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Abstract
Suppose that n indistinguishable balls are randomly q-distributed, one after the other,
into k+1 distinguishable urns (cells), with limited or unlimited capacity, and let X j be
the number of balls placed in the j th urn, for j = 1, 2, . . . , k. The distribution of the
random vector (X1, X2, . . . , Xk) in both cases, which turned out to be q-analogues
of the classical Fermi–Dirac and Bose–Einstein stochastic distributions (statistics), is
derived. Furthermore, these multivariate discrete q-uniform distributions of the first
and second kind are thoroughly studied.

Keywords Bose–Einstein statistic · Fermi–Dirac statistic · Multivariate discrete
q-distribution · q-Bernoulli distribution · q-Geometric distribution

Mathematics Subject Classification 60C05 · 05A30

1 Introduction

A discrete q-uniform distribution first emerged as a congruence class distribution,
modulo n, of Bernoulli generated numbers, in a probabilistic number theory paper of
Rawlings [5] . Kupershmidt [4] discussed a discrete q-uniform distribution starting
with a nonnegative q-function defined on the set {0, 1, . . . , n} and summing to one.
Charalambides [1] extensively presented properties and applications of discrete q-
uniform distributions.
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The most important multivariate discrete uniform distributions are defined on the
Fermi–Dirac and Bose–Einstein stochastic models, with probability (mass) functions:

P(X1 = x1, X2 = x2, . . . , Xk = xk) = 1

/(
k + 1

n

)
,

for x j = 0, 1 and j = 1, 2, . . . , k, with
∑k

j=1 x j ≤ n, and

P(X1 = x1, X2 = x2, . . . , Xk = xk) = 1

/(
k + n

n

)
,

for x j = 0, 1, . . . , n and j = 1, 2, . . . , k, with
∑k

j=1 x j ≤ n, respectively. In both
models (or statistics in the physicist’s terminology), a mechanical system of n particles
is considered and X j is the number of particles in the j th energy level, j = 1, 2, . . . , k,
of the system. In the Fermi–Dirac model, the particles obey the Pauli exclusion prin-
ciple. These distributions are obtained by assuming that any particle is equally likely
to move from the zeroth energy level to any of the k + 1 energy levels [3, p. 40].
In the present article, allowing the probability of a particle to move from the zeroth
energy level to one of the k + 1 energy levels to vary geometrically, with rate q,
multivariate discrete q-uniform distributions are introduced and studied. Section 2 is
devoted to the presentation of multivariate q-hypergeometric sums, which are used
in the study of multivariate discrete q-uniform distributions of the first and second
kind. In Sect. 3, a stochastic model of a sequence of successive q-distribution of n
indistinguishable balls into distinguishable urns (cells) is presented. Then, assuming
that the urns are of limited capacity, a multivariate discrete q-uniform distribution of
the first kind (q-Fermi–Dirac statistic) is defined on this model and its properties are
thoroughly examined. In Sect. 4, supposing that the urns are of unlimited capacity
a multivariate discrete q-uniform distribution of the second kind (q-Bose–Einstein
statistic) is defined on this model and its properties are extensively studied.

2 Multivariate q-Hypergeometric Sums

Two multivariate q-hypergeometric sums over all partitions into a specific number
of unequal parts and (any) parts, respectively, none of which is greater than another
specific number, which emerge in the study of q-analogues of the Fermi–Dirac and
Bose–Einstein stochastic models (statistics) are presented in the following corollary
of Theorem 1.2 in the book of Charalambides [1].

Corollary 1 Let k and n be positive integers, and q be a real number, with q �= 1.
Then, ∑

r j=0,1, j=1,2,...,k,
r1+r2+···+rk≤n

qr1+2r2+···+krk−(n2) =
[
k + 1

n

]
q
, n ≤ k + 1, (1)

123



Journal of Statistical Theory and Practice (2022) 16 :49 Page 3 of 26 49

and ∑
r j=0,1,...,n, j=1,2,...,k,

r1+r2+···+rk≤n

qr1+2r2+···+krk =
[
k + n

n

]
q
. (2)

Proof The q-binomial coefficients
[k+1

n

]
q and

[k+n
n

]
q , according to Theorem 1.2 in

Charalambides [1] may be expressed as:

∑
1≤i1<i2<···<in≤k+1

qi1+i2+···+in−(n+1
2 ) =

[
k + 1

n

]
q

(3)

and ∑
1≤i1≤i2≤···≤in≤k+1

qi1+i2+···+in−n =
[
k + n

n

]
q
. (4)

Let r j be the number of variables i1, i2, . . . , in that are equal to j + 1, for j =
0, 1, . . . , k. Note that r j = 0, 1, for 1 ≤ i1 < i2 < · · · < in ≤ k + 1 and r j =
0, 1, . . . , n, for 1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ k + 1. Then,

i1 + i2 + · · · + in = r0 + 2r1 + · · · + (k + 1)rk, with r0 + r1 + · · · + rk = n.

Thus,

i1 + i2 + · · · + in−
(
n + 1

2

)
= r1 + 2r2 + · · · + krk−

(
n

2

)
, with r1+r2+· · ·+rk ≤ n,

and

i1 + i2 + · · · + in − n = r1 + 2r2 + · · · + krk, with r1 + r2 + · · · + rk ≤ n.

Consequently, (3) and (4) may be expressed as (1) and (2), respectively.
It is interesting to note an alternative evaluation of these multiple sums,

an,k(q) =
∑

r j=0,1,...,n, j=1,2,...,k,
r1+r2+···+rk≤n

qr1+2r2+···+krk−(n2), n = 1, 2, . . . , k + 1, k = 1, 2, . . . ,

and

bn,k(q) =
∑

ri=0,1,...,n, i=1,2,...,k,
r1+r2+···+rk≤n

qr1+2r2+···+krk , n = 1, 2, . . . , k = 1, 2, . . . ,

which may be carried out inductively by using the relations

an,k(q) =
1∑

r1=0

q(k−n+r1)r1−(r12 )an−r1,k−1(q),
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and

bn,k(q) =
n∑

r1=0

qkr1bn−r1,k−1(q).

��
Two more general multivariate q-hypergeometric sums are evaluated in the follow-

ing theorem.

Theorem 1 Let k and n be positive integers, and q be a real number, with q �= 1. Also,
let mi , i = 1, 2 . . . , ν, be positive integers and set n j = ∑ j

i=1 mi , j = 1, 2 . . . , ν.
Then,

∑
r j=0,1,...,m j , j=1,2,...,ν,

r1+r2+···+rν≤n

q
∑ν

j=1(k−n j−n+s j+1)r j
ν∏
j=1

[
m j

r j

]
q

=
[
k + 1

n

]
q
, (5)

where s j = ∑ j
i=1 ri , and

∑
r j=0,1,...,n, j=1,2,...,ν,

r1+r2+···+rν≤n

q
∑ν

j=1(k−n j+1)r j
ν∏
j=1

[
m j + r j − 1

r j

]
q

=
[
k + n

n

]
q
. (6)

