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Abstract
A new family of integer-valued Cauchy-type distributions is introduced, the Cauchy-
Cacoullos family. The characteristic function is evaluated, showing some interesting
distributional properties, similar to the ordinary (continuous) Cauchy scale family.
The results are extendable to discrete Student-type distributions with odd degrees of
freedom.
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1 Introduction and summary

Some years ago, Cacoullos (Personal Communication), considering discretization of
well-known continuous distributions, introduced a (standard) discrete Cauchy random
variable (r.v.) X with probability mass function (p.m.f.)

Pr(X = k) = 1/π0

1 + k2
, k ∈ Z , (1)

by the obvious substitution k ∈ Z for x ∈ R in the standard Cauchy density

f (x) = 1/π

1 + x2
, x ∈ R. (2)

Cacoullos immediately raised two natural questions:
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(A) While it is expected to be very close toπ , what is the exact value of the normalizing
constant π0 in (1)?

(B) While the characteristic function (ch.f.) of (2) is φ(t) = e−|t |, what is the corre-
sponding one, say φ1, of (1)?

We provide explicit answers in Sect. 2. It is well known that the (continuous)
Cauchy distribution appears naturally in statistics and probability. At this point, it
should be noted though the standard Cauchy r.v. is customarily defined as the ratio of
two independent standard normal r.v.’s, or as the tangent of a randomly chosen angle
in [0, 2π), it has recently been shown [1, 6, 7] that the ratio representation still holds
if (X ,Y ) follows any bivariate spherically symmetric distribution.

In [2], Cacoullos showed that if X = (X1, . . . , X p)
′ (p ≥ 3) is spherically symmet-

rically distributed around zero, then all polar angle tangent vectors followamultivariate
Cauchy; note that, e.g., Feller [4] defines the symmetric bivariate and trivariate Cauchy
distributions directly through their densities—not as tangent vectors.

In contrast to (2) and its location-scale extension, for which several applications
are known both in probability and statistics, for (1) we have been able to find few
results related to stochastic processes—see, e.g., [14, p. 383]. However, the asymptotic
distribution of the sample means for (1), Theorem 4, may serve as a starting point for
applications; so appears to be the Cauchy-Cacoullos family defined by (4). These
considerations are, however, beyond the scope of the present note.

In Sect. 3, we introduce a novel family of integer-valued distributions, the Cauchy-
Cacoullos family, sharing similar properties—see Definition 1 and Remark 2. In
particular, any distribution in this family has a simple characteristic function that
can be written down explicitly, Theorem 2, and the same is valid for the discrete
Student-type distributions of Remark 2. Basic inference properties for this family are
included in Theorem 3, while some distributional properties are discussed in some
detail in Sect. 4; see Theorems 4–6. We hope that the proposed simple formulae will
enlarge the applicability of discrete Cauchy distribution in the future.

2 The characteristic function

Since φ1(t) = Eeit X = E cos(t X) + iE sin(t X) (i denotes the imaginary unit) and X
is symmetrically distributed around the origin (hence, E sin(t X) = 0), both questions,
(A), (B), will be answered if we manage to calculate in a closed form the function
g : R → R, defined by the Fourier series

g(t) :=
∞∑

n=0

cos(nt)

1 + n2
, t ∈ R. (3)

Therefore, the problem is to identify which function g is represented as a series of
cosines with Fourier coefficients as in (3). Clearly, g is periodic with period 2π . Thus,
it suffices to restrict our attention to t-values in the interval −π ≤ t ≤ π . On the other
hand, since a cosine Fourier series corresponds to an even function, we may further
restrict the t-values into the interval 0 ≤ t ≤ π .
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Fig. 1 The characteristic function φ1(t) in the interval −2π ≤ t ≤ 4π

The key lemma is:

Lemma 1 For −2π ≤ t ≤ 2π ,

g(t) = 1

2
+ π cosh(π − |t |)

2 sinh(π)
.

