The
performance of the method proposed in this section is assessed through the proportion
of times the estimator is equal to the true complexity (3 and 2 respectively). We used
Hellinger distance for theGaussianmixture and L2 distance for the geometricmixture.
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Table 10 Proportion of the time the modified minimum-distance estimator is equal to m0 = 3 in the
example of the finite mixture of Gaussian densities given in (3.4)

n 100 1000 10000

Proportion of times m̂n = 3 0.27 0.94 1.00

The proportions are computed on the basis of B = 500 and 100 independent replications

Table 11 Proportion of the time the modified minimum-distance estimator is equal to m0 = 2 in the
example of the finite mixture of geometric densities given in (3.5)

n 100 1000 10000

Proportion of times m̂n = 2 0.47 0.96 0.99

The proportions are computed on the basis of B = 500 and 100 independent replications

From Tables 10 and 11 one can see that coupling the bootstrap with distance
minimization gives very promising results. The downsize of this modification remains
essentially the computational burden which comes with the resampling step.

5 Sequential Likelihood Ratio Tests with Bootstrap

Likelihood-based methods play a central role in statistical inference. Among these
methods the likelihood ratio test (LRT) is one of the most widely used in practice.
The LRT has a simple interpretation and enjoys the property of being invariant under
re-parametrization; see for example [41]. Furthermore, whenever certain regularity
conditions are satisfied Wilks’ theorem [71] says that, under the null hypothesis, it
converges weakly to a chi-square distribution as the sample size grows to ∞. The
degrees of freedom of the limiting chi-square distribution are determined by the dif-
ference of the dimension of the whole parameter space and that of the null space.
However, and as already mentioned above, the regularity conditions required for the
asymptotic theory to hold are not satisfied in the mixture problem. The issue is that
it is always possible to write a mixture model with m components as a model with
m + 1 components (or more) by setting some of the mixing probabilities to 0. Hence,
the true parameter under the null hypothesis lies on the boundary of the alternative
space. To better explain the problem, let us consider the example of testing whether a
random sample was generated from a (single) Gaussian distributionN (θ, 1) versus a
2-component Gaussian mixture, where each of the components has variance equal to
1. If f0 denotes the true density, then the goal is to test

H0 : f0(x) = ϕ(x − θ) vs. H1 : f0(x) = π1ϕ(x − θ1) + (1 − π1)ϕ(x − θ2)

for some θ ∈ R and θ1 �= θ2 ∈ R and π1 ∈ (0, 1). If we define here the likelihood
ratio as the ratio of the maximum likelihoods over the null and the whole space, then
the maximization needs to be done on R (the null space) and
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{
(θ1, θ2, π1) : θ1, θ2 ∈ R, π1 ∈ [0, 1]

}
= R

2 × [0, 1]

(equal to the whole parameter space; i.e., the union of the null and alternative spaces).
Thus, a density under H0 lies on the boundary in the sense that f0 results from either
setting the mixing probability π1 to 1 or 0 and taking θ1 = θ (or θ2 = θ ), or letting
θ1 = θ2 while π1 is arbitrary. In the classical setting, one of the main arguments which
leads to the chi-square distribution as the weak limit is the use of Taylor expansion up
to the second order of the log-likelihood at the global MLE around the true parameter.
We can refer here to the proof of Theorem 22 in [26] for well-explained and rigorous
arguments. Things then work because the true parameter is an interior point and has
a unique representation as an element in the whole parameter space. In the mixture
model setting, this argument does not work because, as it can be seen from the example
above, the true parameter has different representations under the null hypothesis where
it is on the boundary. This non-standard situation has triggered a strong interest for
either computational or theoretical investigation of the limit distribution of the LR
statistic under the null hypothesis. In this context, we can refer to [1], [64], [13], and
[47]. For a nice review of the papers on this subject, we can refer to Section 6.5 in
[49] among others. The main message that one can take from these works is that when
the limit distribution of the LRT can be simply described, it is a mixture of chi-square
distributions. Inmore complicated cases, this limit distribution is givenmore abstractly
by sups∈S max(0,Ys)2 where Y is some well-defined centered Gaussian process and
S is some suitable set. See for example [47] where it is shown that S is the ensemble
of cluster points of some generalized score.

In this section we review the sequential testing procedure based on LRT and use
of resampling for approximating the distribution of the test statistic under the null
hypothesis. This method was proposed in [38] for estimating the true complexity of a
finitemixture of Poisson. Although the focus therewas put on that family, the approach
can certainly be extended to other distributions. Consider again the hypothesis testing
problem

Hm
0 : m0 = m vs. Hm

1 : m0 > m.

