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Abstract
Let us consider a sequence of n binary trials (signals). A counter registers successes,
but once a success is registered the mechanism is locked for a number of trials fol-
lowing each registration. Under this framework the observed sequence of outcomes
turns to a dependent sequence with non-identical success probabilities even if the
original trials were independent and identically distributed. In the present paper, we
study the distribution of the number of success runs registered by the counter after
the completion of the n signals. Our study covers the general case where the original
trials are independent but not necessarily identically distributed. The special case of
identically distributed trials gives birth to the modified binomial distribution of order
k, which generalizes binomial distributions extensively studied in the literature. In
this case, we derive neat recursive relations for the probability mass function, the
probability generating function and the moments. The applicability of the modified
binomial distribution of order k in several research areas is highlighted and after devel-
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oping theoretical results we discuss how they can be exploited to study a biomedical
engineering problem.

Keywords Binary sequence · Run · Counter · Markov-chain · Biomedical
engineering

1 Introduction

The concept of success run has been extensively used in many applications of several
research areas, where the interest focuses on the study of experimental trials with two
outcomes. For example,

a. For a mechanical engineer performing a start-up test for a unit, it is reasonable
to couch his/her decision (accepting the machine or rejecting it) on the number of
consecutive successful or unsuccessful attempted start-ups (see [4, 5]).

b. Many quality control plans base the acceptance/rejection of the sample lot on
the occurrence of prolonged sequences of successive working/failed components (see
e.g. [6, 22]).

c. In biosurveillance, the occurrence of many consecutive days with the number of
new Covid infections exceeding a warning threshold, may trigger restriction measures
in specific locations or countries.

Similar set-ups may also be encountered in molecular biology, finance, actuarial
science, ecology, reliability engineering, etc., see [3].

Run-related problems have attracted the attention of probabilists and statisticians
as far back as the 18-th century. As mentioned in [19] “The Probability of throwing a
Chance assigned a given number of times without intermission, in any given number
of Trials” (De Moivre [11], p. 243) was interpreted by Todhunter [29] to mean the
probability that a run of r successes is completed at the n-th trial in a sequence of
Bernoulli trials each with probability of success p. Feller [13] exploited the theory of
recurrent events to establish a formula for the probability generating function (pgf) of
the distribution of the trial number X at which the first run of length r occurs.

The paper by Philippou et al. [25] inspired a remarkable upsurge of interest in these
distributions under the name success runs distributions of order k. From 1984 onward
there has been a vast research literature on run-related distributions. The classical
framework for a fixed length run-related problem is mentioned in [13]. A sequence
of n Bernoulli trials is observed, with the possible outcomes labelled as success (S)

or failure (F), and the number Nn,k of non-overlapping and recurrent success runs
of length k is counted (k is a fixed positive integer). The nomenclature used for the
distribution of Nn,k is “binomial distribution of order k”. The classical geometric,
negative binomial, logarithmic and Poisson distributions have been generalized as
well in a runs context.

The distributions of order k have many practical applications in areas as diverse
as statistical quality control, nonparametric statistical inference, molecular biology,
ecology, meteorology, psychology, reliability, start-up demonstration testing, etc., see
Balakrishnan and Koutras [3] where a good overview of several applications has been
included. In the same book, properties, asymptotics, and estimation of the param-
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eters of the distributions of order k are covered. The problems of deriving explicit
expressions for the probability mass functions and cumulative distribution functions
are discussed and appropriate references are provided. Several diagrams illustrating
the shapes of the distributions are also provided. For more recent results in the area
of run-related distributions the interested reader may refer to [2, 7, 23] where good
overviews up to date at the time the articles were written are also included.

There are, however, many interesting applications in the aforementioned areas,
where the Bernoulli model is not appropriate. For this reason, several modifications of
the traditional framework have been suggested in the statistics bibliography, the most
popular ones being the two-state Markov model, the exchangeable binary trials and
the independent but not identical binary model.

In the present article, we shall study the distribution of Nn,k in a sequence of binary
trials where the probability of success p does not remain constant; whenever at any
given trial success results with probability p, then in the next r − 1 trials we assume
the probability of success vanishes.

The aforementioned set-up was first used by Dandekar [10] to introduce a “modi-
fied” binomial distribution. He also discussed an application of it to a fertility enquiry
problem.