We omit the proof because we shall show a more general result in Sect. 3.

Corollary 1 The normalizing constant π0 is given by

π0 = 2g(0) − 1 = π cosh(π)

sinh(π)
= π

(
1 + 2

e2π − 1

)
� 3.15334809493716 . . . .

The formula for the ch.f., and is an immediate consequence of Lemma 1 and (3):

Theorem 1 The ch.f. of X is given byφ1(t) = cosh(π−|t |)/ cosh(π),−2π ≤ t ≤ 2π ,
and it is periodic with period 2π (see Fig. 1).

3 The Cauchy-Cacoullos Family of Discrete Distributions

If wemultiply a continuous Cauchy r.v. by a constant λ > 0 we stay in the same family
of distributions—the Cauchy scale family. More precisely, if X is standard Cauchy,
the density of λX is given by

f (x) = 1

π

λ

λ2 + x2
, x ∈ R, λ > 0.
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However, this is no longer true for a discrete Cauchy X , since the support of λX is
not the set of integers. Motivated from this observation, we define a family of discrete
integer-valued distributions as follows:

Definition 1 The discrete Cauchy-Cacoullos family (CC, for short) contains the
p.m.f.’s

fλ(k) = tanh(λπ)

π

λ

λ2 + k2
, k ∈ Z , λ > 0. (4)

For completeness of the presentation, it is convenient to include the limiting case
λ = 0, which corresponds to a degenerate r.v. at zero.

Although this family has several interesting properties, similar to the Cauchy, it
does not seem to have been studied elsewhere. Clearly, for λ = 1 we get (1). At a first
glance, it is not entirely obvious to verify that the normalizing constant is as in (4).
This is a by-product of the following result.

Lemma 2 For −π ≤ t ≤ π and λ > 0,

cosh(λt) = λ sinh(λπ)

π

{
1

λ2
+ 2

∞∑

n=1

(−1)n cos(nt)

λ2 + n2

}
.

Proof We express the even function h(t) = cosh(λt) in a cosine Fourier series to get
h(t) ∼ ∑∞

n=0 αn cos(nt). Simple calculations show that

α0 = 1

2π

∫ π

−π

cosh(λu)du = sinh(λπ)

πλ

and

αn = 1

π

∫ π

−π

cosh(λu) cos(nu)du = (−1)n
2λ sinh(λπ)

π(λ2 + n2)
, n = 1, 2, . . . .

Since h is differentiable in [−π, π ] with h(−π) = h(π), the lemma is proved (and
the series converges uniformly to h). 
�

If we set λ = 1 and t → t − π in Lemma 2, we obtain Lemma 1 with g as in (3).

Corollary 2 We have

∞∑

k=−∞

1

λ2 + k2
= π

λ tanh(λπ)
,

and hence, (4) defines a p.m.f. for any λ > 0.

Proof Substitute t = π in Lemma 2. 
�
As for the case λ = 1, we can obtain the ch.f. of Xλ ∼ fλ in a closed form.
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Theorem 2 The ch.f. of Xλ with p.m.f. fλ ∈ CC is given by

φλ(t) = cosh
(
λ(t − π)

)

cosh(λπ)
, 0 ≤ t ≤ 2π,

and it is periodic with period 2π . More precisely,

φλ(t) =
cosh

(
λ
(
t − 2π� t

2π  − π
))

cosh(λπ)
, −∞ < t < ∞,

where �x denotes the integer part of x.
Proof As is well known, all integer-valued r.v.’s have periodic ch.f.’s, with period
2π . The particular r.v. is symmetrically distributed around zero, and thus, its ch.f.
is real and even, so that φλ(t) = E cos(t Xλ). To calculate this, we may restrict our
attention in the interval 0 ≤ t ≤ 2π . Then, since −π ≤ t − π ≤ π and cos(nt) =
(−1)n cos(n(t − π)),

φλ(t) = λ tanh(λπ)

π

{
1

λ2
+ 2

∞∑

n=1

(−1)n cos(n(t − π))

λ2 + n2

}

= λ tanh(λπ)

π

π cosh(λ(t − π))

λ sinh(λπ)
,

where the second equality follows from Lemma 2. 
�
Statistical inference for the parameter λ is facilitated from the fact that the p.m.f.’s

and the ch.f.’s in CC have tractable forms.