Using the same notation as above, we define the maximum likelihood under Hm
0

and Hm
1 as

LX (θ̂ pm ) = sup
θ pm∈�pm

LX (θ pm ), and LX (θ̂ pm+1) = sup
θ pm+1∈�pm+1

LX (θ pm+1)

where LX denotes the likelihood function based on the sample X = (X1, . . . , Xn)

from the unknown mixture, and pm = m(d + 1) − 1. As in [38], consider the log-
likelihood ratio statistic

λ = −2
(
log LX (θ̂ pm ) − log LX (θ̂ pm+1)

)
(5.1)

Amixture with smaller number of components will be rejected in favor of the larger
model whenever the log-likelihood ratio statistic is large. Otherwise, the mixture will
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Table 12 Proportion of the time the LRT with bootstrap estimator is equal to m0 = 3 in the example of the
finite mixture of Gaussian densities given in (3.4)

n 100 1000 10000

Proportion of times m̂n = 3 0.26 0.97 1.00

The proportions are computed on the basis of B = 500 and 100 independent replications

Table 13 Proportion of the time the LRT with bootstrap estimator is equal to m0 = 2 in the example of the
finite mixture of Gaussian densities given in (3.5)

n 100 1000 10000

Proportion of times m̂n = 2 0.92 0.95 0.98

The proportions are computed on the basis of B = 500 and 100 independent replications

be declared to havem component in the absence of a strong evidence against it. Exactly
as in Sects. 3 and 4 , the decision against Hm

0 is taken sequentially starting withm = 1
until Hm

0 cannot be rejected, in which case m will be declared as the estimator of
m0. In view of the issues related with deriving the asymptotic distribution of the log-
likelihood ratio statistic, one can resort to a parametric bootstrap. As this is already
done above, the description of the procedure is omitted.

We give the results of this procedure for the two finite mixtures with m0 = 3 and
2 already considered above.

6 Simulation Results

In this section we describe the simulation results obtained for sample sizes n ∈
{50, 100, 500, 1000, 5000, 10000} using the procedures described in the previous
sections for finite mixtures of Gaussian, geometric and Poisson distributions with
m0 ∈ {2, 3, 4}. Throughout this study, unless explicitly stated otherwise, the standard
deviations for Gaussian mixture components are assumed to be 1. For the minimum
distance-based methods, we follow the recommendations made in the relevant papers
[75] and [69] and use the following two penalty functions αn,m , with m denoting the
stipulated mixture order and n the sample size:

• the penalty based on the Akaike Information Criterion (AIC)

αn,m = 0.6
n log

(
m+1
m

)
for the L2 distance and αn,m = 2

n for the Hellinger distance

• the penalty based on the Schwarz Bayesian Criterion (SBC)

αn,m = 0.6 log n
n log

(
m+1
m

)
for the L2 distance and αn,m = log n

n for the Hellinger

distance.

For all simulations, we used 500 replications to compute the frequencies of an exact
recovery of the true complexity. These are displayed in Tables 28, 29, 30, 31, 32, 33
and 34 to be found in Appendix B in the supplementary materials.

Clearly, the performance of the NN’s cannot be directly compared to the perfor-
mance of the other methods we have considered. One of the reasons being that the
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NN framework is very much different from the other approaches in terms of training
and testing procedures applied. The neural network requires to encounter as many
different mixtures as possible to be able to learn the latent structure, while the other
techniques (except for the Hankel approach) are seeking the best fit for a given sample
from the target mixture. We still report the NN results along with the performances
of the other methods with a few reservations so that the reader could put together the
full picture. Several points need to be borne in mind when reading and interpreting
the NN performance:

• the values reported are the predicted class probabilities that reflect how sure the
network is that an observation (one of the tested mixtures) belongs to each of the
represented classes;

• bin≥ 5 can be slightly misleading in this case as it reflects the summed probability
for classes with 5 components and 6 components and in a few instances the prob-
ability corresponding to one of the classes is larger then two of the probabilities
for 5 and 6 when considered separately but less, when they are so combined; still
the results as given provide an insight into how well the NN can tell the classes
apart;

• sample size of 10000 was used for computing the input features for the NN thus
the results are reported in the respective table cell;

• 10000 samples were used to train the NN;
• accuracy measure that shows in how many instances the NN was able to correctly
predict the true number of components cases will be reported separately.

The accuracy measure was computed by generating 100 different samples from one
of the selected mixtures (these did not occur in the training set), and the percentage of
times the network gave out the correct prediction was computed.