Another interesting application of Dandekar’s model arises in the study of the
Geiger counters used for cosmic rays and a-particles. As indicated in [13] (see page
306) counters of this type may be described by the following simplified model.
Bernoulli trials are performed at a uniform rate. A counter is used to register suc-
cesses, but once a success is registered the mechanism is locked for the next r − 1
trials. In other words, a success at the n-th trial is registered if, and only if, no regis-
tration has occurred in the preceding r − 1 trials. The counter is then locked at trials
numbered n+1, . . . , n+r−1 and is freed at the (n+r)-th trial, until another registra-
tion occurs and the system locks again for the subsequent r − 1 trials. Manifestly, the
output of the counter consists of dependent trials. It should be stressed that the original
sequence of signals arriving at the counter could be either a sequence of identical trials
or non-identical ones.

In the present article, we shall study a generalization of Dandekar’s [10] modified
binomial distribution by looking at the number of non-overlapping success runs of
length k in a non-iid binary sequence. More specifically, we assume that we have a
sequence of n independent binary trials (signals) with success (failure) probabilities
pt (qt ), t = 1, 2, . . . , n. A counter registers only the S outcomes, and each time an S is
registered the counter keeps locked for the next r−1 incoming signals (trial outcomes).
The random variable (r.v.) of interest, to be denoted by Nn,k,r , is the number of success
runs registered by the counter after the completion of the n S/F signals (k ≥ 1, r ≥ 1
and n ≥ (k − 1)r + 1).

As an illustration, let us consider the case n = 6, k = 2, r = 3 and n = 6, k = 2,
r = 2. Then the event N6,2,3 = 1 contains the next 3 realizations

S ∗ ∗S ∗ ∗, FS ∗ ∗S∗, FFS ∗ ∗S,
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while the event N6,2,2 = 1 contains the next 8 realizations

S ∗ S ∗ S∗, S ∗ S ∗ FS, S ∗ S ∗ FF, FS ∗ S ∗ F,

FS ∗ S ∗ S, FFS ∗ S∗, FFFS ∗ S, S ∗ FS ∗ S,

where ∗ stands for one discrete instance (trial) where the counter is locked (so we are
not interested in the specific outcome).

In order to exemplify further the usefulness and applicability of the framework
presented before and make clear the motivation for studying Nn,k,r we provide below
a number of pertinent applications:

a.When investigating aGeiger-counter record, it is natural to look at the probability
P(Nn,k,r ≥ c) to assess the hazard generated by the registered signals. Large values
of P(Nn,k,r ≥ c) indicate increased high levels of temporarily concentrated radiation.

b. In the insurance section and premium pricing, it is reasonable to assume that after
an incidence (e.g. a burglary in an insured house), the probability of having a second
incidence for the next, say r − 1, time periods becomes negligible. Thus the sequence
of success (burglary occurrence) - failure (no burglary occurrence) trials resembles the
modified binary framework suggested above. Then one may get interested to evaluate
P(Nn,k,r ≥ c) in order to proceed to an appropriate premium pricing.

c. In start-up demonstration testing, let us assume that the tests are performed by
an automated mechanism on the same unit, and involve multilevel inspection that
increases the mechanical stress on the unit. Then, arriving at an S (failure of the unit)
will result at a high stress level for the inspected unit; therefore it is reasonable not
to take into account the outcomes obtained for, say r − 1, start-up tests following the
failure. If the unit rejection is associated with the number of consecutive failures in n
tests (i.e. success runs of length k) then Nn,k,r can be exploited to study the stochastic
behaviour of the whole testing plan.

d. In Covid surveillance, whenmodelling a characteristic (i.e. number of new cases,
number of casualties, etc., in a specific time period) as a binary variable (e.g. low-high
value) it may be reasonable to ignore a number of time periods, say r − 1, following a
high value (success, S); doing so, short-time fluctuations that will result in alternating
S-F ′s after the observed high value will not be taken into account. Then, large values
of Nn,k,r will indicate a persisting “bad” situation calling for state decisions.

At this point it should be noted that the special case pt = p is of great importance.
In this case, we name the distribution of Nn,k,r , (r −1)-modified binomial distribution
of order k. For r = 1, the 0-modified binomial distribution of order k is the classical
binomial distribution of order k (see [12, 14, 16, 18, 26, 30]), while for r = 1 and
k = 1 it is the usual binomial distribution. Moreover, for k = 1, the (r − 1)-modified
binomial distribution of order 1 is the modified binomial distribution, studied in [10].
For recent generalizations of distributions of order k we refer to Dafnis and Makri [8],
Dafnis et al. [9] and Kumar [24].

Sen et al. [27] studied the distribution of Nn,k,r considering a Pȯlya–Eggenberger
sampling scheme and employing interesting combinatorial arguments. In the present
paper, we consider two cases which are completely different in nature. In the more
general one, the original binary trials are considered to be independent but not identi-
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cally distributed. In the second case, the success probability of a trial is considered to
be constant and equal to p, i.e. the original binary trials are independent and identically
distributed. However, as already been stated, in both cases trials where the enumeration
is carried out to determine Nn,k,r are neither independent nor identically distributed.
We employ the Markov chain imbedding (MCI) technique to study the distribution of
Nn,k,r . We, finally, present an interesting application of the new results, along with
numerical results and figures that provide a better illustration of our theoretical study.