Proof According to q-Cauchy’s formula, it holds true

n−s j−1∑
r j=0

q(k−n j−n+s j+1)r j

[
m j

r j

]
q

[
k − n j + 1

n − s j

]
q

=
[
k − n j−1 + 1

n − s j−1

]
q

,

for j = 1, 2, . . . , ν. Starting with the first expression, j = 1,

n∑
r1=0

q(k−n1−n+s1+1)r1

[
m1

r1

]
q

[
k − n1 + 1

n − s1

]
q

=
[
k + 1

n

]
q
,

and replacing the second factor of the general term of the sum by

[
k − n1 + 1

n − s1

]
q

=
n−r1∑
r2=0

q(k−n2−n+s2+1)r2

[
m2

r2

]
q

[
k − n2 + 1

n − s2

]
q
,

and, continuing in thismanner, at the last step replacing the second factor of the general
term of the sum by
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[
k − nν−1 + 1

n − sν−1

]
q

=
n−sν−1∑
rν=0

q(k−nν−n+sν+1)rν

[
mν

rν

]
q

[
k − nν + 1

n − sν

]
q

=
n−sν−1∑
rν=0

q(k−nν−n+sν+1)rν

[
mν

rν

]
q
,

expression (5) is deduced; the last equality is a direct consequence of nν = k. Similarly,
according to q-Cauchy’s formula, it holds true

n−s j−1∑
r j=0

q(k−n j+1)r j

[
m j + r j − 1

r j

]
q

[
k− n j + n− s j

n − s j

]
q

=
[
k− n j−1+ n− s j−1

n − s j−1

]
q

,

for j = 1, 2, . . . , ν. Starting with the first expression, j = 1,

n∑
r1=0

q(k−n1+1)r1

[
m1 + r1 − 1

r1

]
q

[
k − n1 + n − s1

n − s1

]
q

=
[
k+ n

n

]
q
,

and replacing the second factor of the general term of the sum by

[
k − n1 + n − s1

n − s1

]
q

=
n−r1∑
r2=0

q(k−n2+1)r2

[
m2 + r2 − 1

r2

]
q

[
k − n2 + n − s2

n − s2

]
q
,

and, continuing in thismanner, at the last step replacing the second factor of the general
term of the sum by

[
k− nν−1+ n− sν−1

n − sν−1

]
q

=
n−sν−1∑
rν=0

q(k−nν+1)rν

[
mν + rν − 1

rν

]
q

[
k− nν + n− sν

n − sν

]
q

=
n−sν−1∑
rν=0

q(k−nν+1)rν

[
mν + rν − 1

rν

]
q
,

expression (6) is deduced; note that the last equality is a direct consequence of nν = k.
��

3 q-Fermi–Dirac Stochastic Model (Statistic)

A random distribution (placement) of balls into distinguishable urns (cells) is a simple
and very useful stochastic model. Among its most striking and useful applications, the
Bose–Einstein and Fermi–Dirac stochastic models (statistics) worth special attention.

A random q-distribution (placement) of a ball into r distinguishable urns (cells)
{c1, c2, . . . , cr } may be introduced as follows. Assume that r numbered balls
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{1, 2, . . . , r}, representing the r urns are forced to pass through a random mechanism,
one after the other, in the order (1, 2, . . . , r) or in the reverse order (r , r−1, . . . , 2, 1).
Also, suppose that each passing ball may or may not be caught by the mechanism,
with probabilities p = 1 − q and q, respectively. In the case all r balls pass through
the mechanism and no ball is caught, the ball passing procedure is repeated, with the
same order. Then, the number on the first caught ball determines the urn (cell) in which
the ball is placed. Clearly, the probability that a ball is placed in the j th in order urn
is given by

p j =
∞∑
k=0

(1 − q)q( j−1)+kr = q j−1

[r ]q , j = 1, 2, . . . , r ,

or by

p j =
∞∑
k=0

(1 − q)q(r− j)+kr = qr− j

[r ]q , j = 1, 2, . . . , r ,

where 0 < q < 1, according to whether the ball passing order is (1, 2, . . . , r)
or (r , r − 1, . . . , 2, 1). These probabilities, on using the expression q j−1/[r ]q =
q−{r− j}/[r ]q−1 , may be written in a single formula as:

p j = qr− j

[r ]q , j = 1, 2, . . . , r , (7)

where 0 < q < 1 or 1 < q < ∞. Note that this is the probability function of a
discrete q-uniform distribution of the set {1, 2, . . . , r}. It is worth mentioning that in
a quite close analogy, in Combinatorics, Chung and Kang [2] introduced the notion of
a q-selection of an element from the set C = {c1, c2, . . . , cr } by considering a weight
qi−1 as the payment for i − 1 jumps made in traveling from the left to the right of
the permutation pr = (c1, c2, . . . , cr ), with c1 < c2 < · · · < cr , before selecting the
element ci ∈ C .

Furthermore, assume that n indistinguishable balls are randomly q-distributed, one
after the other, into r = k+1 distinguishable urns (cells) {c1, c2, . . . , ck+1}, each with
capacity limited to one ball, with n ≤ k + 1. Let X j be the number of balls placed
in urn c j , for j = 1, 2, . . . , k + 1. Note that Xk+1 = n − X1 − X2 − · · · − Xk . The
distribution of the random vector (X1, X2, . . . , Xk) is calledMultivariate Discrete q-
UniformDistribution of the first kind, with parameters n and q. Its probability function
is derived in the following theorem.

Theorem 2 The probability (mass) function of the multivariate discrete q-uniform
distribution of the first kind, with parameters n and q, is given by

P(X1 = x1, X2 = x2, . . . , Xk = xk) = q
∑k

j=1(k− j+1)x j−(n2)
/[

k + 1

n

]
q
, (8)
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for x j = 0, 1 and j = 1, 2, . . . , k, with
∑k

j=1 x j ≤ n, and 0 < q < 1 or 1 < q < ∞.

Proof A random q-distribution of n indistinguishable balls into k + 1 distinguishable
urns, of capacity limited to one ball, may be represented by the collection of n q-
selected urns {ci1 , ci2 , . . . , cin }, where the q-selection of an urn x times corresponds
to the placement of x balls into it, for x = 0, 1. Notice that, after the q-selection of an
urn and the placement in it a ball, because its capacity is limited to one ball, the next
q-selection is made among the remaining urns. Therefore, the probability for such a
q-distribution, on using successively (7), with r = k + 1, k, . . . , k − n + 2, is given
by

c qk−i1+1qk−i2 · · · qk−in−n+2 = c q(k+1)n−(i1+i2+···+in)−(n2),

with 1 ≤ i1 < i2 < · · · < in ≤ k + 1. Clearly, the number x j of balls q-distributed
into urn c j equals the number of variables i1, i2, . . . , in that are equal to j , for j =
1, 2, . . . , k + 1, with xk+1 = n − ∑k

j=1 x j . Also, the exponent of q in the expression
of the preceding random q-distribution, may be expressed as:

(k + 1)n −
n∑

r=1

ir −
(
n

2

)
=

k+1∑
j=1

(k + 1)x j −
k+1∑
j=1

j x j −
(
n

2

)
=

k∑
j=1

(k − j + 1)x j −
(
n

2

)

and so

P(X1 = x1, X2 = x2, . . . , Xk = xk) = c q
∑k

j=1(k− j+1)x j−(n2),

for x j = 0, 1 and j = 1, 2, . . . , k, with
∑k

j=1 x j ≤ n. Summing these probabilities,

using (1), and equating this sum to one, we get the expression c = 1/
[k+1

n

]
q , which

completes the derivation of (8). ��
Themultivariate discrete q-uniform distribution of the first kindmay be obtained as

the conditional distribution of k independent q-Bernoulli distributions of the first kind,
given their sum with another q-Bernoulli distribution of the first kind independent of
them, according to the following theorem.

