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Abstract

To handle the missing data problem in sample surveys, the imputation technique
for missing values may suits well in reducing the negative impact of non-response
in estimating the population mean. The socio-economic data yield fruitful results
while imputation method employed to missing observations. Keeping this in mind,
we have proposed three new general classes of difference-cum-ratio type imputation
methods and the corresponding estimators in three different sampling strategies using
the dual (rank) of an auxiliary variable in the presence of non-response. The biases
and mean square errors of the proposed estimators are obtained up to the first-order
approximation. The theoretical comparisons of the proposed estimators with usual
mean imputation and the works Lee et al. [12], Kadilar and Cingi [11], Gira [9],
Diana and Perri [8], Bhusan and Pandey [4], and Bhusan and Pandey [5] have been
made which are also the special cases of the proposed estimators apart from being less
efficient. The results are computed under an empirical study where the proposed work
shows the efficacious performance over the above discussed works.
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1 Introduction

Missing data are an inherent phenomena in sample surveys which may need an appro-
priate methodology to handle the data sets. For example, in an experiment of three
kinds of new drinks in the market for 30 days, some of the data may accidently be
missing for some days; in an experiment of animals, some of the animals may die
in a laboratory study, or the technician may accidentally omit some of the results
of the experiments; in a medical investigation patients may not turn up or may not
co-operate or die before completing the actual periods. Similarly, in agricultural exper-
iments, the plants may be eaten away by animals or washed away by floods, efc. In
all such situations, the experiments result in incomplete data may mislead the infer-
ences. In case of missing data, several statisticians have proved that the inferences or
predictions regarding the population parameters may be highly distorted, especially
when the respondents and non-respondents are differ. Therefore, the knowledge of
the appropriate pattern of the incomplete mechanism is needed at the estimation stage
to overcome the missing data problems. Rubin [17] introduced three fundamental
concepts of the missing patterns of the data: missing at random (MAR), observed at
random (OAR) and parameter distribution (PD). The combination of MAR and OAR
termed as the notion of missing completely at random (MCAR). Heitzan and Basu
(1996) have differentiated the meaning of MAR and MCAR very systematically. Fol-
lowing these authors, we have assumed the MCAR mechanism in the present study to
deal with the problem of missing data.

Imputation is one of the effective techniques in surveys to compensate for the
missing data. In various fields like the energy storage system, which provides a peak
reduction service to local electricity network, the food composition databases, the
clinical trials, the industrial databases, etc., the imputation technique for missing obser-
vations play a contributory role regarding the estimation of population parameters
under non-response. A number of imputation methods using the MCAR mechanism
have been discussed by the authors including Lee et al. [12], Singh and Horn [23],
Singh and Deo [22], Kadilar and Cingi [11], Singh [21], Diana and Perri [8], Al-Omari
etal. [1], Gira [9] and recently Bhusan and Pandey [4], Prasad [15], Bhusan and Pandey
[5], Singh and Suman [24], Singh et al. [25], Bhusan et al. [6] and Singh and Usman
[26]. These authors have made the utilization of information available on each unit of
an auxiliary variable which is often used in surveys to increase the precision of esti-
mate of the population mean. Some other related references are Prasad [16], Bouza et
al. [3] and Bouza-Herrera and Viada [2].

The aim of the present study is to develop the imputation methods and subsequent
estimators with enhanced precision by incorporating the double use of an auxiliary
information to estimate the population mean over some relevant estimators which are
based on the prime/single use of auxiliary information in case of missing data under
the MCAR mechanism. For this, we have considered the rank(dual) of an auxiliary
variable which may behaves like an additional auxiliary variable. To our knowledge, no
one has tried this type of work for imputation to handle the missing data in estimating
the population mean so far. The rest part of the paper is organized as follows: In
Sect. 2, the methodology and notations have been discussed and some conventional
imputation methods have been reviewed in Sect. 3. In Sect. 4, we have suggested three
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general class of estimators using imputation techniques and studied their properties.
Section 5 talks about the theoretical comparisons of the estimators and the empirical
comparisons based on real data sets are presented in Sect. 6. Finally, some concluding
remarks are made in Sect. 7.