Throughout the paper we denote by [x] the greater integer which is less than or
equal to x and by δi, j the Kronecker’s Delta function, i.e. δi, j equals 1, if i = j and
0, otherwise.

2 Exact Distribution of Nn,k,r

In the present section, we shall study the distribution of Nn,k,r , defined in the Introduc-
tion. We shall employ the MCI technique, taking into consideration that trials where
the enumeration is carried out to determine Nn,k,r may be divided in two different
types of subperiods: Subperiods when the counter is not locked and the probability of
success of the t-th trial equals pt and subperiods when the counter is locked and the
probability of success of the t-th trial vanishes.

TheMCI technique projects the enumerating r.v. of interest to appropriate subspaces
of the state space of a properly definedMarkov chain. This approach was introduced in
the novel paper of Fu and Koutras [14] and was further popularized by the monograph
of Fu and Lou [15]. Koutras and Alexandrou [21] refined the method by providing a
general recursive scheme for the probability distribution of aMarkov chain imbeddable
r.v. of binomial type (MVB). The MCI technique was further developed in a series
of papers since then (see, among others, [2, 17]). We, now, recall the definitions of a
Markov chain imbeddable variable and an MVB.

Definition 1 The integer valued random variable Xn with support {0, 1, . . . , �n} (n a
nonnegative integer) will be called Markov chain imbeddable variable if

(i) there exists a Markov chain {Yt ; t ≥ 0} defined on a state space �,
(ii) there exists a partition {Cx , x = 0, 1, . . .} on �,
(iii) for every x = 0, 1, . . . , �n the probabilities P(Xn = x) can be deduced by

considering the projection of the probability space of Yn onto Cx i.e.

P(Xn = x) = P(Yn ∈ Cx ), x = 0, 1, . . . , �n .

Before we proceed to Definition 2, let us assume that the sets Cx of the parti-
tion {Cx , x = 0, 1, . . . } have the same cardinality s =| Cx |, x = 0, 1, . . . , more
specifically

Cx = {cx0, cx1, . . . , cx,s−1}.

Definition 2 A nonnegative integer random variable Xn will be called MV B if
(a) Xn can be embedded into a Markov chain as in Definition 1,
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(b) P(Yt ∈ Cyj | Yt−1 ∈ Cxi ) = 0, for all y �= x, x + 1.

Definition 2 gives birth to the next two s × s transition probability matrices

At (x) = (P(Yt ∈ cx j | Yt−1 ∈ cxi )), Bt (x) = (P(Yt ∈ cx+1, j | Yt−1 ∈ cxi ).

Let f t (x) be the probability vector associated with time t and sub-state set Cx , i.e.

ft (x) = (P(Yt = cx,0), P(Yt = cx,1), . . . , P(Yt = cx,s−1)), 0 ≤ t ≤ n.

Then, it is straightforward that the probability mass function of Xn can be expressed
as follows

P(Xn = x) = fn(x)1
′
, x = 0, 1, . . . , �n (1)

with 1 = (1, 1, . . . , 1) ∈ Rs . In the sequel we shall adopt the convention P(X0 =
0) = 1 and denote by π x the (row) vector of initial probabilities of the Markov chain.
The following lemma (see [21]) provides a recursive scheme for the probability vectors
ft (x).

Lemma 2.1 ForanMVB Xn the sequence ft (x), t = 1, 2, . . . , n satisfies the recurrence
relations

ft (0) = ft−1(0)At (0),

ft (x) = ft−1(x)At (x) + ft−1(x − 1)Bt (x − 1), 1 ≤ x ≤ �n,

with initial conditions f 0(x) = π x , 0 ≤ x ≤ ln .