Theorem 3 Consider a sequence of independent Bernoulli trials and assume that the
probability of success at the i th trial is given by

pi = θqi−1

1 + θqi−1 , i = 1, 2, . . . , 0 < q < 1 or 1 < q < ∞.

Let X j be the number of successes at the j th trial, for j = 1, 2, . . . , k + 1. Then, the
conditional probability function of the random vector (X1, X2, . . . , Xk), given that
X1 + X2 + · · · + Xk+1 = n, is the multivariate discrete q-uniform distribution of the
first kind with probability function (8).
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Proof The randomvariables X j , j = 1, 2, . . . , k+1, are independent, with probability
function, according to Theorem 2.1 in Charalambides [1], is given by

P(X j = x j ) = θ x j q( j−1)x j

1 + θq j−1 , x j = 0, 1, j = 1, 2, . . . , k + 1.

Similarly, the probability function of the sum Yk+1 = X1 + X2 + · · · + Xk+1, which
is the number of successes in k + 1 trials, is

P(Yk+1 = n) =
[
k + 1

n

]
q

θnq(n2)∏k+1
i=1 (1 + θqi−1)

, n = 0, 1, . . . , k + 1.

Then, the joint conditional probability functionof the randomvector (X1, X2, . . . , Xk),
given that Yk+1 = n,

P(X1= x1, . . . , Xk = xk |Yk+1=n)= P(X1= x1) · · · P(Xk = xk)P(Xk+1=n−yk)

P(Yk+1 = n)
,

with yk = ∑k
j=1 x j , on using these expressions, is obtained as:

P(X1 = x1, X2 = x2, . . . , Xk = xk |Yk+1 = n) = qcn,k (x1,x2,...,xk )
/[

k + 1

n

]
q
,

where

cn,k(x1, x2, . . . , xk) =
k∑
j=1

( j − 1)x j −
k∑
j=1

kx j + nk −
(
n

2

)

= −
k∑
j=1

(k − j + 1)x j +
(
n

2

)
+ n(k − n + 1).

Thus, since

q−n(k−n+1)
[
k + 1

n

]
q

=
[
k + 1

n

]
q−1

,

it reduces to

P(X1= x1, X2= x2, . . . , Xk = xk |Yk+1=n)=q−∑k
j=1(k− j+1)x j+(n2)

/[
k + 1

n

]
q−1

,

which is expression (8) with q replaced by q−1. ��
Certain marginal and conditional distributions of the multivariate q-uniform distri-

bution of the first kind are derived in the following theorem.
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Theorem 4 Assume that the random vector (X1, X2, . . . , Xk) obeys a multivariate
discrete q-uniform distribution of the first kind. Then, the probability function of

(a) the marginal distribution of (X1, X2, . . . , Xr ), for 1 ≤ r < k, is given by

P(X1 = x1, . . . , Xr = xr ) = q
∑r

j=1(k− j−n+yr+1)x j−(yr2 )
[
k − r + 1

n − yr

]
q

/[
k + 1

n

]
q
,

(9)
for x j = 0, 1, j = 1, 2, . . . , r , with

∑r
j=1 x j ≤ n, where yr = ∑r

j=1 x j , and
(b) the conditional distribution of the random vector (Xr+1, Xr+2, . . . , Xr+m),

given that (X1, X2, . . . , Xr ) = (x1, x2, . . . , xr ), for 1 ≤ r < m ≤ k, is given by

P(Xr+1 = xr+1, . . . , Xm = xm |X1 = x1, . . . , Xr = xr )

= q
∑m

j=r+1(k− j−n+ym+1)x j−(ym−yr
2 )

[
k − m + 1

n − ym

]
q

/[
k − r + 1

n − yr

]
q
, (10)

for x j = 0, 1, j = r+1, r+2, . . . ,m,with
∑m

j=r+1 x j ≤ n−yr , where y j = ∑ j
i=1 xi .

Proof (a) Summing the probability function of the multivariate discrete q-uniform
distribution of the first kind, for x j = 0, 1, j = r+1, r+2, . . . , k, with

∑k
j=r+1 x j ≤

n − yr , and using the relation

(
n

2

)
=

(
n − yr

2

)
+

(
yr
2

)
+ (n − yr )yr ,

we get, for the marginal probability function of (X1, X2, . . . , Xr ), the expression

P(X1 = x1, . . . , Xr = xr ) = q
∑r

j=1(k− j−n+yr+1)x j−(yr2 )

×
∑

xr+ j=0,1, j=1,2,...,k−r
xr+1+xr+2+···+xk≤n−yr

q
∑k−r

j=1(k−r− j+1)xr+ j−(n−yr
2 )

/[
k + 1

n

]
q
.

Since, the multiple sum, using (1), equals

∑
xr+ j=0,1, j=1,2,...,k−r
xr+1+xr+2+···+xk≤n−yr

q
∑k−r

j=1(k−r− j+1)xr+ j−(n−yr
2 ) =

[
k − r + 1

n − yr

]
q
,

the last expression of probability function reduces to (9).
(b) The conditional probability function of (Xr+1, Xr+2, . . . , Xm), given that

(X1, X2, . . . , Xr ) = (x1, x2, . . . , xr ), is given by

P(Xr+1= xr+1, . . . , Xm = xm | X1= x1, . . . , Xr = xr )

= P(X1= x1, X2= x2 . . . , Xm = xm)

P(X1= x1, X2= x2, . . . , Xr = xr )
.
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Then, using the result of part (a), together with the relation

(
ym − yr

2

)
=

(
ym
2

)
−

(
yr
2

)
− (ym − yr )yr ,

we conclude that

P(Xr+1 = xr+1, . . . , Xm = xm |X1 = x1, . . . , Xr = xr )

= q
∑m

j=r+1(k− j−n+ym+1)x j−(ym−yr
2 )

[
k − m + 1

n − ym

]
q

/[
k − r + 1

n − yr

]
q
,

for x j = 0, 1, j = r+1, r+2, . . . ,m, with
∑m

j=r+1 x j ≤ n−yr , where y j = ∑ j
i=1 xi .��

Let us now turn the study to the moments of a multivariate q-uniform distribution
of the first kind. Aiming primarily to the derivation of its q-power moments, and espe-
cially to the q-means, q-variances, and q-covariances, the attention may be restricted
to the marginal distribution of the random vector (X1, X2). Its probability function is
given by

P(X1= x1, X2= x2)=q(k−n+x1)x1+(k−1−n+x1+x2)x2

[
k − 1

n−x1−x2

]
q

/[
k+1

n

]
q
,

(11)
for x1 = 0, 1 and x2 = 0, 1, with x1 + x2 ≤ n. The q−1-power moments of the
random vector (X1, X2) are derived in the following theorem. These moments, may
be suitably rephrased as conditional q-power moments of (Xν+1, Xν+2), given that
(X1, X2, . . . , Xν) = (x1, x2, . . . , xν), with 1 ≤ ν ≤ r − 2.