Theorem 3 Consider a random sample X1, . . . , Xn ∼ fλ ∈ CC with λ > 0 unknown.
(i) The minimal sufficient statistic is T = (Y1, . . . ,Yn), with Y1 ≤ Y2 ≤ · · · ≤ Yn

being the order statistics of |X1|, . . . , |Xn|.
(ii) The Fisher Information (of a single observation) is

I (λ) = 1

2λ2
+ π

λ
w(λ) where w(λ) = λπ

cosh(λπ)2
− 1

sinh(2λπ)
. (5)

(iii) The MLE λ̂n of λ is unique; it is given as the unique solution in [0,∞) of the
equation

πλ

sinh(2πλ)
+ 1

n

n∑

i=1

X2
i

λ2 + X2
i

= 1

2
. (6)

(iv) The MLE is consistent and asymptotically efficient,

√
n

(̂
λn − λ

) d→ N (0, 1/I (λ)),

where
d→ denotes weak convergence.
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Proof Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two vectors in Zn . Then, the
likelihood ratio is given by

L(x; λ)

L(y; λ)
=

n∏

i=1

λ2 + y2i
λ2 + x2i

,

and it has the same form as in the continuous Cauchy scale-family. Obviously, this
ratio is independent of λ > 0 if and only if the ordered squared values of x and y
are identical, and this verifies (i). Now, a straightforward computation yields the score
function

S(k; λ) := ∂

∂λ
log fλ(k) = 1

λ
+ 2π

sinh(2πλ)
− 2λ

λ2 + k2
.

Let Xλ ∼ fλ. Using Remarks 1, 2 below, it is seen that IE S(Xλ; λ) = 0 and
IE S(Xλ; λ)2 = I (λ) with I (λ) as in (5). Note that I (λ) = −IE ∂2

∂λ2
log fλ(Xλ), since

the regularity conditions are obviously fulfilled; both formulae require computation
of the series

∑
n(λ

2 + n2)−s , s = 1, 2, 3. Moreover, one can easily verify that the
log-likelihood is given by

∂

∂λ
log L(x; λ) = 2n

λ

(
πλ

sinh(2πλ)
− 1

2
+ 1

n

n∑

i=1

x2i
λ2 + x2i

)
. (7)

Forfixedx ∈ Zn , the positive functionu(λ) := πλ/ sinh(2πλ)+n−1 ∑n
i=1 x

2
i /(λ

2+
x2i ) decreases to zero as λ → ∞ and has a limit u(0+) ≥ 1/2 (it equals to 1/2 iff
x = 0). Since u is strictly decreasing and continuous, the likelihood is first increasing
and then decreasing, reaching its global maximum at λ0, where u(λ0) = 1/2. This
shows that the MLE is the unique solution of (6), it equals to 0 iffX = 0, and it is oth-
erwise positive. Finally, in order to prove (iv), fix λ = λ0 and c ∈ (0, λ0), and assume
that λ varies in the interval (λ0 − c, λ0 + c). Then, ∂3

∂λ3
log fλ(k) = A(λ) + B(λ, k)

where

A(λ) = 4π3 3 + cosh(4λπ)

sinh(2λπ)3
+ 2

λ3
, B(λ, k) = 4λ

3k2 − λ2

(λ2 + k2)3
.

The function A is decreasing and positive, so that |A(λ)| < A(λ0 − c). Moreover,

|B(λ, k)| < 4λ
3k2 + 3λ2

(λ2 + k2)3
<

12(λ0 + c)

((λ0 − c)2 + k2)2
≤ 12(λ0 + c)

(λ0 − c)4
.