It follows from the simulations that the bootstrap modification of the Hankel matrix
determinants method shows reasonable results for the geometric and Poisson mixtures
but fails to produce accurate estimates for all 2-component and 3-component Gaussian
mixtures, persistently underestimating the number of components when compared to
the truth. This underestimation is likely to be the result of the “exploding”moments
and determinants issue inherent in the Hankel matrices of the mixing distribution for
the finite normal mixtures. The issue was covered in Sect. 3, and the simulation study
results illustrate it once again.

For a well separated 2-component Gaussian mixture all methods (except for the
Hankel matrix determinants approach with bootstrap) perform well even for sample
size as small as n = 50. The BIC and ICL methods demonstrate high performance in
this setting (estimating the number of components correctly in more than 95% of the
cases for small sample sizes of n = 50, 100 and 100% for larger ones) and so do the
minimumHellinger distancemethods. For the estimation ofmixture complexity via the
minimum Hellinger distance procedures (the L2 distance is not applicable in the case
of continuous distributions) we used a KDEwith bandwidth of 0.5. The Hankel matrix
determinants modification with bootstrap and scaling show slightly inferior results for
small and average sample sizes when compared to BIC, ICL and theminimal Hellinger
distance methods but performs well for sample sizes of n ≥ 5000. The LRT approach
for the available sample sizes of n ∈ {50, 100, 500, 1000} shows more modest results
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in this setting although the relative frequency of the correctly estimated cases is still
high. For a well-separated Gaussian mixture with a low mixing proportion for one of
the components the LRTmethod works well irrespective of the sample size estimating
the number of components correctly in more than 90% of the instances for n ≥ 100
and outperforming many other methods (except for BIC and ICL) for small sample
sizes. The performance of all techniques drops significantly for not well-separated
mixtures (e. g. a 2-component Gaussian mixture with overlapping regions). The NN
extension of the Hankel method demonstrates good results in all 3 cases for the 2-
component Gaussian mixtures even when the modes are located close to each other,
which is manifested in the estimated class probabilities as well as in high accuracy
rates of 100%, 96% and 100% respectively.

The BIC and ICL methods that proved to be supreme when compared to other
methods in many scenarios for the Gaussian mixtures are not performing as well for
the mixtures of geometric distributions. For the 2-component mixtures the simula-
tion results indicate that the minimum Hellinger distance with bootstrap and LRT
techniques tend to outperform all other tested methods. The penalized Hellinger and
L2-distancemethods performwellwhenever themixture iswell-separated (theweights
do not have to be well-balanced however) and n ≥ 500. For small and medium sample
sizes the minimum distance-based methods with penalties show rather poor results.
The techniques using the Hankel matrix determinants also enjoy high performance
for well-separated mixtures when the mixing proportions are similar or not of obser-
vations is large, identifying the number of components correctly in 95% of the cases.
The NNs also demonstrate less confidence when applied to the geometric mixtures
as indicated by a higher level of spread in the estimated class probabilities although
the accuracy rate of 59% can be considered a rather decent success measure for the
challenging first scenario. The accuracy amounts to 100% for a less demanding case
with the well-separated mixture.

Generally, for n ≥ 5000 and more observations all methods with an exception of
the minimal L2 distance approach using the SBC-based penalty allow for the correct
estimation in at least 90% of the cases.

For well-separated 2-component Poisson mixtures all methods perform well even
for very small sample sizes. The BIC, ICL and the two penalized MHD methods
often demonstrate accuracy which is close to absolute. The minimum distance-based
approaches with the AIC-based term seem to work better than the minimum distance-
based approaches with the SBC-based penalty whenever the mixtures are either not
well separated or when one of the mixtures is scarcely represented. Whenever the
mixture is less challenging, the approaches involving the SBC-based penalty tends
to lead to higher accuracy than those involving the AIC penalty. Also, choosing the
Hellinger distance for the minimal distance techniques seems to achieve slightly better
performance than using the L2 distance (whenever the components are not too close).
In the case of well-separated 2-component Poisson mixtures the scaled bootstrap
version of theHankelmatrix approach seems to outperform the bootstrapmodification.
For a well-separated mixture with a low mixing proportion of one of the components
the LRT and the scaled version of the Hankel matrix determinants techniques seem to
be an appropriate choice. Approaches using the Minimum L2 distance perform rather
poorly for all sample sizes in this settingwhile all Hellinger distance-based approaches
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provide good estimates when the number of observations is large. The NNs seem to be
able to learn well the 2-component Poisson mixtures. The accuracy rates for 3 out of
4 scenarios are 100%. The only exception being the mixture with very closely located
components, where the NN fails.