Theorem 5 Suppose that the probability function of the random vector (X1, X2) is
given by (11). Then,

E
(
[X1]i1q−1

)
= [n]q−1

[k + 1]q−1
, i1 = 1, 2, . . . , (12)

and

V
([X1]q−1

) = [n]q−1[k + 1 − n]q−1q−n

[k + 1]2
q−1

. (13)

Also,

E
(
q−X1 [X2]i2q−1

) = [n]q−1q−1

[k + 1]q−1
, i2 = 0, 1, . . . , (14)

and

C
([X1]q−1, q−X1 [X2]q−1

) = −
[n]2

q−1[k + 1 − n]q−1q−n

[k + 1]2
q−1[k]q−1

. (15)
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Proof The marginal probability function of X1,

P(X1 = x1) = q(k−n+x1)x1

[
k

n − x1

]
q

/[
k + 1

n

]
q
, x1 = 0, 1,

as the interest is focused on q−1-factorial moments may be written, equivalently and
in a more manageable form, as:

P(X1 = x1) = qn(1−x1)
[

k

n − x1

]
q−1

/[
k + 1

n

]
q−1

, x1 = 0, 1.

Clearly, the q−1-power moments of X1 is readily obtained as:

E
(
[X1]i1q−1

)
=

1∑
x1=0

qn(1−x1)[x1]i1q−1

[ k
n−x1

]
q−1[k+1

n

]
q−1

=
[ k
n−1

]
q−1[k+1

n

]
q−1

,

and since

[
k + 1

n

]
q−1

= [k + 1]q−1

[n]q−1

[
k

n − 1

]
q−1

,

it reduces to (12). Also, the q−1-variance of X1 is deduced as:

V
([X1]q−1

) = E
(
[X1]2q−1

)
− [

E([X1]q−1)
]2 = [n]q−1

[k + 1]q−1

(
1 − [n]q−1

[k + 1]q−1

)

= [n]q−1[k + 1 − n]q−1q−n

[k + 1]2
q−1

.

Furthermore, the expected value of q−X1 [X2]i2q−1 may be derived by using the relation

E
(
q−X1 [X2]i2q−1

) = E
[
E

(
q−X1 [X2]i2q−1/X1

)]
.

Since the conditional probability function of X2, given that X1 = x1,

P(X2 = x2|X1 = x1) = q(n−x1)(1−x2)
[

k − 1

n − x1 − x2

]
q−1

/[
k

n − x1

]
q−1

, x2 = 0, 1,

is of the same form as the probability function of X1, with the parameters k and n
replaced by k − 1 and n − x1, respectively, it follows that

E
(
[X2]i2q−1 |X1 = x1

)
= [n − x1]q−1

[k]q−1
.
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Also, the expected value of q−X1 [n − X1]q−1 is given by

E
(
q−X1 [n − X1]q−1

) =
1∑

x1=0

qn(1−x1)−x1 [n − x1]q−1

[
k

n − x1

]
q−1

/[
k + 1

n

]
q−1

= [k]q−1

1∑
x1=0

qn(1−x1)−x1

[
k − 1

n − x1 − 1

]
q−1

/[
k + 1

n

]
q−1

= [k]q−1q−1
(
qn−1

[
k − 1

n − 1

]
q−1

+
[
k − 1

n − 2

]
q−1

)/[
k + 1

n

]
q−1

.

Thus, using the triangular recurrence relation of the q-binomial coefficients, it reduces
to

E
(
q−X1 [n − X1]q−1

) = [k]q−1q−1
[

k

n − 1

]
q−1

/[
k + 1

n

]
q−1

= [n]q−1[k]q−1q−1

[k + 1]q−1

and so

E
(
q−X1 [X2]i2q−1

) = E
[
E

(
q−X1 [X2]i2q−1 |X1

)] = 1

[k]q−1
E

(
q−X1 [n − X1]q−1

)

= 1

[k]q−1
· [n]q−1[k]q−1q−1

[k + 1]q−1
= [n]q−1q−1

[k + 1]q−1
.

Similarly, the expected value of the q-function q−X1 [X1]i1q−1[X2]i2q−1 , may be evaluated
by using the relation:

E
(
q−X1 [X1]i1q−1[X2]i2q−1

)
= E

[
E

(
q−X1 [X1]i1q−1[X2]i2q−1 |X1

)]
.

Clearly,

E
(
q−X1 [X1]i1q−1 [n−X1]q−1

)=
1∑

x1=0

qn(1−x1)−x1 [x1]i1q−1 [n−x1]q−1

[
k

n−x1

]
q−1

/[
k+1

n

]
q−1

=[k]q−1

1∑
x1=0

qn(1−x1)−x1 [x1]i1q−1

[
k− 1

n−x1−1

]
q−1

/[
k+1

n

]
q−1

=[k]q−1q−1
[
k − 1

n − 2

]
q−1

/[
k + 1

n

]
q−1

and

E
(
q−X1 [X1]i1q−1[n−X1]q−1

) = [n]2,q−1q−1

[k + 1]q−1
,
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whence

E
(
q−X1 [X1]i1q−1[X2]i2q−1

)
= E

[
E

(
q−X1 [X1]i1q−1[X2]i2q−1 |X1

)]

= 1

[k]q−1
E

(
q−X1 [X1]i1q−1[n − X1]q−1

) = [n]2,q−1q−1

[k + 1]2,q−1
.

The covariance of [X1]q−1 and q−X1 [X2]q−1 , is given by

C
([X1]q−1 , q−X1 [X2]q−1

) = E
(
q−X1 [X1]q−1 [X2]q−1

) − E
([X1]q−1

)
E

(
q−X1 [X2]q−1

)

= [n]q−1 [n − 1]q−1q−1

[k + 1]q−1 [k]q−1
−

[n]2
q−1q

−1

[k + 1]2
q−1

= [n]q−1q−1
([n − 1]q−1 [k + 1]q−1 − [n]q−1 [k]q−1

)
[k + 1]2

q−1 [k]q−1
.

Using the relations [n − 1]q−1 = [n]q−1 − q−n+1 and [k]q−1 = [k + 1]q−1 − q−k , we
get

[n − 1]q−1[k + 1]q−1 − [n]q−1[k]q−1 = [n]q−1[k + 1]q−1 − q−n+1[k + 1]q−1

− [n]q−1[k + 1]q−1 + [n]q−1q−k

= −[k + 1 − n]q−1q−n+1

and the last expression reduces to (15). ��
In the following theorem the probabilistic behaviour of groups of successive urns

(energy levels) is examined.