It follows thatwecanfindafinite constantM = M(λ0, c) such that | ∂3

∂λ3
log fλ(k)| <

M uniformly in k ∈ Z ,λ ∈ (λ0−c, λ0+c), and the result follows by applyingTheorem
3.10 in [11]. 
�
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Unfortunately, the MLE does not admit a closed form and, hence, numerical
procedures should be employed. On the other hand, we can construct closed-
form consistent estimators, due to the fact that the ch.f. admits a simple form.
For example, φλ(π) = 1/ cosh(λπ) = β, say, equals the difference Pr(Xλ even) −
Pr(Xλodd). This can be consistently and unbiasedly estimated by β̂n = n−1

sumn
i=1(−1)Xi , and a trivial application of the CLT leads to

√
n(β̂n − β)

d→
N (0, 1 − β2), while the SLLN shows that β̂n is eventually positive w.p. 1. Apply-

ing the delta-method (see [16]) with g(β) = π−1
(
log(1 + √

1 − β2) − log(β)
)
, so

that g(β) = λ, we obtain

√
n

(
g(β̂n) − λ

) d→ N
(
0, cosh(πλ)2/π2

)
.

However, compared to the MLE, the closed-form estimator g(β̂n) is by far less
efficient. Thus, it is natural to seek for closed-form highly efficient estimators, and
this may be possible as in the continuous case. In the continuous case, it is shown
that the asymptotic relative efficiency of the geometric mean of the absolute values of
the observations is 8/π2 � 81%, and in [10] a more efficient closed-form estimate is
proposed. Also, highly efficient estimators that are based on the ch.f. may be obtained
by adapting the methodology of [9] to the present discrete case. However, such results
are beyond the scope of the present note. Note that the Fisher information in the
continuous Cauchy scale family equals to 1/(2λ2) (compare to (5)), and the likelihood
equation is as in (7), with the absence of the term πλ/ sinh(2πλ).

Remark 1 The series in Corollary 2 is of some interest in itself, because of the compu-
tation of the sum

∑∞
n=1(λ

2+n2)−1 in a closed form. Then, e.g., taking limits as λ ↘ 0,
we arrive at the famous Euler sum,

∑∞
n=1 n

−2 = π2/6.Moreover, differentiating term
by term with respect to λ, we can evaluate the series

∞∑

n=1

1

(λ2 + n2)2
.

From this, taking limits asλ ↘ 0,we arrive at the sum for ζ(4), that is,
∑∞

n=1 n
−4 =

π4/90; clearly, this process can be continued to evaluate all ζ(2s) values, as well as
the series

∑∞
n=1(λ

2 + n2)−s , s = 1, 2, . . . .

Remark 2 Differentiating m times with respect to λ2 the series in Lemma 2, it is
possible to introduce and investigate discrete Student-type families with ν = 2m + 1
degrees of freedom, that is, p.m.f.’s of the form

: fν;λ(k) = cν;λ
(λ2 + k2)(ν+1)/2

, k ∈ Z , ν = 1, 3, 5, . . . , λ > 0, (8)

admitting closed-formch.f.’sφν;λ(t) and explicit normalizing constants cν;λ.However,
the situation becomes quite complicated for even values of ν.
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4 Some distributional properties of the CC family

We observe that the ch.f. φλ(t) is not differentiable at the points t = 2kπ , k ∈ Z (c.f.
Fig. 1). It is known that a random variable Y1 satisfies a weak law of large numbers,
that is,

Yn := Y1 + · · · + Yn
n

→ some constant c, in probability,

if and only if its ch.f., φY1 , is differentiable at t = 0; then, φ′
Y1

(0) = ic where i is
the imaginary unit (the problem was treated by A. Zygmund and E.J.G. Pitman, and
it is closely connected to Khintchine’s weak law of large numbers; see Feller [4, p.
528] and van der Vaart [16, p. 15]). Hence, the distributions of the CC family do not
satisfy the weak law of large numbers, since their ch.f.’s are not differentiable at t = 0.
Therefore, it is of some interest to study the asymptotic behavior of the sample means
from a CC random variable with p.m.f. as in (4). Recall the well-known continuous
counterpart, which says that Xn is the same Cauchy for all n (Cauchy r.v.’s are stable).