Wemay, now, proceed to derive our new results regarding the distribution of Nn,k,r .
We shall first consider the general case where the trials are not identically distributed
while the system is not locked. Under this set-up we have

Theorem 2.1 The probability mass function (pmf) of the r.v. Nn,k,r (k ≥ 1, r ≥ 1) is
given by

P(Nn,k,r = x) = fn(x)1
′
, x = 0, 1, . . . ,

[
n + r − 1

kr

]
, (2)

where fn(x) are probability vectors satisfying the recursive relations of Lemma 2.1,
with At , Bt , t = 1, 2, . . . , n being defined as follows:

a. At is a kr × kr matrix which has all its entries 0 except from the entries:

• (1 + ir , 1), i = 0, . . . , k − 1, which are all equal to qt ,
• (1 + ir , 2 + ir) for k ≥ 2, i = 0, . . . , k − 2, which are all equal to pt ,
• (2+ ir + j, 3+ ir + j) for k ≥ 2 and r ≥ 2, i = 0, . . . , k − 2, j = 0, . . . , r − 2,
which are all equal to 1,

• (2 + (k − 1)r + j, 3 + (k − 1)r + j) for r ≥ 3, j = 0, . . . , r − 3, which are all
equal to 1,

• (rk, 1) for r ≥ 2, which equals 1.

b. Bt is a kr × kr matrix with all its elements vanishing except from the column
(k − 1)r + 1, if r ≥ 2, or the first column, if r = 1, which equals 1′ − At1′.
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Proof We shall first prove that Nn,k,r is an MVB.
We set �n = [ n+r−1

kr

]
and introduce the state space � = ⋃�n

x=0 Cx where Cx ,
x = 0, 1, . . . , �n are disjoint subspaces with | Cx |= kr elements labelled as Cx =
{cxi , i = 0, . . . , kr − 1}.

We introduce next aMarkov chain {Yt , t ≥ 0} on� as follows: Yt ∈ cx,i = {(x, i)},
or equivalently Yt = (x, i), if at the first t outcomes the number of non-overlapping
occurrences of k consecutive successes registered by the counter is x , and

(a) i = 0, if
(1) at the t-th outcome the counter is not locked and the outcome is an F

or
(2) at the t-th outcome the counter is locked, x ≥ 1 and the last registration

occurred at trial t − r + 1.
(b) i = 1 + r j , for j = 0, 1, . . . , k − 2, with k ≥ 2, if the counter is not locked

and the t-th outcome was the (1 + j)-th consecutive S registered by the counter.
(c) i = 1 + r j + s, for j = 0, . . . , k − 2, s = 1, . . . , r − 1, with k ≥ 2 and r ≥ 2

(if r ≥ 3, i gets the additional values i = 1 + (k − 1)r + s, for s = 1, . . . , r − 2), if
at the t-th outcome the counter is locked for exactly s consecutive trials.

(d) i = 1+ (k − 1)r , if the counter is not locked, x ≥ 1 and the t-th outcome is the
k-th consecutive S registered by the counter after the (x − 1)-th success run of length
k was completed (Yt = (x, i) and Yt−1 = (x − 1, (k − 1)r)).

Under this set-up, one may easily verify that the r.v. Nn,k,r becomes an MV B with
initial probability vector

π0 = (1, 0, 0, . . . , 0)1×kr ,

and respective matrices At = At (x) and Bt = Bt (x), x = 0, 1, . . . , �n , the ones
described in the theorem.

The result follows by Lemma 2.1 and Eq. (2). �	

Matrices At and Bt resulting from Theorem 2.1 in the special case r = 1, reduce
to the ones given in [21].

As an illustration let us treat the special cases k = 2, r = 2 and k = 2, r = 3. In
the first case the matrices At and Bt of the Markov chain are given by

At =
⎛
⎜⎝

(·, 0) (·, 1) (·, 2) (·, 3)
qt pt 0 0
0 0 1 0
qt 0 0 0
1 0 0 0

⎞
⎟⎠ , Bt =

⎛
⎜⎝

(·, 0) (·, 1) (·, 2) (·, 3)
0 0 0 0
0 0 0 0
0 0 0 pt
0 0 0 0

⎞
⎟⎠ .

while in the second we get

At =

⎛
⎜⎜⎜⎝

(·, 0) (·, 1) (·, 2) (·, 3) (·, 4) (·, 5)
qt pt 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
qt 0 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0

⎞
⎟⎟⎟⎠ ,
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Bt =

⎛
⎜⎜⎜⎝

(·, 0) (·, 1) (·, 2) (·, 3) (·, 4) (·, 5)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 pt 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎠ .

We shall next proceed to the computation of the distribution of N6,2,3 and N6,2,2.
For typographical convenience, let us consider the case of trials having a common
success probability p when the system is not locked. In this case the structure of
At , Bt is exactly the same as given before, with the pt , q ′

t s being replaced by p, q,
respectively. Apparently, now we have

A1 = A2 = · · · = A6 = A, B1 = B2 = · · · = B6 = B.