Theorem 6 Suppose that the random vector (X1, X2, . . . , Xk) obeys a multivariate
discrete q-uniform distribution of the first kind and consider the random variables

Y j =
s j∑

i=s j−1+1

Xi =
m j∑
i=1

Xs j−1+i , j = 1, 2, . . . , r ,

where mi , i = 1, 2, . . . , r , are positive integers and s j = ∑ j
i=1 mi , j = 1, 2, . . . , r ,

with sr = k, and s0 = 0. Then, the probability function of
(a) the distribution of the random vector (Y1,Y2, . . . , Yr ) is given by

P(Y1 = y1, . . . ,Yr = yr ) = q
∑r

j=1(k−s j−n+z j+1)y j
r∏
j=1

[
m j

y j

]
q

/[
k + 1

n

]
q
, (16)

for y j = 0, 1, . . . ,m j , where z j = ∑ j
i=1 yi , j = 1, 2, . . . , r , with

∑r
j=1 y j ≤ n.
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(b) the marginal distribution of the random vector (Y1,Y2, . . . ,Yν), for 1 ≤ ν < r ,
is given by

P(Y1= y1, . . . , Yν = yν)=q
∑ν

j=1(k−s j+n−z j+1)y j
r∏
j=1

[
m j

y j

]
q

[
k−sν +1

n − zν

]
q

/[
k+1

n

]
q
,

(17)
for y j = 0, 1, . . . ,m j , where z j = ∑ j

i=1 yi , j = 1, 2, . . . , ν, with
∑ν

j=1 y j ≤ n,
(c) the conditional distribution of the random vector (Yν+1,Yν+2, . . . ,Yκ ), given

that (Y1,Y2, . . . ,Yν) = (y1, y2, . . . , yν), for 1 ≤ ν < κ ≤ r , is given by

P(Yν+1= yν+1, . . . ,Yκ = yκ |Y1= y1, . . . ,Yν = yν)=q
∑κ

j=ν+1(k−s j+n−z j+1)y j

×
κ∏

j=ν+1

[
m j

y j

]
q

[
k−sκ +1

n − zκ

]
q

/[
k−sν +1

n − zν

]
q
,

(18)

for y j = 0, 1, . . . , n − zν , j = ν + 1, ν + 2, . . . , κ , with
∑κ

j=ν+1 y j ≤ n − zν and

z j = ∑ j
i=1 yi , j = ν, ν + 1, . . . , κ .

Proof (a) The probability function of the random vector (Y1,Y2, . . . ,Yr ) is derived
from the probability function

P(X1 = x1, X2 = x2, . . . , Xk = xk) = q
∑k

j=1(k− j+1)x j−(n2)
/[

k + 1

n

]
q
,

by inserting into it the r new variables (y1, y2, . . . , yr ) and summing the resulting
expression over all the remaining k − r old variables. Note first that

r∑
j=1

y j =
r∑
j=1

s j∑
i=s j−1+1

xi =
k∑

i=1

xi .

Clearly, the sum in the exponent of q may be expressed as:

k∑
j=1

(k − j + 1)x j =
r∑
j=1

s j∑
i=s j−1+1

(k − i + 1)xi =
r∑
j=1

s j−1+m j∑
i=s j−1+1

(k − i + 1)xi .

Furthermore, replacing in the last inner sum the variable i by s j−1 + i and inserting
into the resulting expression the variables (y1, y2, . . . , yr ), we get
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k∑
j=1

(k − j + 1)x j =
r∑
j=1

m j∑
i=1

(k − s j−1 − i + 1)xs j−1+i

=
r∑
j=1

(k − s j + 1)

m j∑
i=1

xs j−1+i +
r∑
j=1

m j−1∑
i=1

(m j − i)xs j−1+i

=
r∑
j=1

(k − s j + 1)y j +
r∑
j=1

m j−1∑
i=1

(m j − i)xs j−1+i .

Then, the probability function of the random vector (Y1,Y2, . . . ,Yr ) is given by

P(Y1= y1, Y2= y2, . . . , Yr = yr )= q
∑r

j=1(k−s j+1)y j−(n2)[k+1
n

]
q

∑
q

∑r
j=1

∑m j−1

i=1 (m j−i)xs j−1+i

= q
∑r

j=1(k−s j+1)y j−(n2)[k+1
n

]
q

r∏
j=1

∑
q

∑m j−1

i=1 (m j−i)xs j−1+i ,

where the summation, in the last sum, is extended over all xs j−1+i = 0, 1, for i =
1, 2, . . . ,m j−1,with

∑m j−1
i=1 xs j−1+i ≤ y j ; in addition to these values, the summation

in the first sum is extended to all j = 1, 2, . . . , r . Furthermore, by (1),

∑
xs j−1+i=0,1, i=1,2,...,m j−1,

xs j−1+1+···+xs j−1+m j−1≤y j

q
∑m j−1

i=1 (m j−i)xs j−1+i = q(
y j
2 )

[
m j

y j

]
q

.

Also, summing the relations

(
n − z j

2

)
=

(
n − z j−1

2

)
−

(
y j
2

)
− y j (n − z j ), j = 1, 2, . . . , r ,

where z j = ∑ j
i=1 yi , j = 1, 2, . . . , r , z0 = 0, and since

(
n − zr

2

)
=

(
n − y1 − y2 − · · · − yr

2

)
=

(
n − x1 − x2 − · · · − xk

2

)

=
(
xk+1

2

)
= 0, for xk+1 = 0, 1,

we get

(
n

2

)
−

r∑
j=1

(
y j
2

)
=

r∑
j=1

y j (n − z j ).
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Introducing into the last expression of P(Y1 = y1,Y2 = y2, . . . ,Yr = yr ) these two
expressions, it reduces to the required formula (16).

(b) Summing the probability function of the random vector (Y1,Y2, . . . ,Yr ), for
y j = 0, 1, . . . ,m j , j = ν + 1, ν + 2, . . . , r , with

∑r
j=ν+1 y j ≤ n − zr ,

P(Y1 = y1, . . . ,Yν = yν) = q
∑ν

j=1(k−s j−n+z j+1)y j
ν∏
j=1

[
m j

y j

]
q

/[
k + 1

n

]
q

×
∑

yν+ j=0,1,...,m j j=1,2,...,r−ν,

yν+1+···+yr≤n−zν

q
∑r

j=ν+1(k−s j−n+z j+1)y j
r∏

j=ν+1

[
m j

y j

]
q

,

and using (5),

∑
yν+ j=0,1,...,m j j=1,2,...,r−ν,

yν+1+···+yr≤n−zν

q
∑r

j=ν+1(k−s j−n+z j+1)y j
r∏

j=ν+1

[
m j

y j

]
q

=
[
k − sν + 1

n − zν

]
q
,

the probability function (17) is obtained.
(c) The conditional probability function of (Yν+1,Yν+2, . . . ,Yκ ), given that

(Y1,Y2, . . . ,Yν) = (y1, y2, . . . , yν), is given by

P(Yν+1= yν+1, . . . ,Yκ = yκ | Y1= y1, . . . ,Yν = yν)

= P(Y1= y1,Y2= y2 . . . , Yκ = yκ)

P(Y1= y1,Y2= y2, . . . ,Yν = yν)
.

Then, using parts (a) and (b), formula (18) is readily deduced. ��

4 q-Bose–Einstein Stochastic Model (Statistic)

Suppose now that n indistinguishable balls are randomly q-distributed, one after the
other, into r = k + 1 distinguishable urns (cells) {c1, c2, . . . , ck+1}, with unlimited
capacity. Let X j be the number of balls placed in urn c j , for j = 1, 2, . . . , k + 1.
Note that Xk+1 = n − X1 − X2 − · · · − Xk . The distribution of the random vector
(X1, X2, . . . , Xk) is calledMultivariateDiscrete q-UniformDistribution of the second
kind, with parameters n and q. Its probability function is derived in the following
theorem.

Theorem 7 Theprobability functionof themultivariate discrete q-uniformdistribution
of the second kind, with parameters n and q, is given by

P(X1 = x1, X2 = x2, . . . , Xk = xk) = q
∑k

j=1(k− j+1)x j

/[
k + n

n

]
q
, (19)

123



Journal of Statistical Theory and Practice (2022) 16 :49 Page 17 of 26 49

for x j = 0, 1, . . . , n and j = 1, 2, . . . , k, with
∑k

j=1 x j ≤ n, and 0 < q < 1 or
1 < q < ∞.