2 Methodology and Notations

Consider an identifiable population U = {Uy, U>, Us, ..., Uy} of size N where our
goal is to estimate the population mean Y of study variable y which possess a proper
correlation with an auxiliary variable x. Let (y;, x;) be the i’ observations of y and x.
Suppose that the information is readily available at each unit of auxiliary variable x in
the population. Let Ry = {ry 1, 7x.2, ..., Fx,n } denote the values of corresponding ranks
of X = {x1, x2, ..., xy} in U. Remember that the rank R, can also hold an adequate
amount of correlation with the study variable y. Let a sample of size n be drawn
using simple random sampling without replacement (SRSWOR) technique from the
population and surveyed. Unfortunately, response is observed only on r (< 7) units for
study variable y. For the remaining (n — r) non-responding units, we propose some
new imputation methods using the rank of an auxiliary variable, given in section 4.
Let A and A be the sets of responding units and non-responding units, respectively,
in the sample. For the sampled units i € A, the values y; are observed while for the
units i € A some imputation techniques are used.
We define some useful notations as follows:

Y = Z,N 1 Yi/N,¥ = >i_, yi/r: The population mean and the response mean
of study variable y,

X = Zl \ Xi/N, X = Y i xi/r,% = Y_;_, xi/r: The population mean, sam-
ple mean and the response mean of auxiliary variable x,

R, = ZlNzl Fei/NoFx@y = D iy Fx.i/NFxy = Y r_y I'v,i/r: The population
mean, sample mean and the response mean of R,

S% = ZlN:l(y,- —Y)?/(N — 1): The population variance of y,

S% = vazl(xi — )_()2/(N — 1): The population variance of x,

St = SN (i — R0)?/(N — 1): The population variance of R,

Cy, =S5,/ Y: The coefficient of variation of y,

C, = S,/X: The coefficient of variation of x,

Cr. =S/ R,: The coefficient of variation of R,,

Pyx = Syx/SySx: The correlation coefficient between y and x.

Oyry = Syr./SySy.: The correlation coefficient between y and R,.

Oxry = Syr,./SySr.: The correlation coefficient between x and R,.

To obtain the biases and mean square errors (MSEs) of the proposed estimators,
we define the following error transformation, as:

L= (14 &), = —<1+é{>, x_ = (1 +&), ;‘”—(Hsz) ;;”)=<1+s2>,

X X

~<,|‘<|
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such that
E(§) =EE) =E@E) =EE) =EE) =0
and

EGE}) = fCl EGD) = fCH EGED = (C EED = hCL,
E) = fiC].
E(£0&]) = f2pyx CyCy,  E(§0&1) = f1pyx CyCx, E(08y) = f2pyr, CyCr,
E(0&) = fipyr, CyCr,  E(E38) = fIC}. E(E{&) = fiCF,
E(§[8) = fopur, CxCx,  E(€]&2) = fipar, CxCrx

where fi = (1 — %) and f, = (L — ). Wealsowrite f3 = (1 — 1) = f, — £.

3 Some Conventional Imputation Methods

In this section, we discuss some customary imputation methods and corresponding
estimators under three different sampling strategies which are discussed as follows:
Strategy I: When X and x,, are used.

Strategy II: When X and X, are used.
Strategy I11: When X, and x, are used.

3.1 Mean Imputation Method

The usual mean method of imputation which is free from auxiliary information, is
given by

3.1

The estimator of population mean ¥ under mean method of imputation is, say #,, = ¥,
whose variance is given by

Vitw) = VG =Y 0} (3.2)

3.2 Lee et al. [12] Imputation Methods

When there is an auxiliary information, then the ratio method of imputation for the
data due to Lee et al. [12] can be considered in three strategies as:

n—r

Vi if ieA
ViR =) 1 [n}')r (X _ (3.3)
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i, if ieA 34
ViR, = n%[”yr (g) _ry,], if ieA. GD
i, if ieA 35
ik =) L [nyr ();_) _ry,], if i€A. G

The corresponding ratio type estimators are defined as:

X
(R, = Jr (7) (3.6)
X
tRz =V <)E_> (37)
(ks = Jr (i—) (3.8)

The MSEs of tg, (i = 1,2, 3) to the first-order approximation, are given by
MSE(tg,) = V(5y) + Y f;Cx(Cx — 2pCy) (3.9)

The ratio estimators tg, (i = 1, 2, 3) are better than mean estimator y, if (0Cy/Cy) >
1/2.