Furthermore, a repeated application of the recursive scheme of Lemma 2.1 yields,
for k = 2, r = 3

f0(0) = (1, 0, 0, 0, 0, 0), f1(0) = f0(0) · A = (q, p, 0, 0, 0, 0),
f2(0) = f1(0)·A = (q2, pq, p, 0, 0, 0), f3(0) = f2(0)·A = (q3, pq2, pq, p, 0, 0),
f4(0) = f3(0) · A = (pq + q4, pq3, pq2, pq, 0, 0),
f5(0) = f4(0) · A = (pq2 + q(pq + q4), p(pq + q4), pq3, pq2, 0, 0),
f6(0) = f5(0) · A = (q3(2p + q2), q2(2p + q3), pq(p + q3), pq3, 0, 0) and
f0(1) = (0, 0, 0, 0, 0, 0), f1(1) = f0(1) · A + f0(0) · B = (0, 0, 0, 0, 0, 0),
f2(1) = f1(1) · A + f1(0) · B = (0, 0, 0, 0, 0, 0),
f3(1) = f2(1) · A + f2(0) · B = (0, 0, 0, 0, 0, 0),
f4(1) = f3(1) · A + f3(0) · B = (0, 0, 0, 0, p2, 0),
f5(1) = f4(1) · A + f4(0) · B = (0, 0, 0, 0, p2q, p2),
f6(1) = f5(1) · A + f5(0) · B = (p2, 0, 0, 0, p2q2, p2q).
Applying now Theorem 2.1 for x = 0 and x = 1 we may obtain the exact distribu-

tion of N6,2,3 as follows
P(N6,2,3 = 0) = f6(0) · 1′ = q3(2p + q2) + q2(2p + q3) + pq(p + q3) + pq3,
P(N6,2,3 = 1) = f5(1) · 1′ = p2(1 + q + q2).
Following exactly the same procedure for k = 2, r = 2 we may easily derive the

exact distribution of N6,2,2 as follows
P(N6,2,2 = 0) = 1 − (p3 + 3p3q + 3p2q2 + p2q3),
P(N6,2,2 = 1) = p3 + 3p3q + 3p2q2 + p2q3.
It should be noted that, the two cases worked out before serve only illustration

purposes; the formulas established by the suggested methodology could be easily
established by taking into account the realizations of the events N6,2,3 = 1 and
N6,2,2 = 1 provided in the Introduction. Thus,

P(N6,2,3 = 1) = P(S ∗ ∗S ∗ ∗, FS ∗ ∗S∗, FFS ∗ ∗S) = p2(1 + q + q2),

P(N6,2,3 = 0) = 1 − P(N6,2,3 = 1) = 1 − p2(1 + q + q2)
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and

P(N6,2,2 = 1) = P(S ∗ S ∗ S∗, S ∗ S ∗ FS, S ∗ S ∗ FF, FS ∗ S ∗ F, FS ∗ S ∗ S,

FFS ∗ S∗, FFFS ∗ S, S ∗ FS ∗ S)

= p3 + 3p3q + 3p2q2 + p2q3,

P(N6,2,2 = 0) = 1 − P(N6,2,3 = 1) = 1 − (p3 + 3p3q + 3p2q2 + p2q3).

It goes without saying that, for larger values of n it is infeasible in practice to
register all realizations of the events Nn,k,r ; in these cases the use of Theorem 2.1 is
unavoidable.

Let us, now, denote byϕn(z) and�(z, w) the single and double generating functions
of the r.v. Nn,k,r , i.e.

ϕn(z) =
∞∑
x=0

P(Nn,k,r = x)zx =
∞∑
x=0

fn(x)z
x , �(z, w) =

∞∑
n=0

ϕn(z)w
n .

The next Proposition provides a closed expression for the double generating function
and neat recursive relations for the pmf, pgf and moments of Nn,k,r .

Proposition 2.1 If the trials have a common success probability p when the system is
not locked, then the following results hold true.

(a) The double generating function �(z, w) of the r.v. Nn,k,r (k ≥ 1, r ≥ 1) equals

�(z, w) = 1 + pw(
∑k−2

i=0 piwir )(
∑r−1

i=0 wi ) + pkw(k−1)r+1z
∑r−2

i=0 wi

1 − qw
∑k−1

i=0 piwir − pkwkr z
. (3)

(b) The pgf ϕn(z) of the r.v. Nn,k,r (k ≥ 1, r ≥ 1) satisfies the recursive scheme

ϕn(z) = pkzϕn−kr (z) + q
k−1∑
i=0

piϕn−ir−1(z), n ≥ kr + 1, (4)

with initial conditions ϕ(k−1)r+1(z) = pkz + 1 − pk, ϕn(z) = pk−1(1 − qi+1)z +
1 − pk−1(1 − qi+1), n = (k − 1)r + 1 + i, i = 1, . . . , r − 1 and ϕn(z) = 1, 0 ≤
n ≤ (k − 1)r .