We have the following result.

Theorem 4 If X1, X2, . . . are independent identically distributed random variables
with p.m.f. as in (4), then

Xn
d→ λ tanh(λπ) Z ,

where Z is standard (continuous) Cauchy with density (2).

Proof Fix t ≥ 0.
Theorem 2 shows that the ch.f. of Xn is given by

φλ(t/n)n =
(
cosh

(
λ(π − t/n)

)

cosh(λπ)

)n

, n ≥ t

2π
.

Using this, it is easy to verily (e.g., by taking logarithms) that φλ(t/n)n → e−ct ,
t ≥ 0, where c = λ tanh(λπ).

Finally, from the fact that φλ is even, it follows that φλ(t/n)n → e−c|t | for all
t ∈ R, which is the ch.f. of cZ , and the result follows from the continuity theorem of
characteristic functions. 
�

Unlike the usual Cauchy scale family, the CC family is not convolution closed;
however, it is “almost" closed. More precisely, the following result holds.

Theorem 5 For independent r.v.’s X, Y in CC with X ∼ fλ1 and Y ∼ fλ2 , the ch.f. of
X + Y is given by

φX+Y (t) = α(λ1 + λ2)

2α(λ1)α(λ2)
φλ1+λ2(t) + α(|λ2 − λ1|)

2α(λ1)α(λ2)
φ|λ2−λ1|(t), t ∈ R,
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where φ0(t) ≡ 1 is the ch.f. of the degenerate r.v. X0 with Pr(X0 = 0) = 1, and
α(λ) := cosh(λπ), λ ≥ 0. Consequently, X + Y is a mixture of two r.v.’s that are
members of CC family,

Pr(X + Y = k) = α(λ1 + λ2)

2α(λ1)α(λ2)
fλ1+λ2(k) + α(|λ2 − λ1|)

2α(λ1)α(λ2)
f|λ2−λ1|(k), k ∈ Z .

Proof Set

p = α(λ1 + λ2)

2α(λ1)α(λ2)
, q = α(|λ2 − λ1|)

2α(λ1)α(λ2)
.

Obviously, p > 0 and q > 0. Also, using the formula

cosh(x) cosh(y) = 1

2
cosh(x + y) + 1

2
cosh(y − x) (9)

it is easily seen that p + q = 1. Restricting our attention to the interval 0 ≤ t ≤ 2π ,
we have

φX+Y (t) = φλ1(t)φλ2(t) = cosh(λ1(t − π)) cosh(λ2(t − π))

α(λ1)α(λ2)

and a final application of (9) to the numerator, taking into account Theorem 2,
completes the proof. 
�
Remark 3 If X ,Y are i.i.d. from fλ, then, since α(0) = 1 and f0(k) = I (k = 0), we
get

Pr(X + Y = k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2 cosh(λπ)2
+ tanh(λπ)

2λπ
, k = 0,

tanh(λπ)

π

2λ

(2λ)2 + k2
, k ∈ Z∗.

This formula quantifies the fact that the p.m.f. of X + Y lies outside CC, but it
is close, in some sense, to f2λ; in fact, the ratio fX+Y (k)/ f2λ(k) does not vary with
k ∈ Z∗.

A ch.f. φ (or the corresponding r.v. X ) is called infinitely divisible (i.d.) if for each
n, we can find a ch.f. φn such that φn

n = φ; equivalently, if X1,n + · · · + Xn,n has
the same distribution as X , where X1,n, . . . , Xn,n are i.i.d. with ch.f. φn . Properties of
this kind are included in what is called “arithmetic of probability laws" [12, 13], and
a vast bibliography exists, see, e.g., [3, 5, 8, 12, 13, 15], and references therein.