For a well-separated 3-component Gaussian mixture with similar mixing propor-
tions the BIC and ICL methods show outstanding performance even for small sample
sizes. All methods (except for the Hankel matrix determinants with bootstrap) perform
relatively poorly for small sample sizes and very well for sample size of n ≥ 5000
where their accuracy achieves 95%. The Hankel matrix method with bootstrap and
scaling shows again slightly worse results for small and average sample sizes but per-
forms well for sample sizes of n ≥ 5000. The minimum Hellinger distance approach
with AIC-based term shows better performance than other estimators from the same
group for average sample sizes. The LRTmethod delivers poor results for small sample
sizes but achieves mor tha 95% accuracy already for n = 500. For a well-separated
mixture with a low mixing proportion for one of the components the picture is similar,
with a slightly lower performance. The BIC method outperforms the other methods,
although giving correct predictions in more than 80% of the cases only for n ≥ 5000.
The LRT method seems to outperform all other methods (except for the BIC) for
small sample sizes, providing the correct estimate in almost 70% of the instances for
n = 500. In general the results for almost all methods are rather poor for small sample
sizes, improving as the number of observations grows. For average sample sizes the
minimum Hellinger distance with AIC-based term shows a significant improvement,
estimating the mixture complexity correctly in more than 70% of the cases, and all
Hellinger distance-based methods perform well for sample sizes n ≥ 5000. The NN
demonstrates again good results in all 3 cases for the 3-component Gaussian mixtures
achieving accuracy rates of 90%, 96% and 100% respectively for the given cases. For
a not well-separated mixture all methods perform quite poorly, being able to iden-
tify only 2 components out of 3 in most of the instances. The LRT method for the
available sample sizes shows estimation results which are only marginally better than
those achieved by the other methods. The BIC approach also performs poorly in this
case, often either underestimating or overestimating the number of components in the
mixture, but still shows better results when compared to other methods.

Geometricmixtureswith 3 components seem tobe a challenging task for allmethods
considered in the survey. The minimum Hellinger distance approach with bootstrap
and the LRT technique are still able to show better results for small and average sample
sizes when compared to other methods whenever the mixtures are well-separated. It
is likely that these methods could show better performance for large sample sizes.
For the first 3-components mixture, which is not well-separated, none of the methods
estimate the complexity correctly, systematically underestimating it. In this scenario
the methods penalized with AIC-based penalty once again show better performance
than their counterparts using the SBC-based thresholds. The group of distance-based
approaches as well as the cluster of Hankel matrix techniques also perform poorly in
this setting even when the sample size is large and the mixture is well-separated. The
3-component mixtures seem to be challenging also for the NNs, causing the accuracy
rate for the two scenarios to drop to 65% and 44% respectively.
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In the case of well-separated 3-component Poisson mixtures the BIC method
achieves absolute performance for n ≥ 5000, while the LRT technique outperforms
all other tested methods for small sample sizes. One could suppose that it would be
very effective for larger sample sizes. The ICL persistently underestimates the number
of components in the 3-component mixture even when the components are far apart.
Whenever the Poissonmixture is well-separated the modification of the Hankel matrix
approach with bootstrap tends to be more accurate than the Hankel matrix approach
with bootstrap and scaling. All methods relying on the minimum Hellinger distance
estimate the complexity correctly in more than 90% of the instances for n ≥ 1000 and
the LRT techniques perform well for average sample sizes. The bootstrap modifica-
tion of the Hankel matrix determinants approach and the minimal L2 distance-based
methods also perform well whenever the mixture is well-separated and the mixing
proportions are approximately the same for all components, with no component dom-
inating over the others provided the number of observations is large enough. For
average sample sizes and “unbalanced” mixtures the results of these methods are
rather poor when compared to the previously listed approaches. The NNs achieves
accuracy rates of 83% and 76% for the two well-separated mixture, but is not able to
correctly predict the order of the mixture with very closely located components.

Poisson mixtures with 4 components seem to be quite a challenge for all methods,
and a large number of observations is needed to obtain decent performance.

7 Applications to Real Data

In this Section we demonstrate how the approaches discussed in the previous sections
perform on real data.Wherever applicable the size of the bootstrap sample size is taken
to be 1000, for the LRT-based approach, the observed LRT statistic is always compared
with the 95%-quantile, for other methods using bootstrap (the methods relying on the
Hankel matrix determinants and the minimum distance-based procedures), 2.5%- and
97.5%-quantiles are used.

We will begin the analysis by considering the Old Faithful Geyser Data, first pub-
lished in [4]. The data comprises waiting times between eruptions and the duration
of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming,
USA. The waiting times between the eruptions of the Old Faithful geyser are assumed
to be well described by a finite Gaussian mixture model.