(c) The pmf fn(x) of the r.v. Nn,k,r (k ≥ 1, r ≥ 1) satisfies the recursive scheme

fn(x) = pk fn−kr (x − 1) + q
k−1∑
i=0

pi fn−ir−1(x), n ≥ kr + 1, x ≥ 0, (5)

with initial conditions

fn(x) = 0, if x < 0, or x > [(n + r − 1)/(kr)] , or n < 0,

f(k−1)r+1(1) = pk , f(k−1)r+1(0) = 1 − pk ,

123



42 Page 10 of 17 Journal of Statistical Theory and Practice (2022) 16 :42

fn(1) = pk−1(1 − qi+1), fn(0) = 1 − fn(1), n = (k − 1)r + 1 + i, i = 1, . . . , r − 1 and

fn(x) = δx,0, 0 ≤ n ≤ (k − 1)r .

(d) The m− th momentsμn,m = E[(Nn,k,r )
m], m ≥ 1, of the r.v. Nn,k,r (k ≥ 1, r ≥ 1)

satisfy the recursive scheme

μn,m = pk
m∑
i=0

(
m

i

)
μn−kr ,i + q

k−1∑
i=0

piμn−ir−1,m, n ≥ (k − 1)r + 2, (6)

with μn,0 = 1, μn,m = 0 for n ≤ (k − 1)r and m ≥ 1, μ(k−1)r+1,m = pk, for
m ≥ 1 and μn,m = pk−1(1−qi+1), n = (k−1)r +1+ i, i = 1, . . . , r −1, m ≥ 1.

Proof (a) Under the assumption that the trials have a common success probability p
when the system is not locked, it is apparent that Nn,k,r turns into a homogeneous
MV B. Therefore, its double generating function can be expressed as (see [21])

�(z, w) = π0[I − w(A + zB)]−11′, (7)

where I is the identity s × s matrix and At = A, Bt = B are the matrices from
Theorem 2.1. The result follows using some algebra.

(b) Exploiting Eq. (3) we get

(
1 − qw

k−1∑
i=0

piwir − pkwkr z
) ∞∑
n=0

ϕn(z)w
n

= 1 + pw(

k−2∑
i=0

piwir )(

r−1∑
i=0

wi ) + pkw(k−1)r+1z
r−2∑
i=0

wi ,

(8)

and the result follows by comparing the coefficients of wn in both sides of (8).
(c) It suffices to replace ϕn(z), n ≥ 0, in (4), by the power series ϕn(z) =∑∞
x=0 fn(x)zx , and then consider the coefficients of zx in both sides of the result-

ing identity.
(d) The moment generating function M(z) of Nn,k,r can be expressed as

E
(
exp(zNn,k,r )

) = ϕn(ez). Accordingly, replacing z by ez in (4), we may easily
derive a recursive scheme for the moment generating function of Nn,k,r . The desired
result follows by taking the m-th order derivative with respect to z on both sides of
this recursive scheme and using the well known identity

dm

dzm
(
ewzM(z)

)∣∣∣∣
z=0

=
m∑
i=0

(
m

i

)
wm−iμn,i .

In Proposition 2.1, for k = 1 or r = 1, the convention
∑−1

i=0 = 1 was used. �	
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It is worth mentioning that one may establish an alternative proof of (c) by con-
ditioning on the number of S’s appearing before the first occurrence of an F in the
sequence of n trials.

As far as part (d) of Proposition 2.1 is concerned, it provides an effective recurrence
scheme for computing themoments of Nn,k,r up to a desired order for all n = 1, 2, . . . .
If one is interested in the evaluation only of the meansμn,1 = E(Nn,k,r ), he/she might
use the next matrix-based expression (see e.g. [21])

μn,1 = π0

[ n∑
i=1

(A + B)i−1
]
B1′ = π0

I − (A + B)n

I − (A + B)
B1′

or the respective expression for the generating function ofμn,1, n = 1, 2, . . . , namely

∞∑
n=1

μn,1w
n = w

1 − w
π0

[
I − w(A + B)

]−1
B1′.

As it was mentioned in the Introduction Sen et al. [27] examined the distribution of
the r.v. Nn,k,r under the Pȯlya–Eggenberger sampling schemewith parameters a, b and
s. Setting a

a+b = p and s = 0 (sampling with replacement) an expression for the pmf
of Nn,k,r in the special case that the trials have a common success probability p when
the counter is not locked, containing multiple sums involving binomial coefficients,
can be deduced.