Since the notion of i.d. is related to limit theorems of sums of independent r.v.’s, it
would be useful to know whether the CC family is i.d. This is indeed the case, and it
follows immediately from a result of Polya, because the ch.f. φλ is even, log-convex
in [0, 2π ] and 2π periodic, see [8], [13]. In fact, φα

λ is a ch.f. for all λ ≥ 0 and α ≥ 0.
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As is well known, the notion of self-decomposability, as well as that of stability, do
not apply to discrete r.v.’s. Recall that X is stable if, for each n, we can find constants
αn > 0 andβn ∈ R such that X and (X1+· · ·+Xn)/αn−βn have the samedistribution,
where X1, . . . , Xn are i.i.d. copies X . Obviously, the class of stable distributions
is a proper subset of i.d. distributions. Due to a fundamental result of Lévy, stable
distributions are very important because their class contains exactly all possible limits
of (properly) normalized sums of i.i.d. r.v.’s. Every stable distribution has a ch.f. that
can be expressed in a closed form, and the corresponding r.v. is absolutely continuous.
The subclass of symmetric stable ch.f.’s, after a location-scale transformation, can be
written as S = {φα(t) = e−|t |α , 0 < α ≤ 2}. Only the densities that correspond to
α = 1/2 (Lévy), α = 1 (Cauchy) and α = 2 (Normal), have known explicit forms.

It is natural to askwhether the CC family contains discrete stable distributions, in the
sense of [15]. However, the definitions in [15] are designed for non-negative integer-
valued r.v.s, and are based on probability generating functions; it is not obvious how
to extend these results to the CC case. The following definition provides a different
approach that seems to be natural for our case.

Definition 2 Let
 be a set of indices, consider a parametric familyF = {φλ, λ ∈ 
}
of discrete, integer-valued, ch.f.’s, and let F ′ be the corresponding family of random
variables. Then, F is called discrete stable (DSF) if for each φλ ∈ F , we can find a
sequence of indices {λn}∞n=1 ⊂ 
 such that φn

λn
→ φλ. Equivalently, if every random

variable in F ′ is the weak limit of sums of i.i.d. r.v.’s from F ′.

The usual Poisson family is DSF, as well as the Negative Binomial. In order for such
a model to be useful in practice, the family F should not contain “too many” ch.f.’s.
Also, it is plausible to consider thoseDSF’s that satisfy somekind of discrete attraction,
in the sense that (non-normalized) sums of several i.i.d. discrete r.v.’s converge weakly
to one of themembers of theDSF. It is clear that theCompoundPoisson that is produced
by a fixed discrete ch.f. ψ , namely, F = {φλ(t) = eλ(ψ(t)−1), λ ≥ 0}, is such a useful
DSF model. On the other hand, the complete Compound Poisson model (allowing
any ψ in the exponent) seems to be too wide. Regarding the CC family, we have the
following result.

Theorem 6 The CC family is not DSF. To be more specific, suppose {φλn }∞n=1 ⊂ CC
where λn ≥ 0 is an arbitrary sequence, and φλn is as in Theorem 2. Then, (i) and (ii)
below are equivalent.

(i) There is a point t0 ∈ (0, 2π) such that limn φλn (t0)
n = δ > 0.

(ii) It holds λn = θ/
√
n+o(1/

√
n), where θ = (−2 log δ)1/2(t0(2π−t0))−1/2 ≥ 0.

If (i) or (ii) is satisfied, then φλn (t)
n → ψ(t) := exp(−θ2t(2π − t)/2) uniformly

in t , 0 ≤ t ≤ 2π , and the limiting ch.f. ψ (extended to be 2π -periodic) is an infinitely
divisible ch.f.