Unfortunately, the techniques based on the Hankel matrix determinants do not
appear to be an appropriate choice in this setting. To make use of the translation non-
parametric Hankel method approach (as outlined in the Section 3.1 of [21]) one should
make sure that the assumption of equal standard deviations throughout the mixture
components holds. This assumption does not seem to hold for the Old Faithful data.
The NN extension cannot be used for these data either as for the NN training we
assumed a known variance of 1 for all components in the mixture, which is not the
case here.

TheBICand ICLmethod applied to theOldFaithful data result in different estimates
of the optimal number of components. The maximal BIC values corresponds to 3
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Table 14 BIC and ICL values
for the Old Faithful Data

Method 1 2 3 4 5

BIC 5426 4787 4229 4242 4174

ICL 5426 3819 3724 3455 3500

Bold are those obtained for the true complexity of the mixture

Fig. 2 Estimated mixture model for the Old Faithful dataset (MHDbt )

groups while the ICL chooses 4. The BIC and ICL values for this data can be found
in Table 14.

Implementing the minimum Hellinger distance method with an automatically
selected bandwidth for the KDE and AIC-based penalty one obtains that the optimal
mixture should have 2 components. The resulting estimated 2-component mixture (in
green) as well as the 2 components (in dark red) are plotted in Fig. 2 along with the
empirical distribution of the waiting times.

Changing the penalty term to the SBC-based from the AIC-based yields a slightly
different parameter vector estimate, however the choice of the number of components
remains the same. The differences of the squared Hellinger distance values and the
AIC/SBC-based thresholds can be found in Table 15. TheminimumHellinger distance
method with bootstrap and the LRT approach also yield a 2-component mixture.

The minimum distance methods and the LRT attain slightly different parameter
estimates (the estimated parameters for BIC and ICL approaches are similar to those
of the LRT as in all these cases the MLE is used). The results have been gathered into
a single table (Table 16) for the ease of comparison.
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Table 15 Hellinger distance measures and thresholds for the Old Faithful dataset

Method m �m = D2( f̂n , f̂Dm ) − D2( f̂n , f̂Dm+1) Threshold

MHDAIC 1 0.065318 0.011029

2 −0.002220 0.011029

MHDSBC 1 0.065417 0.030914

2 −0.022900 0.030914

Table 16 Estimated parameter vectors for the distance-based and likelihood-based approaches

Method Estimated parameters

MHDAIC
(
0.65, 0.35, (79.72, 7.01), (54.88, 6.21)

)

MHDSBC
(
0.68, 0.32, (80.03, 6.73), (54.62, 7.21)

)

MHDbt
(
0.65, 0.35, (79.21, 6.91), (54.32, 6.45)

)

LRT/BIC/ICL
(
0.64, 0.36, (80.09, 5.87), (54.61, 5.87)

)

Table 17 BIC and ICL values
for the Children Data

Method 1 2 3 4 5

BIC 7289 6727 6743 6760 6777

ICL 7289 8256 9160 11022 10413

Bold are those obtained for the true complexity of the mixture

We now consider the data taken from the 1952 Annual Report of a pension fund
that contains the information on the number of children of 4075 widows entitled to the
fund support. The dataset first appeared in [67]. The data do not appear to be simply
a random sample from a Poisson distribution as the number of zeros (widows with no
children) appears to be too large. This issue was treated in [67] by fitting a mixture
of two processes, one of which is a Dirac distribution at 0 while the other follows a
Poisson distribution. We attempted to fit a mixture of Poisson distributions to the data
using several of the discussed approaches to verify the above mentioned population
heterogeneity assumption.

The BIC and the ICL methods estimate 2 and 1 components respectively for this
data set, the values are given in Table 17.

The estimated parameters are (0.66, 0.34; 0.0311.115) for the BIC approach and
(1, 0.4) for the ICL.

Non-parametric non-scaled and scaled Hankel matrix approaches with respective
penalty terms m log(n)√

n
and m log(n) yield the estimated number of components in the

Poisson mixture equal to 2, as can be seen from Table 18.
The parametric non-scaled Hankel matrix determinants approach with boot-

strap as well as the corresponding scaled version yield a 2-component mixture of
Poisson distributions with the estimated by the maximum likelihood parameters
(0.66, 0.34, 0.03, 1.11). This agrees with the population’s heterogeneity hypothesis
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Table 18 Absolute values of non-scaled Hankel matrix determinants for the Children Data

m 1 2 3 4 5

|D̂m | 0.3932 0.2659 0.3907 0.5209 0.6544

|D̂m |/σ∗
m 21.2339 16.6435 26.7833 35.3900 41.6757

Bold are those obtained for the true complexity of the mixture

Fig. 3 Estimated Mixture Model
for the Children Dataset (HMbt )

Table 19 �m for Hellinger and L2 distances and thresholds for the Children dataset

Method m �m = D2( f̂n , f̂Dm ) − D2( f̂n , f̂Dm+1) Threshold

MHDAIC 1 0.0030988 0.000491

2 −2.417e−10 0.000491

MHDSBC 1 0.030988 0.002040

2 −2.417e−10 0.002040

L2EAIC 1 0.005977 0.000102

2 9.848e−08 5.970e−05

L2ESBC 1 0.005977 0.000848

2 9.848e−08 0.000496

found in [67]. The estimated Poisson mixture along with the empirical distribution are
shown in Fig. 3.