Proof A random q-distribution of n indistinguishable balls into the k + 1 distinguish-
able urns may be represented by the collection of n q-selected urns {ci1 , ci2 , . . . , cin },
with repetition, where the q-selection of an urn x times corresponds to the placement
of x balls into it. The probability for such a q-distribution, on using (7) with r = k+1,
is given by

c qk−i1+1qk−i2+1 · · · qk−in+1 = c q(k+1)n−(i1+i2+···+in),

with 1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ k + 1. Clearly, the number x j of balls q-distributed
into urn c j equals the number of variables i1, i2, . . . , in that are equal to j , for j =
1, 2, . . . , k + 1, with xk+1 = n − ∑k

j=1 x j . Also, the exponent of q in the expression
of the preceding random q-distribution, may be expressed as:

(k + 1)n −
n∑

r=1

ir =
k+1∑
j=1

(k + 1)x j −
k+1∑
j=1

j x j =
k∑
j=1

(k − j + 1)x j

and so

P(X1 = x1, X2 = x2, . . . , Xk = xk) = c q
∑k

j=1(k− j+1)x j ,

for x j = 0, 1, . . . , n and j = 1, 2, . . . , k, with
∑k

j=1 x j ≤ n. Summing these proba-

bilities, using (2), and equating this sum to one, we get the expression c = 1/
[k+n

n

]
q ,

which completes the derivation of (19). ��
Themultivariate discrete q-uniform distribution of the second kindmay be obtained

as the conditional distribution of k independent q-geometric distributions of the sec-
ond kind, given their sum with another q-geometric distribution of the second kind
independent of them, according to the following theorem.

Theorem 8 Consider a sequence of independent Bernoulli trials and assume that the
conditional probability of success at a trial, given that j − 1 successes occur in the
previous trials, is given by

p j = 1 − θq j−1, j = 1, 2, . . . , 0 < θ < 1, 0 < q < 1 or 1 < q < ∞,

where, for 1 < q < ∞, the number j of successes is restricted by j ≤ m =
− log θ/ log q. Let W j be the number of failures after the ( j − 1)th success and
until the occurrence of the j th success, for j = 1, 2, . . . , k + 1, where k + 1 ≤ m in
the case 1 < q < ∞. Then, the conditional probability function of the random vector
(W1,W2, . . . ,Wk), given that W1+W2+· · ·+Wk+1 = n, is the multivariate discrete
q-uniform distribution of the second kind with probability function (19).
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Proof Clearly, the random variables Wj , j = 1, 2, . . . , k + 1, are independent, with
probability function,

P(Wj = w j ) = (
θq j−1)w j

(
1 − θq j−1), w j = 0, 1, . . . , j = 1, 2, . . . , k + 1.

Also, the probability function of the sum Uk+1 = W1 + W2 + · · · + Wk+1, which is
the number of failures until the occurrence of the (k + 1)th success, is

P(Uk+1 = n) =
[
k + n

n

]
q
θn

k+1∏
i=1

(
1 − θqi−1), n = 0, 1, . . . .

Then, the joint conditional probability functionof the randomvector (W1,W2, . . . ,Wk),
given that Uk+1 = n,

P(W1=w1, . . . ,Wk =wk |Uk+1=n)= P(W1=w1) . . .P(Wk =wk)P(Wk+1=n−uk)

P(Uk+1 = n)
,

with uk = ∑k
j=1 w j , on using these expressions, is obtained as:

P(W1 = w1, . . . ,Wk = wk |Uk+1 = n) = qcn,k (w1,w2,...,wk )

/[
k + n

n

]
q
,

where

cn,k(w1, w2, . . . , wk) =
k∑
j=1

( j − 1)w j −
k∑
j=1

kw j + kn = −
k∑
j=1

(k − j + 1)w j + kn.

Thus, since

q−kn
[
k + n

n

]
q

=
[
k + n

n

]
q−1

,

it reduces to

P(W1 = w1, . . . ,Wk = wk |Uk+1 = n) = q−∑k
j=1(k− j+1)w j

/[
k + n

n

]
q−1

which is expression (19) with q replaced by q−1. ��
Certain marginal and conditional distributions of the multivariate q-uniform distri-

bution of the second kind are derived in the following theorem.

Theorem 9 Assume that the random vector (X1, X2, . . . , Xk) obeys a multivariate
discrete q-uniform distribution of the second kind. Then, the probability function of
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(a) the marginal distribution of (X1, X2, . . . , Xr ), for 1 ≤ r < k, is given by

P(X1 = x1, . . . , Xr = xr ) = q
∑r

j=1(k− j+1)x j

[
k − r + n − yr

n − yr

]
q

/[
k + n

n

]
q
,

(20)
for x j = 0, 1, . . . , n, j = 1, 2, . . . , r , with

∑r
j=1 ≤ n, where yr = ∑r

j=1 x j ,
(b) the conditional distribution of the random vector (Xr+1, Xr+2, . . . , Xm), given

that (X1, X2, . . . , Xr ) = (x1, x2, . . . , xr ), for 1 ≤ r < m ≤ k, is given by

P(Xr+1 = xr+1, . . . , Xm = xm |X1 = x1, . . . , Xr = xr )

= q
∑m

j=r+1(k− j+1)x j

[
k − m + n − ym

n − ym

]
q

/[
k − r + n − yr

n − yr

]
q
,

(21)

for x j = 0, 1, . . . , n− yr , j = r + 1, r + 2, . . . ,m, with
∑m

j=r+1 x j ≤ n− yr , where
yr = ∑r

i=1 xi .

Proof (a) Summing the probability function of the multivariate discrete q-uniform
distribution of the second kind, for x j = 0, 1, . . . , n − yr , j = r + 1, r + 2, . . . , k,
with

∑k
j=r+1 x j ≤ n − yr , we get, the expression

P(X1= x1, . . . , Xr = xr )=q
∑r

j=1(k− j+1)x j

×
∑

xr+ j=0,1,...,n−yr j=1,2,...,k−r ,
xr+1+xr+2+···+xk≤n−yr

q
∑k−r

j=1(k−r− j+1)xr+ j

/[
k + n

n

]
q
.

Then, the multiple sum, using (2), equals

∑
xr+ j=0,1,...,n−yr j=1,2,...,k−r ,

xr+1+xr+2+···+xk≤n−yr

q
∑k−r

j=1(k−r− j+1)xr+ j =
[
k − r + n − yr

n − yr

]
q
,

and the last expression of the probability function reduces to (20).
(b) The conditional probability function of (Xr+1, Xr+2, . . . , Xm), given that

(X1, X2, . . . , Xr ) = (x1, x2, . . . , xr ), is given by

P(Xr+1= xr+1, . . . , Xm = xm | X1= x1, . . . , Xr = xr )

= P(X1= x1, X2= x2 . . . , Xm = xm)

P(X1= x1, X2= x2, . . . , Xr = xr )
.