Before proving Theorem 6, we provide some remarks. The limiting ch.f. ψ is a
Compound Poisson one. Indeed, the exponent can be written as λ(ψ1(t) − 1), where
ψ1(t) = 1 − θ2t(π − t/2)/λ and, e.g., λ ≥ π2θ2/2 (we shall see below that the
minimum value of λ for which ψ1 is a ch.f. is λ0 = π2θ2/3). Then, it follows that
the even, 2π -periodic function ψ1 is nonnegative, decreasing and convex in [0, π ],
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and so, by Polya’s sufficiency criterion (see [8]) it is a ch.f. of an integer-valued
r.v. Clearly, the parametric family produced by all possible limits from CC, namely,
F = {ψλ(t) = e−λt(2π−t), λ ≥ 0, t ∈ [0, 2π ]}, forms a DSF according to Definition
2. By applying the inversion formula for ch.f.’s of integer-valued r.v.’s, namely

Pr(X = k) = 1

2π

∫ π

−π

e−iktφX (t)dt, k ∈ Z ,

it is recognized that the p.m.f.’s inF do not admit closed forms. Indeed, if Yλ ∼ ψλ,
then the preceding formula reduces to

Pr(Yλ = k) = 1

π

∫ π

0
cos(kt)e−λt(2π−t)dt, k ∈ Z ,

and this integral cannot be computed in terms of elementary functions (unless
λ = 0). Moreover, if we make use of the preceding formula with ψ1 instead of ψ , we
can easily obtain the p.m.f. of the r.v.W with ch.f.ψ1. Setting for convenience c = θ2/λ

one finds Pr(W = 0) = 1 − cπ2/3 (so that c ≤ 3/π2 and, hence, λ ≥ θ2π2/3) and
Pr(W = k) = c/k2, k ∈ Z∗. According to Theorem 6, these remarks provide a
detailed description of the class of the limiting distributions of sums of i.i.d. r.v.’s
from CC.

The following lemma will be used in the proof of Theorem 6.

Lemma 3 (i)Let {βn}∞n=1 ⊂ (0, 1], assume thatβn
n → β ∈ (0, 1] and set B = − logβ.

Then, βn = 1 − B/n + o(1/n).
(ii) Fix x0 ∈ [0, 1), and define the function f (y) := cosh(x0y)/ cosh(y), y ≥ 0.

Suppose that {αn}∞n=1 ⊂ [0,∞) and that f (αn)
n → δ ∈ (0, 1]. Then, αn = α/

√
n +

o(1/
√
n), where α =

√
(−2 log δ)/(1 − x20 ).

Proof (i) Despite the fact that (i) is known, we provide a very quick proof here. The
inequality y ≤ − log(1 − y) ≤ y/(1 − y) (0 ≤ y < 1), applied y = 1 − βn , yields
βn(−n logβn) ≤ n(1 − βn) ≤ −n logβn, and since the upper bound implies that
βn → 1, both bounds converge to B.

(ii) The sequence nα2
n is bounded. Indeed, assuming the contrary, it follows that for

any M > 0 (arbitrarily large) we can find a subsequence nk such that αnk > M/
√
nk

for all k. Since it is easily checked that f ′(y) < 0 for y > 0, the positive continuous
function f is strictly decreasing, with f (0) = 1, f (∞) = 0 (recall that 0 ≤ x0 < 1).
Therefore, f

(
αnk

)nk ≤ f
(
M/

√
nk

)nk → exp
( − M2(1 − x0)2/2

)
, as k → ∞.

Thus, lim inf f (αn)
n ≤ exp

( − M2(1 − x0)2/2
)
, and since M > 0 is arbitrary,

lim inf f (αn)
n → 0. This contradicts the hypothesis f (αn)

n → δ > 0, and verifies
that the sequence nα2

n is, indeed, bounded. Hence, αn → 0. By applying a Taylor
development to the function f it can be checked that for y ≥ 0, sufficiently close to
zero,

1 − 1

2
(1 − x20 )y

2 ≤ f (y) ≤ 1 − 1

2
(1 − x20 )y

2 + 1

24
(1 − x20 )(5 − x20 )y

4, 0 ≤ y < ε.
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Substituting y = αn (which tends to zero), we obtain the inequality