The estimated parameters for theminimumHellinger and L2 distancemethodswith
AIC-based and SBC-based penalties and bootstrap as well as the LRT approach also
yield the same number of components and very similar parameter estimates. Table 19
displays the differences of the squared Hellinger and L2 distances along with the
corresponding thresholds.

The NN predicts 2 components with very high probability, the estimated class
probabilities output by the NN being as reported in Table 20.

Thus all methods (except for ICL) applied to these data agree on the optimal number
of components in the mixture, also confirming the hypothesis, identifying the optimal
number of components as 2.
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Table 20 Predicted class probabilities for the Children Data

Number of components 1 2 3 4 5 6

Class probabilities 0.00 0.95 0.05 0.00 0.00 0.00

Table 21 BIC and ICL values
for the Shakespeare Data

Method 1 2 3 4 5

BIC 179890 167095 167116 167136 167157

ICL 179890 174784 192055 189458 202613

Bold are those obtained for the true complexity of the mixture

Table 22 Absolute values of non-scaled Hankel matrix determinants for the Shakespeare Data

m 1 2 3 4 5

|D̂m | 0.1668 0.1182 0.1767 0.2356 0.2945

|D̂m |/σ∗
m 62.8608 33.0276 41.0747 50.11900 55.1286

Bold are those obtained for the true complexity of the mixture

The dataset used for fitting a mixture of geometric distributions is the Shakespeare
dataset, analyzed in the seminal work [24], which comprises counts of the number
of times certain words that William Shakespeare used in his writings. The data is
designed as follows: the number of times Shakespeare used a word only once is
14376, the number of times the same word occurred exactly 10 times in his writings
is 363 an so on. The goal set in [24] was to use the observed frequencies words, to
estimate the unobserved number of words that Shakespeare knew but did not use in
his writings. This problem is known under the name of “species richness”and can be
solved using a variety of approaches. One of the approaches was considered in [6],
where the theoretical rationale for using a mixture of geometric distributions in such
a setting is laid out.

The BIC and ICL methods both select 2 as the optimal complexity for the Shake-
speare dataset as can be deduced from Table 21 containing the BIC and ICL values
for number of components 1, . . . , 5.

Both non-parametric non-scaled and scaled Hankel matrix techniques estimated
the number of components as 2, as follows from Table 22.

The parametric Hankel matrix determinants approach with bootstrap applied to the
Shakespeare data yields the estimated number of components in the mixture of geo-
metric distributions equal to 2. The same number of components is obtained when the
scaled version of the parametric Hankel matrix determinants approach with bootstrap
is used.

The estimated mixture for the minimum Hellinger and L2 distance meth-
ods with AIC-based and SBC-based penalties and bootstrap suggest 3 compo-
nents unlike the Hankel matrix determinants procedures, yielding slightly differ-
ent estimates (0.4148, 0.3758, 0.2094, 0.8406, 0.2902, 0.0490) (for Hellinger) and
(0.3839, 0.3870, 0.2291, 0.8622, 0.3203, 0.0523) (for L2). The squared differences

123



60 Page 42 of 49 Journal of Statistical Theory and Practice (2022) 16 :60

Table 23 �m for Hellinger and L2 distances and thresholds for the Shakespeare dataset

Method m �m = D2( f̂n , f̂Dm ) − D2( f̂n , f̂Dm+1) Threshold

MHDAIC 1 0.128804 6.495e−05

2 0.008953 6.495e−05

3 −3.276e−10 6.495e−05

MHDSBC 1 0.128804 0.000336

2 0.008953 0.000336

3 7.497e−11 0.000336

L2EAIC 1 0.016010 1.351e−05

2 0.000386 7.901e−06

3 6.306e−08 7.901−06

L2ESBC 1 0.016010 0.000140

2 0.000386 8.165e−05

3 1.214e−06 5.793e−05

Fig. 4 Estimated Mixture Model for the Shakespeare Dataset (L2EAIC )

for Hellinger and L2 distances and the BIC/AIC-based thresholds can be found in
Table 23.