3.3 Kadilar and Cingi [11] Imputation Methods

The imputation methods under three strategies are given by

nyi X X if i
B b(X — x|, if icA
e = [ - s, < (3.10)
[b(X —xi)l% if ieA
[w—pri]X if jeA
- r}_{ ; r 1% . (3.11)
bnnTri_r’ if ieA
[2—pmi]d if jeA
. = roo_ oo dx " 312
Yi,KCs b%% if ieA 12

The respective estimators are given as:

)_’r +b(_)_( _in))—(

tke, = (3.13)
Xn
5+ b(X — %) -
tre, = 2T PX W) ¢ (3.14)
Xr
Vr +b(Xy, — X)) _
ke, = Mxn (3.15)

%
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where b = 5y, / s)% is the least squares estimated regression coefficient of y on x. Here
Syr = 2oy (G = F) i — Ia)/(n — D) and 57 = 300 (% — %)*/(n — 1),

The MSE:s of the estimators tx ¢, (i = 1, 2, 3) to the first-order approximation, are
respectively, given as:

MSE(tke,) = VGr) + fiY*(C5 = p3,C3) (3.16)
The estimator tg¢; (i = 1, 2, 3) are better than mean estimator y, if (0C,/Cy) > 1.

3.4 Gira [9] Imputation Methods

On the lines of Gira [9], we have considered three ratio type imputation methods to
deal with missing data, given by

Vi, if ieA (3.17)
y..’G —_— _ r _—n T l . . 1 ‘
i,G Yr_”(tll_);‘()_r_ﬁ’ if ieA
Vi, if ieA (3.18)
YiGr =\ [ (=) _ ] if iecA '
i,Gy Yr_n<%>_r_m’ if ieA
Vi, if ieA 319
Yi,Gz = B _}’l (:::))_Z) _r_ ﬁ, if iecA G149

where v; (i = 1, 2, 3) are the suitably chosen constants.
The point estimators under (3.17), (3.18) and (3.19) are, respectively, given by

_ V1 — X
16, = Jr <ﬁ) (3.20)
=
_ (v —Xx
1G, = Y (ﬁ) (3.21)
) —
_ V3 —X
1G5 = Jr (m — x’) (3.22)
z n

The minimum MSE:s of the estimators g, (i = 1, 2, 3) are given by

min.MSE(tg,) = Y*C;(f» — fip},) (3.23)

The optimum values are given as: v;opr) = X |:1 + ICV ]
Pyxcy
From (3.2), (3.9) (3.16) and (3.23), it is clear that g, (i = 1, 2, 3) is always better
than y,, tg;, tkc; in the respective strategies. Note that Gira [9] showed both theoret-
ically and empirically that his method is equally efficient to the methods propounded
by Singh and Horn [23], Singh and Deo [22] and Singh [21].
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3.5 Diana and Perri [8] Estimators

Diana and Perri [8] established three regression-type imputation methods, under which
the resultant data take the form as:

nyi v : .
=L 4+b(X —x), if ieA
i =1 7_ _ 3.24
PR Z N X = xp), it icA 629
Wi _ptio if jeA
i =37 7 _ 3.25
S YO if icA -2
Wi pith if ieA
. -] r_ r _ 3.26
SRR VY if icA (3:20)
The subsequent estimators are, respectively, given as:
tpp, = yr +b(X — Xp) (3.27)
tpp, = yr +b(X —X;) (3.28)
Ippy = Yr + b(%p — Xy) (3.29)
The MSE:s of the estimators pp, (i = 1, 2, 3) are given as:
MSE(tpp,) = min. MSE(t,) = ¥*C2 [f2 _ f,-pfx] (3.30)

3.6 Bhusan and Pandey [4] Imputation Methods

Bhusan and Pandey [4] proposed three different types of imputation methods which
are paralleling the improvement over the Diana and Perri [8], are given as:

H1Yi, if ieA
: = _ - 3.31
VBT g+ (X %), if i€ A &3
H2yi, it ieA
: = _ - 3.32
VBT g+ 22X %), it ieA 432
M3Yyi, if ieA
vipp =157 el (3.33)
u3yr +A3(x; —xp), if i€A
where (i, A;)(i = 1,2, 3) are the arbitrary chosen constants.
The corresponding estimators are defined as:
tgp, = w1y + 2 (X — Xp) (3.34)
tpp, = p2yr +A2(X — xy) (3.35)
tgpy = U3yr + Az(xy — Xp) (3.36)
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The minimum MSE of the estimators tgp, (i = 1,2, 3) are, respectively, given as:

?ZMSE(IDPi)

min. MSE (tgp.) = ————1—
UBr) = MSEGDn)

for the optimum values

1
= s and =
From = T30 s + A = p201C2 Priepn (p -
1 d B
= s an = )
M2 (opt) 1+ (- p%x)]C§ 2(opt) Pyx
1
MU3(opt) =

L+ [f1+ f3(1 = p2)IC2

, and  B3(opr) = <,ny

Sy

(3.37)

S
M1(opt)

(3.38)

S
y) aopry  (3.39)

) M3 (opt)
X

(3.40)

Bhusan and Pandey [5] have also given the improvement over the usual ratio type
imputation methods due to Lee. et al. [12] under which the data becomes

w1Yi, if ieA 341
; * = B o\ 7 - .
T e [ (£)" 5] e A G40
Vi, if ieA 340
. P B > n T — R
yl,BPZ anzr_n‘)—}r <%) z_ryr_ if IEA ( )
w3Yi, if ieA (3.43
Vi,BP: = T 5\ T e . ® 43)
Rk — R <ﬁ> — Y| if ieA
The respective estimators are given by
\"
[;PI = a)l_)_)r ()E_) (344)
n
T\ "
thp, = 02 (x—) (3.45)
r
_ X 13
thp, = 3 (x—”) (3.46)
r

where (w;, n;)(i = 1, 2, 3) are the arbitrary chosen constants.
The minimum MSE:s of the estimators tg P (i = 1,2, 3) are, respectively, given as:

(3.47)

i

H?
. * _ 2 i
mln.MSE(tBPi)_Y 1—?
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where

Gi = {1+ 2C; + 207 o1 fiC2 + Niopt) /i Cx (Cx — 4py )}

ni (opt)

2
T’.
H = {1+ %ﬁc)% 2O .C(Cy = 2,2 Cy))

The optimum values are given as: w;(opr) = e (z =1,2,3) and niopr) = ,va C

The above existing imputation methods and resultant estimators are based on smgle
use of an auxiliary variable . We propose some imputation techniques based on dual
use of an auxiliary variable given in next section.

4 Suggested Imputation Methods

In this section, we consider the double (rank) use of an auxiliary variable to impute
the missing data in three strategies ie, Strategy I, Strategy II and Strategy III which
are defined as follows:
Strategy I: When X, %, and Tx(n) are used.
Strategy I1: When X, %, and 7, () are used.
Strategy II1: When (X, ;) and (Fy(y), I'r(r)) are used.

We suggest three generalized class of difference-cum-ratio type imputation methods
in three strategies given above under which the data, respectively, take forms as:

Yis if ieA
Yi,pp = - - X e -
i.P| ( _nnj))’r'FI:n’:,OlIYr+ﬁl(xT_xi)+)’l(rik_ri):| [L',‘Xxff,] if iecA
“4.1)
Vi, if ieA
PR (1 ) 5 [ens 4 m0d + 2 e + | [E52]L it e A
“4.2)
Yis if ieA
Vi, Py = n S n S * n.. * n.. uxX,+v . . A
l_ﬁ yr+ ﬁa3yr+ﬂ3(x3+7x1)+y3(r3+;r1) uk v |’ if i€eA
“4.3)
where
. nX —rx, . nRy — rryy)
.xl -, r] -,
n—r n—r
PR RES R S S
2_n_r rn» 2—n_r X rx(n)v
N n (1 n) _ N n (1 n)_
X2 = — — ) X, ry = — — ) 'ye(n)-
3T - r/) " 3 n—r r *@)
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The corresponding estimators of population mean ¥ of study variable y in case of
missing observations are defined as:

_ - — _ uX +v
tp, = o1 3 + B1(X — Xp) + Y1 (R — Fe(n))] [ux n v] “.4)
n
- = _ - _ uX 4+ v
tp, = [oezyr + B (X — X)) + 2Ry — rx(r))] ub + v (4.5)
.
_ _ _ _ _ ux, +v
tpy = [0!3)7r + Ba(xp — X)) + V3(rx(n) - rx(r))] |:I/l)zn T v] (4.6)
.