To our knowledge, the recursive formulae of Proposition 2.1 have not appeared in
the literature before. In addition, several published results can be derived as special
cases of it. For r = 1, (5) reduces to (5.4) of Balakrishnan and Koutras [3] while, for
k = 1, we may obtain a formula that relates to the closed formula for the cumulative
distribution function of Nn,1,r derived by Dandekar [10]. For k = 1 and r = 1, (5)
reduces to a well-known recurrence satisfied by the pmf of the binomial distribution.

In the next section we present an application of the distribution proposed in the
current work.

3 An Application

The analysis of the long-term fluctuation of Peak Expiratory Flow (PEF) and Forced
Expiratory Volume at 1 second (FEV1) has been successfully used at research level
to identify asthmatic patients at high risk and for the prognosis of imminent seizures
(see e.g. [28]). In practice, however, the daily measurement of these parameters and
recording of their prices in special diaries, has proved to be a very complicated and
time-consuming process [20]. Recent developments in biosensor technology have
made feasible the development of small-scale spirometries that interconnect with
telematic systems and provide distant measurements of PEF and FEV1 and real-time
assessment of results [1]. This capabilitymakes it possible, appropriate statistical tools
to be utilized towards the development of a system for forecasting of asthma exac-
erbations in children and adolescents, through the analysis of real-time variability of
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PEF and FEV1. The system may, subsequently, detect changes in the daily fluctuation
pattern of the above spirometric parameters and: (a) automatically notify, both the
treating physician and the patient himself, about the apparent loss of control and the
probability of an imminent seizure of the disease (b) empower optimization decisions
on the type and dosage of the appropriate medication to be used.

In the present paper, we suggest that the (r − 1)-modified binomial distribution of
order k can be used to calibrate the aforementioned system. We shall focus on one
of the spirometric parameters (or a weighted average of all of them) and study the
empirical values collected regularly, say every 1 min. We will denote by 0 and 1 the
occurrence of a value in and out of a prespecified comfort zone (CZ), respectively.
The occurrence of a 0 is a sign of a stabilized medical condition and the next value
of the spirometric parameter will be generated in 1 minute. On the other hand, the
occurrence of an 1 reveals a non-stabilized medical condition and the patient should
be given some time, say r−1minutes, before an additional value is taken into account.
The occurrence of k consecutive 1’s is a sign of a stabilized bad medical condition.
Thus, the distribution of the r.v. Nn,k,r may provide significant information regarding
patient’s progress and facilitate the establishment of valuable decision criteria for
selecting the type and dosage of medication. What the values of k and r should be
depended on the clinical evidence and the level of risk one is willing to accept.

To substantiate the last declaration let us assume that one of the spirometric parame-
ters, e.g. PEF, is monitored by recording it at 1 minute intervals for 1 hour. Apparently,
the collected data for a specific subject (monitored patient) can be transformed to a
sequence of n = 60 binary trials 0 − 1 by labelling as 1 (success) an observed PEF
lying outside the CZ and 0 (failure) otherwise. Then, extremely large values of Nn,k,r

provide evidence of a stabilized critical medical condition, so it seems plausible to
assign that condition to the subject understudy if Nn,k,r > c where k, r and n are
design parameters of our decision process. Making use of the distribution of PEF for
patients that according to past knowledge are not in critical medical condition, wemay
calculate the probability p0 that such a patient produces a PEF within the CZ. Then
the choice of the design parameters could be based on the condition

P(Nn,k,r > c) ≤ a, for all p ≤ g(p0), (9)

where a is the (maximum) acceptance risk of assigning a critical medical condition
to a patient that is not in such a condition and g(·) denotes a non-decreasing function.
The last quantity is determined by the practitioner accordingly to past experience; for
simplicity, we assume that g(x) = x, however the approach taken in the sequel can
be easily adapted to the general case.

Condition (9) can be expressed as

Fn,k,r (c; p) ≥ 1 − a, for all p ≤ p0, (10)

where Fn,k,r (x; p) = P(Nn,k,r ≤ x) denotes the cumulative distribution function of
Nn,k,r when the success probability of the binary sequence equals p. Since the last
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Table 1 Cumulative distribution
function of N60,k,4

x F60,k,4(x; 0.6) = P(N60,k,4 ≤ x)

k = 2 k = 3 k = 4 k = 5

0 0.0001 0.0356 0.2286 0.4896

1 0.0025 0.2337 0.6886 0.9146

2 0.0251 0.6150 0.9575 0.9982

3 0.1312 0.9160 1 1

4 0.4005 0.9964

5 0.7535 1

6 0.9630

7 1

E(N60,k,4) 4.7237 2.2033 1.1251 0.5975

Var(N60,k,4) 1.2198 0.9535 0.6515 0.4184

quantity is a decreasing function of p, (10) is guaranteed if

Fn,k,r (c; p0) ≥ 1 − a, (11)

a condition that could be exploited for selecting the design parameters k, r and c.
In practice, the parameter r will be provided by the practitioner, since it indicates

the time period for using an additional PEFmeasurement after an out of CZ recording.
Since we are trying to determine two parameters (k and c), couching on a single

condition (i.e. (11)), it is evident that several combinations of them could be used.
An additional criterion could therefore be exploited to select one of the available
alternatives; a reasonable approach along these lines might be to keep the combination
of (k, c) values that minimizes the variance of the statistic Nn,k,r .