The estimated mixture of geometric distributions using the Hellinger distance
approachwith bootstrap, all of its components and the empirical distribution are plotted
in Fig. 4.

The LRT approach results in a 3-component mixture with the estimated parameter
vector (0.4270, 0.3744, 0.1986, 0.8311, 0.2741, 0.0446).
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Table 24 Predicted class probabilities for the Shakespeare Data

Number of components 1 2 3 4 5 6

Class probabilities 0.00 0.00 0.02 0.11 0.32 0.55

Bold are those obtained for the true complexity of the mixture

Table 25 Results of all reviewed
methods used on the real-world
datasets

Method Old Faithful Children Shakespeare

BIC 3 2 2

ICL 4 1 2

HM – 2 2

HMsc – 2 2

HMbt – 2 2

HMbtsc – 2 2

L2EAIC – 2 3

L2ESBC – 2 3

MHDAIC 2 2 3

MHDSBC 2 2 3

MHDbt 2 2 3

LRT 2 2 3

NN – 2 6

The estimated parameters for theminimumHellinger and L2 distancemethodswith
AIC-based and SBC-based penalties and bootstrap as well as the LRT approach also
yield the same number of components and very similar parameter estimates.

The NN predicts the maximal possible number of components for the Shakespeare
data, which is 6, with the class probabilities designated in Table 24:

Thus for the Shakespeare data various methods do not agree on the optimal num-
ber of components, which ranges from 2 components to 6, also providing different
estimates for the model parameters. The final model choice in this case is left to the
researcher who might have an insight on which number of component makes the
most sense (e.g. according to the parts of speech different words belong to). Table 25
summarizes the estimates for all reviewed methods and all datasets.

8 OtherWork onMixture Complexity Estimation

The current survey certainly does not cover all the existing methods for estimating the
complexity of a finite mixture.

Before mentioning some other interesting references, we would like to draw the
reader’s attention to the seminal work of Bruce Lindsay which, among other things,
brought a very novel way of viewing the nonparametricmaximum likelihood estimator
(NPMLE) of a general mixture distribution; see [44] and [45]. The novelty resides in
considering this estimator from a geometric perspective. One of the most important
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results which derive from this is that, under some simple conditions, the NPMLE of
a general mixture is a finite mixture with complexity not exceeding the number of
distinct observations. Not surprisingly, all the papers on the methods reviewed and
implemented in this survey refer to one of Lindsay’s work on mixture models. This
continues to hold true for the other approaches we would like now to mention and
which we believe to be worthwhile to be brought to the reader’s attention. There has
been a lot of papers where penalization of some goodness-of-fit criterionwas proposed
with rigorous proofs of consistency or some other guarantee of the resulting estimator
of the true number of components. In [42] the penalized NPMLE was considered with
a penalization function αn,m satisfying αn,m+1 > αn,m and lim supn→∞ αn,m/n = 0.
Under some regularity conditions on themixturemodel, it is very rigorously shown that
the estimator is at least equal to the true number of components as the sample n → ∞
with probability 1. Themethod requires only computation of the NPMLE for a number
of values of m, which can be done using for example a support reduction algorithm
as described in [70] or [33]. As it is not known whether this penalized NPMLE is
actually consistent, [18] constructed a penalized minimum-distance estimator which
could be thought as a precursor of theminimumdistance estimators reviewed in Sect. 4.
Two main differences are to be noted though: Firstly, [18] consider distances between
distribution functions instead densities. Secondly, the penalization function takes the
form of −cn

∑m
j=1 logπ j where π j , j = 1, . . . ,m are the mixing probabilities and

(cn)n a sequence converging to 0 as n → ∞. Consistency of the penalized minimum
distance estimator of the true complexity is shown when one chooses cn such that the
distance between the empirical distribution function and the true mixture distribution
is O(cn) almost surely. In the special case where one wants to decide betweenm0 = 1
(homogeneity) andm0 = 2, [17] propose a method based on modifying the likelihood
ratio test. The modification operates first on the log-likelihood function by adding a
negative penalty of the form C log(4π(1−π))with π > 0 the mixing probability and
C > 0 some chosen constant. The penalty clearly discourages the MLE, under the
null hypothesis, from fitting a mixing probability that is close to 0. The modification is
motivated by the desire of overcoming the issues associated with the nestingF1 ⊂ F2
(boundary problem and non-uniqueness of representing the null hypothesis) already
described in some details in Sect. 5. If π fφ1 + (1 − π) fφ2 is the mixture density,
and if we denote by ln the modified log-likelihood, the the modified LRT is given

by 2
(
ln(π̂, φ̂1, π̂2) − ln(1/2, φ̂, φ̂)

)
, where (π̂, φ̂1, φ̂2) and φ̂ are the MLE under the

alternative and null hypotheses. One very interesting theoretical result is that the LRT
is shown to converge weakly to mixture (1/2) : (1/2) of a Dirac at 0 and χ2

(1). This
limit distribution can be then used to construct asymptotic critical region for rejecting
homogeneity. As for the constant C , it is recommended to take logM if it is believed
that φ1, φ2 ∈ [−M, M] although the results do not seem to be too much sensitive to
taking other values for C .