Here, (¢;, Bi, yi)(i = 1,2, 3) are the arbitrary chosen constants, u(7# 0), v are the
real numbers or the functions of known parameters of the auxiliary variable which
may be readily known or guessed from past surveys such as coefficient of variation
C,, correlation coefficient py,, efc.

4.1 Some Special Cases of Proposed Estimators

() Ifweseta; = 1; (i =1,2,3) and (u, v) = (0, 1) in (4.1), (4.2) and (4.3), we can
get the conventional difference type imputation methods based on dual of an auxiliary
variable, given as:

Yis if ieA
Yidi =\ - . . e . E 4.7)
V4o —x) + e =], if i€A
Yis if ieA
Vids =13 . . LT @)
¥+ [¢2(x3 + 2xi) + 2y + 2r)], if i€A
Yis if ieA
Vids =17 e n L L (49
yr+ [¢>3(x3 + 7xi) +o3(ry + ;r,-)], if ieA
The respective estimators are given by
ta, = [r + ¢1(X — %) + 01 (Rx — Fe(n) ] (4.10)
tay = [Jr + 92(X — %) + @2(Rx — Fr(r) ] 4.11)
lay = [)_’r + ¢3(xn — Xp) + @3(fx(n) - fx(r))] 4.12)

(i1) If we set (u, v) = (0, 1) in (4.1), (4.2) and (4.3), we get the improved difference
type imputation methods given by

. it ieaA

Yi.Dy = - - e . T

U1 ) 5+ [t 4 Bt~ v -] i e A
(4.13)
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Vi
Yi,Dy = ~ )
- {(1‘nfr)yr+[nfr“5‘yr+ﬁé‘<xé‘+’:xi>+y;<r;+fri>],

Vi,
”MVWO—)w+Lﬂ@ﬁ+£@+¢m+ﬁ@+wﬂ,

The respective estimators are given by

tp, = [} + B (X = %) + ¥ (Re — Fe(n)]
tp, =[5y, + B35 (X — %) + 5 (Ry — Fa(r)]
ID; [ ; + /33 (Xn —X7) + V3 (rx(n) - Vx(r))]

which are paralleling improvement over the estimators #4, (i = 1, 2, 3).

4.2 Properties of Proposed Estimators

if ieA
if icA
(4.14)
if iecA
if ieA
(4.15)

(4.16)
4.17)
(4.18)

Theorem 4.1 The biases and MSEs of the estimators tp,(i = 1, 2, 3) to the first-order

approximations are given by
B(tp) = [a,F + R1BiGi + Roy1 Hi — l]

and

MSE(tp) =Y?[a? Al + B; B’—i—ylzC/—i—ZalﬂlD +20; v E! + 2Biyi F/

—20;G; —2B;H] = 2y;I] + 1]

The minimum MSEs of the estimators tp,(i = 1,2, 3) are given by
i

- Q?
min.MSE(tp) = Y? [1 - 71}

at the optimum values of a; (i = 1,2, 3), B; and y;, are given by

E; — ,Bi(opt)Li - Vi(opt)Mi

Qij(opt) = P s
i
5 CYEF — B} D?
i(opt) = —Vt (opt)
CDf — AYE}
CiDf — AYE}
Yiopt) = — (=~

D;

(4.19)

(4.20)

4.21)

(4.22)

(4.23)

(4.24)
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where

Aj =1+ f2C) + il CeBY Cr — 4py CY,

B = RIfiC2, R =

’

= "<" >

"<l‘>‘

Ci=RfiC Ro=

’

D} = R fiCx2YCx — pyxCy),  E} = Ry fiCr(2rpar Cx — pyrCy),
F/ = RiR fiperCxCr, G} = [1+ Y fiCx(YCx — pyxCy)l,
Hl = Ry fiC}, I} = RV fipur Co G,
Fi = 1= fiCx(py:Cy — ¥Cr),
Gi =V fiCl. Hi = fipsr,CxCr,
0% = E? — (AYE* + By D}> —2CIDYE})/ Dy,
Pi =1+ fC} + filW CcBYCy — 4pyCy)l,
D; = C}? — AFBY,
AF = RLiCIH(L+ £C)) — filpy) — ¥2CH],
Bf = R} fiC} [(1 + £CD) = filpd, — WACEH3 = 4pl) — 4P CyCo(pys — pyrpxn}] :
Cl = Rafipur CoCrIR (1 + €5 +3fiCF = 4ipyn CyC)
— RV fiCr (20 psr Coc — pyrCy),
D} = RifiC[(YCx — ppu CYW2 fiC7 = 1) + ¥ fiC3Co(1 = pr )],
Ef = Ry fiCrlpyr Cy — Yrpur Cx(1 = Y2 /i C7)
+U [iCyCe{Cy(oxr — pyxPyr) + Y Cx(pyr — 20yx Pxr)}],
Ei = 14+ fiCe(YCx — py2Cy), Li = R fiCxQYCy — pyCy).
and M; = Ry f;Cr Y pxrCx — pyrCy).