As an illustration of the aforementioned procedure let us assume that the p0 value
deduced by analysing past PEF data equals p0 = 0.6 and that the value of r provided
by the practitioner is r = 4, while the maximum risk we are willing to take equals
a = 0.05. Then, (11) reads

F60,k,4(c; 0.6) ≥ 0.95,

and from Table 1 we may obtain the following acceptable pairs of (k, c):

(k, c) = (2, 6), (3, 4), (4, 2), (5, 2).

Among these choices, the optimal, in terms of the minimum variance of N60,k,4 is
k = 5, c = 2. Therefore, our decision rule takes on the form: the subject understudy
is considered to be in a stabilized critical condition if N60,5,4 ≥ 2, i.e. if N60,5,4 = 2
or N60,5,4 = 3.

It should be noted that the variance of Nn,k,r is a decreasing function of k; therefore,
the minimum variance criterion leads to the choice of (k, c) pair with the maximum k
value, among the feasible pairs spotted out at the first step.

Closing this section, we provide, for illustration purposes, some numerical results
for the distribution of the r.v. Nn,k,r . Table 2 depicts the distribution, the mean and the
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Table 2 Distribution of N60,3,2 x P(N60,3,2 = x)

p = 0.2 p = 0.4 p = 0.6 p = 0.8

0 0.7317 0.1455 0.0035 ∗
1 0.2346 0.3255 0.0301 ∗
2 0.0313 0.3080 0.1102 0.0006

3 0.0022 0.1602 0.2246 0.0059

4 ∗ 0.0498 0.2789 0.0320

5 ∗ 0.0094 0.2164 0.1107

6 ∗ 0.0010 0.1032 0.2414

7 ∗ ∗ 0.0285 0.3165

8 ∗ ∗ 0.0039 0.2230

9 ∗ ∗ 0.0002 0.0657

10 ∗ ∗ ∗ 0.0037

E(N60,3,2) 0.3043 1.6764 3.9757 6.7791

Var(N60,3,2) 0.2890 1.2669 1.9486 1.55731

∗Value less than 10−4

Table 3 Distribution of N30,k,r for p = 0.6 and different choices of k, r

x P(N30,k,r = x)

k = 2, r = 2 k = 2, r = 3 k = 3, r = 2 k = 3, r = 3

0 0.0010 0.0046 0.0682 0.1414

1 0.0139 0.0557 0.2737 0.4353

2 0.0751 0.2350 0.3865 0.3600

3 0.2100 0.4151 0.2243 0.0631

4 0.3227 0.2567 0.0456

5 0.2642 0.0326 0.0014

6 0.1007

7 0.0120

E(N30,k,r ) 4.0956 2.9615 1.9095 1.3450

Var(N30,k,r ) 1.4194 0.8856 0.9582 0.6352

∗Value less than 10−4

variance of N60,3,2 for p = 0.2, 0.4, 0.6 and 0.8. Table 3 shows the distribution of the
r.v. N30,k,r for p = 0.6 and a variety of choices of the parameters k and r depending
on the desirable level of acceptable risk. Numerics in all tables have been rounded
down to 4 decimal points.

Figure 1 depicts the pmf of N60,3,2, for p = 0.2, 0.4, 0.6 and 0.8.
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4 Conclusion and FutureWork

In the present paper, we studied the (r − 1)-modified binomial distribution of order
k and derived neat recursive relations for the probability mass function, probability
generating function and moments. We also studied the general case where the original
trials are independent but not necessarily identically distributed. We illustrated how
our new results can be applied in biomedical engineering.

Regarding the development of the system for forecasting of asthma exacerbations,
it is apparent that the existence of the two design parameters k and r offers flexibility
for setting up different decision criteria, which can be adapted to the desirable level of
risk and additional medical characteristics of the clinical case understudy. The suitable
choice of the parameters in any case will be explored using real data and parametric
tests. The fitting of the distributions to real-life applications may point out that a
classification of the empirical data in more than two categories is beneficial, and can
provide a more robust stochastic model. If this is the case, our theoretical results will
have to be enriched so that the case of multi-state trials can be treated.
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