Then, using the result of part (a), we conclude that
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P(Xr+1 = xr+1, . . . , Xm = xm |X1 = x1, . . . , Xr = xr )

= q
∑m

j=r+1(k− j+1)x j

[
k − m + n − ym

n − ym

]
q

/[
k − r + n − yr

n − yr

]
q
,

for x j = 0, 1, . . . , n− yr , j = r + 1, r + 2, . . . ,m, with
∑m

j=r+1 x j ≤ n− yr , where

y j = ∑ j
i=1 xi . ��

As regards the derivation of the q-factorial moments of the multivariate q-uniform
distribution of the second kind, and especially the q-means, q-variances, and q-co-
variances, the attention may be restricted to the marginal distribution of the random
vector (X1, X2). Its probability function is given by

P(X1 = x1, X2 = x2) = qkx1+(k−1)x2

[
k − 2 + n − x1 − x2

n − x1 − x2

]
q

/[
k + n

n

]
q
, (22)

for x1 = 0, 1, . . . , n and x2 = 0, 1, . . . , n, with x1+x2 ≤ n. The q-factorial moments
of the random vector (X1, X2) are derived in the following theorem. These moments,
may be suitably rephrased as conditional q-factorial moments of (Xν+1, Xν+2), given
that (X1, X2, . . . , Xν) = (x1, x2, . . . , xν), with 1 ≤ ν ≤ r − 2.

Theorem 10 Suppose that the probability function of the random vector (X1, X2) is
given by (22). Then,

E([X1]i1,q) = [n]i1q [i1]q !qki1
[k + i1]i1,q

, i1 = 1, 2, . . . , n, (23)

and

V ([X1]q) = [n]q [k]q [n + k + 1]qqk
[k + 1]2q [k + 2]q . (24)

Also,

E
(
qi2X1 [X2]i2,q

) = [n]i2,q [i2]q !q(k−1)i2

[k + i2]i2,q
, i2 = 0, 1, . . . , n, (25)

and

C
([X1]q , qX1 [X2]q

) = −[n]q [n + k + 1]qq2k−1

[k + 1]2q [k + 2]q . (26)

Proof The marginal probability function of X1 is

P(X1 = x1) = qkx1
[
k − 1 + n − x1

n − x1

]
q

/[
k + n

n

]
q
, x1 = 0, 1, . . . , n,

and its q-factorial moments are given by
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E([X1]i1,q) =
n∑

x1=i1

qkx1 [x1]i1,q
[
k − 1 + n − x1

n − x1

]
q

/[
k + n

n

]
q

= [i1]q !
n∑

x1=i1

qkx1
[

x1
x1 − i1

]
q

[
k − 1 + n − x1

n − x1

]
q

/[
k + n

n

]
q
.

Setting r = xi − i1 and using the q-Cauchy’s formula,

n∑
r=0

q(k−m)r
[
m + r

r

]
q

[
k − m + n − r − 1

n − r

]
q

=
[
k+ n

n

]
q
,

withm = i1 and k and n replaced by k+ i1 and n− i1, respectively, the last expression
reduces to (23). Also, the q-variance of X1,

V ([X1]q) = qE([X1]2,q) + E([X1]q) − [
E([X1]q)

]2
,

using (23) is obtained as:

V ([X1]q) = [n]2,q [2]qq2k+1

[k + 1]2,q + [n]qqk
[k + 1]q − [n]2qq2k

[k + 1]2q
= [n]qqk

([n−1]q [k + 1]q(1+ q)qk+1+[k+ 1]q [k + 2]q−[n]q [k+2]qqk
)

[k+1]2q [k+2]q .

Since

[n − 1]q [k + 1]qqk+1 − [n]q [k + 2]qqk = [n + k − 1]qqk+1 − [n + k − 1]qqk
1 − q

and

[n − 1]q [k + 1]qqk+2 + [k + 1]q [k + 2]q = [n + k − 1]q − [n + k − 1]qqk+1

1 − q
,

the last expression, reduces to (24).
Furthermore, the expected value of qi2X1 [X2]i2,q may be derived by using the

relation:

E
(
qi2X1 [X2]i2,q

) = E
[
E

(
qi2X1 [X2]i2,q |X1

)]
.

Since the conditional probability function of X2, given that X1 = x1,

P(X2 = x2|X1 = x1) = q(k−1)x2

[
k − 2 + n − x1 − x2

n − x1 − x2

]
q

/[
k − 1 + n − x1 − x2

n − x1

]
q
,
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x2 = 0, 1, . . . , n − x1, is of the same form as the probability function of X1, with the
parameters k and n replaced by k − 1 and n − x1, respectively, it follows that

E
([X2]i2,q |X1 = x1

) = [n − x1]i2,q [i2]q !q(k−1)i2

[k + i2 − 1]i2,q
.

Also, the expected value of qi2X1 [n − X1]i2,q is given by

E
(
qi2X1 [n − X1]i2,q

) =
n−i2∑
x1=0

q(k+i2)x1 [n − x1]i2,q
[
k − 1 + n − x1

n − x1

]
q

/[
k + n

n

]
q

= [k + i2 − 1]i2,q
n−i2∑
x1=0

q(k+i2)x1

[
k − 1 + n − x1
n − i2 − x1

]
q

/[
k + n

n

]
q
.

Thus, using the above q-Cauchy’s formula withm = 0 and k and n replaced by k + i1
and n − i1, respectively, the last expression reduces to

E
(
qi2X1 [n − X1]i2,q

) = [n]i2,q [k + i2 − 1]i2,q
[k + i2]i2,q

and so

E
(
qi2X1 [X2]i2,q

) = E
[
E

(
qi2X1 [X2]i2,q |X1

)] = [i2]q !q(k−1)i2

[k + i2 − 1]i2,q
E

(
qi2X1 [n − X1]i2,q

)

= [i2]q !q(k−1)i2

[k + i2 − 1]i2,q
· [n]i2,q [k + i2 − 1]i2,q

[k + i2]i2,q
= [n]i2,q [i2]q !q(k−1)i2

[k + i2]i2,q
.

Similarly, the expected value of the q-function qi2X1 [X1]i1,q [X2]i2,q , may be evaluated
by using the relation:

E
(
qi2X1 [X1]i1,q [X2]i2,q

) = E
[
E

(
qi2X1 [X1]i1,q [X2]i2,q |X1

)]
.

Clearly,

E
(
qi2X1 [X1]i1,q [n−X1]i2,q

)=
n−i2∑
x1=i1

q(k+i2)x1 [x1]i1,q [n−x1]i2,q
[k−1+n−x1

n−x1
]
q[k+n

n

]
q

= [i1]q ![k+i2−1]i2,q
n−i2∑
x1=i1

q(k+i2)x1

[ x1
x1−i1

]
q

[k−1+n−x1
n−i2−x1

]
q[k+n

n

]
q

and using the above q-Cauchy’s formula with m = i1 and k and n replaced by k + i1
and n − i1, respectively, the last expression reduces to

E
(
qi2X1 [X1]i1,q [n − X1]i2,q

) = [n]i1+i2,q [i1]q ![k + i2 − 1]i2,qq(k+i2)i1

[k + i1 + i2]i1+i2,q
,
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whence

E
(
qi2X1 [X1]i1,q [X2]i2,q

) = E
[
E

(
qi2X1 [X1]i1,q [X2]i2,q |X1

)]

= [i2]q !q(k−1)i2

[k + i2 − 1]i2,q
E

(
qi2X1 [X1]i1,q [n − X1]i2,q

)

= [n]i1+i2,q [i1]q ![i2]q !qk(i1+i2)+(i1−1)i2

[k + i1 + i2]i1+i2,q
.