An(1 − f (αn)) ≤ nα2
n ≤ An(1 − f (αn)) + Bα2

n(nα2
n), n ≥ n0,

with A = 2/(1 − x20 ), B = (5 − x20 )/12. Since f (αn)
n → δ ∈ (0, 1] (and

0 < f (αn) ≤ 1), it follows from part (i) that n(1 − f (αn)) → − log δ, and the
preceding inequality shows that nα2

n → (− log δ)A, completing the proof. 
�
Proof of Theorem 6 Assume first that (ii) holds, that is, λn = θ/

√
n + o(1/

√
n) for

some θ ≥ 0. It is straightforward to verify that φλn (t)
n converges pointwise toψ(t) as

given, and from the fact that ψ is continuous at the origin, the convergence is uniform
at compacts, and in particular, in [0, 2π ]. Obviously, (i) is satisfied for (any choice of)
t0 ∈ (0, 2π) with δ = ψ(t0) = exp(−θ2t0(2π − t0)/2) > 0.

Assume now that (i) holds, i.e., suppose that for a fixed t0 ∈ (0, 2π), φλn (t0)
n →

δ > 0. Due to symmetry (φλn (t) = φλn (2π − t)), we can further assume that
0 < t0 ≤ π . Set αn = πλn , x0 = 1 − t0/π ∈ [0, 1), and consider the function
f (y) = cosh(x0y)/ cosh(y), y ≥ 0, as in Lemma 3. Then, φλn (t0) = f (αn), and
by assumption, f (αn)

n → δ > 0 (certainly, δ ≤ 1). Hence, from Lemma 3(ii) we
conclude that nα2

n → (−2 log δ)/(1 − x20 ), that is, nλ2n → (−2 log δ)/(t0(2π − t0)),
which verifies (ii). 
�

It is of some interest to observe that, according to Theorem6, the limiting ch.f. exists
if we can merely show the convergence φλn (t0)

n → δ > 0 for a single nontrivial point
t0 (i.e., t0 �= 2kπ ). Then, ψ(t) is uniquely determined from the pair (t0, δ), Also, the
limiting distribution is degenerate at zero if and only if δ = 1 (which is corresponds
to θ = 0 in Theorem 6(ii)).

Another related problem concerns the extended CC class, defined as the family of
ch.f.’s CC+ := {φα : φ ∈ CC, α > 0}. Since every φ ∈ CC is 2π -periodic, decreases
in [0, π ] and is log-convex in [0, 2π ], the same is true for all ch.f.’s in CC+. Hence,
CC+ is a family of i.d. ch.f.’s. This family is similar to the (continuous) Cauchy scale
family. Cramér [3] showed that all stable centered distributions with exponent α < 2
are not factor closed. This means that, e.g., the ch.f. of the standard Cauchy, e−|t |, can
be written as φ1φ2, with φi (i = 1, 2) lying outside the class of Cauchy ch.f.’s. So, it
is fairly expected that the same is true for CC+. Indeed, it can be proved that this is
the case, and, as a concrete example, we provide the following 2π -periodic φi ’s:

φ1(t) =
(
cosh(t − π)

cosh(π)

)1/2 (
1 + π4

1 + (t − π)4

)1/50

, 0 ≤ t ≤ 2π,

φ2(t) =
(
cosh(t − π)

cosh(π)

)1/2 (
1 + (t − π)4

1 + π4

)1/50

, 0 ≤ t ≤ 2π.

It can be checked that both functions are positive, decreasing in [0, π ], and convex
(φ1 is log-convex) in [0, 2π ] and hence, their 2π -periodic extensions (which are even
functions) are ch.f.’s, see [13]. Obviously, these ch.f.’s lie outside CC+, and, trivially,
their product equals to the standard discrete Cauchy ch.f. of Theorem 1.
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