Bayesian approaches were also used to make inference about the number of com-
ponents of a mixture. In this framework, this number is viewed as a random variable
drawn from some prior distribution and the corresponding posterior distribution is
then derived and subsequently used for inference purposes. For mixtures of Gaus-
sian distributions whose means and variances are regarded as random variables drawn
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from a Dirichlet process, we refer to work of [25]. The posterior distribution can be
approximated using Monte Carlo. In [60] the authors make use of reversible jump
Markov chain Monte Carlo methods to conduct a a more general Bayesian analy-
sis while restricting attention to Gaussian mixtures. In their analysis, the authors put
themselves in the setting where no strong prior information on the components of such
a mixture is available. In their work, the reader finds a thorough sensitivity analysis
including the dependence of the posterior distribution of the number of components
on the chosen prior for the means and variances. In the very interesting work of [16]
the authors study the frequentist properties of Bayesian estimators of the true order
in nested models including mixture models. Bounds on underestimation and overes-
timation of the Bayesian estimators are obtained. In particular, it is shown that, under
some regularity conditions, the probability of underestimation decays exponentially.
For further articles using Bayesian theory for clustering, we can refer to [51], [61],
[30], [53] and the references therein.

We finish this section by drawing the reader’s attention to existence of whole body
of literature on mixture estimation and clustering, at the intersection of Statistics and
Computing.This includes researchpapers on extensions ormodifications of the famous
EM-algorithm and numerical implementation of various information criteria.We refer
to [15] where an entropy criteria was considered, which is derived from a simple
relationship between the likelihood and classification likelihoodof amixture. In [27] an
algorithm based on theMinimumMessage Length (MML) criterion was implemented
with the aim of selecting the best overall mixture model given the observed data (using
a variant of the EM-algorithm). The very recent paper of [32] presents a novel form
of cross-validation approach which is adaptive to the data. The paper contains an
excellent literature review and the ideas discussed there are highly relevant, especially
in connection with the question of how to choose the penalty function in the penalized
methods reviewed above.

9 Some Conclusions

As acknowledged in the literature on themixture model estimation and is supported by
the results presented in Sect. 6, estimation of the number of components in a mixture
distribution is a challenging task. None of the methods examined in the previous
sections of the present survey can be regarded as a reliable universal tool that can be
applied in any setting without second thoughts.

The widespread use among practitioners of BIC and ICL techniques is justified.
These methods are easy to implement, do not require much computational time and
outperform in many settings the other methods we have reviewed here. Whenever ICL
tends to underestimate the number of components, which happens when they are not
well separated, BIC does not seem to ehibit the same behavior producingmore reliable
estimates of the mixture order.

The LRT approach appears to be beneficial in terms of accuracy for small and aver-
age sample sizes, in particular in the settings when the mixture is not well-separated
or when some components in the mixture noticeably dominate the other components
or whenever the actual number of components in the mixture is large (e.g. 3 or 4
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components). The disadvantage of this technique is the large amount of time needed
for the computation.

The bootstrapmethods on the average perform better than their penalty-based coun-
terparts. In most of the settings MHD approach with bootstrap is more accurate than
both MHD with the AIC-based penalty term and MHD with SBC-based term. The
undeniable advantage of the procedures using the bootstrap is that the obtained esti-
mates do not depend on the form of the penalty term, thus the errors resulting from the
poor choice thereof can be avoided. The disadvantage however is the computational
intensity of this procedure.

In the settings where the mixtures have well separated components LRT and MHD
with bootstrap approaches provide an improvement over the other methods whenever
thenumber of the components ismore than2. If amixture comprises only2 components
and many observations are available, any of the methods can be applied.

The distance-based methods and the LRT approach can be used in the setting
where the parameter values need to be estimated. If there is no such requirement,
methods based on the Hankel matrix of moments of the mixing distributions can be
used. For small sample sizes the scaled version of the Hankel matrix-based method
achieves better performance than other methods. But generally it does not provide
better accuracy than either the other methods, nor one can benefit significantly in
terms of computational time.
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