The covariance of [X1]q and qX1 [X2]q , is given by

C
([X1]q , qX1 [X2]q

) = E
(
qX1 [X1]q [X2]q

) − E
([X1]q

)
E

(
qX1 [X2]q

)

= [n]q [n − 1]qq2k
[k + 2]q [k + 1]q − [n]2qq2k−1

[k + 1]2q
= [n]qq2k−1

([n − 1]q [k + 1]qq − [n]q [k + 2]q
)

[k + 1]2q [k + 2]q .

Using the relations [n − 1]q = [n]q − qn−1 and [k + 1]qq = [k + 2]q − 1, we get

[n − 1]q [k + 1]q − [n]q [k + 2]q = [n]q [k + 2]q − [n − 1]q − [k + 2]qqn−1 − [n]q [k + 2]q
= −[n + k + 1]q

and the last expression of the covariance reduces to (26). ��

The interesting probabilistic behaviour of groups of successive urns (energy levels)
is presented in the following theorem.

Theorem 11 Suppose that the random vector (X1, X2, . . . , Xk) obeys a multivariate
discrete q-uniform distribution of the second kind and consider the random variables

Y j =
s j∑

i=s j−1+1

Xi =
m j∑
i=1

Xs j−1+i , j = 1, 2, . . . , r ,

where mi , i = 1, 2, . . . , r , are positive integers and s j = ∑ j
i=1 mi , j = 1, 2, . . . , r ,

with sr = k, and s0 = 0. Then, the probability function of
(a) the distribution of the random vector (Y1,Y2, . . . , Yr ) is given by

P(Y1 = y1, . . . ,Yr = yr ) = q
∑r

j=1(k−s j+1)y j
r∏
j=1

[
m j + y j − 1

y j

]
q

/[
k + n

n

]
q
,

(27)
for y j = 0, 1, . . . , n, j = 1, 2, . . . , r , with

∑r
j=1 y j ≤ n,
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(b) the marginal distribution of the random vector (Y1,Y2, . . . ,Yν), for 1 ≤ ν < r ,
is given by

P(Y1= y1, . . . ,Yν = yν)=q
∑ν

j=1(k−s j+1)y j

ν∏
j=1

[
m j +y j −1

y j

]
q

[
k−sν +n−zν

n−zν

]
q[

k + n

n

]
q

,

(28)
for y j = 0, 1, . . . , n, j = 1, 2, . . . , ν, with

∑ν
j=1 y j ≤ n and zν = ∑ν

i=1 yi ,
(c) the conditional distribution of the random vector (Yν+1,Yν+2, . . . ,Yκ ), given

that (Y1,Y2, . . . ,Yν) = (y1, y2, . . . , yν), for 1 ≤ ν < κ ≤ r , is given by

P(Yν+1= yν+1, . . . ,Yκ = yκ |Y1= y1, . . . ,Yν = yν)=q
∑κ

j=ν+1(k−s j+1)y j

×
κ∏

j=ν+1

[
m j +y j −1

y j

]
q

[
k−sκ +n−zκ

n−zκ

]
q

/[
k−sν +n−zν

n−zν

]
q
,

(29)

for y j = 0, 1, . . . , n − zν , j = ν + 1, ν + 2, . . . , κ , with
∑r

j=ν+1 y j ≤ n and

z j = ∑ j
i=1 yi .

Proof (a) The probability function of the random vector (Y1,Y2, . . . ,Yr ) is derived
from the probability function

P(X1 = x1, X2 = x2, . . . , Xk = xk) = q
∑k

j=1(k− j+1)x j

/[
k + n

n

]
q
,

by inserting into it the r new variables (y1, y2, . . . , yr ) and summing the resulting
expression for all the remaining old k − r variables. Clearly, the exponent of q may
be expressed as:

k∑
j=1

(k − j + 1)x j =
r∑
j=1

s j∑
i=s j−1+1

(k − i + 1)xi =
r∑
j=1

s j−1+m j∑
i=s j−1+1

(k − i + 1)xi .

Furthermore, replacing in the last inner sum the variable i by s j−1 + i and inserting
into the resulting expression the variables (y1, y2, . . . , yr ), we get

k∑
j=1

(k − j + 1)x j =
r∑
j=1

m j∑
i=1

(k − s j−1 − i + 1)xs j−1+i

=
r∑
j=1

(k − s j + 1)

m j∑
i=1

xs j−1+i +
r∑
j=1

m j−1∑
i=1

(m j − i)xs j−1+i
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=
r∑
j=1

(k − s j + 1)y j +
r∑
j=1

m j−1∑
i=1

(m j − i)xs j−1+i .

Then, the probability function of the random vector (Y1,Y2, . . . ,Yr ) is given by

P(Y1= y1,Y2= y2, . . . ,Yr = yr )= q
∑r

j=1(k−s j+1)y j[k+n
n

]
q

∑
q

∑r
j=1

∑m j−1

i=1 (m j−i)xs j−1+i

= q
∑r

j=1(k−s j+1)y j[k+n
n

]
q

r∏
j=1

∑
q

∑m j−1

i=1 (m j−i)xs j−1+i ,

where the summation, in the last sum, is extended over all xs j−1+i = 0, 1, . . . , y j ,

for i = 1, 2, . . . ,m j − 1, with
∑m j−1

i=1 xs j−1+i ≤ y j ; in addition to these values, the
summation in the first sum is extended to all j = 1, 2, . . . , r . Since, by (2),

∑
xs j−1+i=0,1,...,y j i=1,2,...,m j−1,

xs j−1+1+···+xs j−1+m j−1≤y j

q
∑m j−1

i=1 (m j−i)xs j−1+i =
[
m j + y j − 1

y j

]
q

,

the last expression reduces to (27).
(b) Summing the probability function of the random vector (Y1,Y2, . . . ,Yr ), for

y j = 0, 1, . . . ,m j , j = ν + 1, ν + 2, . . . , r , with
∑r

j=ν+1 y j ≤ n − zr ,

P(Y1 = y1, . . . ,Yν = yν) = q
∑ν

j=1(k−s j+1)y j
ν∏
j=1

[
m j + y j − 1

y j

]
q

/[
k + 1

n

]
q

×
∑

yν+ j=0,1,...,n−zν ,

j=1,2,...,r−ν,

yν+1+···+yr≤n−zν

q
∑r

j=ν+1(k−s j+1)y j
r∏

j=ν+1

[
m j +y j −1

y j

]
q

,

and using (6),

∑
yν+ j=0,1,...,n−zν ,

j=1,2,...,r−ν,

yν+1+···+yr≤n−zν

q
∑r

j=ν+1(k−s j+1)y j
r∏

j=ν+1

[
m j +y j −1

y j

]
q

=
[
k−sν +n−zν

n − zν

]
q
,

the probability function (28) is obtained.
(c) The conditional probability function of (Yν+1,Yν+2, . . . ,Yr ), given that

(Y1,Y2, . . . ,Yr ) = (y1, y2, . . . , yr ), is given by
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P(Yν+1 = yν+1, . . . ,Yr = yr | Y1 = y1, . . . ,Yν = yν)

= P(Y1 = y1,Y2 = y2 . . . ,Yr = yr )

P(Y1 = y1,Y2 = y2, . . . ,Yν = yν)
.

Then, using parts (a) and (b), the required formula (29) is readily deduced. ��
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