Proof Expressing (4.4), (4.5) and (4.6) in terms of errors, we get

tp = [Ya1(1+ &) — Xpi1&1 — Royi&a] (1 +yEn) ™! (4.25)
tp, = [Yao(1 + &0) — Xpo&] — Repnts] (1 + &)™ (4.26)
thy = [Yas(1 + &) — Xp3(61 — &]) — Reya(Er — £))]

I+ Y& +yED™! 4.27)

where Vv = u;‘_(iv. We assume that &1 < I and |&{| < 1, so that (1 + £)~! and
(1 +&)~! are expandable. Now, expanding (1 + &;)~! and (1 + &)~! binomially,
multiplying over right-hand sides (r.h.s.) of (4.25), (4.26) and (4.27) and neglecting

the terms of errors having power greater than two, we can get, respectively, as:

tr =7 [or (1480 — vér + ved — vt
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—PiRI(E1 —VED — R — VE1E) (4.28)
tr, = ¥ [0 (1480 — vE] + vef — v

—BaR1(E] — VED) — 2Ra(E — VE[ED) ] (4.29)
tr =¥ [0z (14 80— v&] + v — o)

—BsR(E — VED) — aRa(6) — V5D | (4.30)

The biases of the estimators 7p, (i = 1,2, 3) can be derived as:

B(tp) =E [tp, — Y]
=E |7 [or (1460 — v + v —véos1) — LRI —vED  (@31)
—ViR (& — YE1E)] - V]
B(tp,) =E [tp, — Y]
=E |7 [or (1460 — v + v87 — viosi) — B2R1E] — vED)  (432)
—n Ry (& — VEE)] - Y]
B(tp,) =E [tp, — Y]
=E [V a3 (1+ 60— v&l + vel - viok]) - BsRie] — v (433)
—vaRy (& — YEE)] — V]

Taking expectations of both sides of (4.31)—(4.33), we get the expressions for biases
given in (4.19).

The MSEs of the estimators ¢p, (i = 1, 2, 3) to the first-order approximation can be
derived as:

M(tp) =E [tp, = 7]
=E[Y? [af(1 + 260 — 20&1 + &7 + 3y 7] — 4yrkogr) + BT RTEL + i R3&3
+ 20!1,311?1(210512 —&0&1) + 2011 Ro(2¥ 162 — &062) + 21 B1 R1 R26162
—2a1(1+ Y2 — yéok1) — 281 RiVED — 2y3Ravréfr + 1]]
(4.34)
M(tp,) =E [tp, — )7]2
=E [Y?[03(1 + 280 — 29| + &3 + 3y 62 — 4yEoE)) + PIRIEP + viR3ES
+ 20082 R1 QU E? — £08]) + 20072 RaQUE[E) — £08)) + 2022 R1 RaE1E)
—2ar (1 + Y2E2 — YEok]) — 2B R1VE? — 2n Royr[ & + 1]]
(4.35)
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M(tp,) =E [tp, — V]
=E[Y?[o5(1+ 280 — 20| + 29&1 + £ + 3Y &7 + 4yrof)
— 4yEok] — 4P E1E])
+ BRI + &7 - 265) + Vi R (5 + & — 268)
+ 2033 RIQUET + 20E] + Eof1 — £o&] — 4V E1E]) (4.36)
+ 2033 R2(§0&2 — 08y + 20 61& — 4V ELE + 20 E))
+2B3y3R1R2 (6162 — 185 — §162 — §16))
—2a3(1 + Y& + YEok] — VEoE| — VEIE])
— 283 RI(VE] + Y& — 20E18))
“2p3Ra(Vé162 — V61§ — VE S + YEE) +1]]

Now, taking the expectations of both sides of (4.34)—(4.36), we get the expressions
for MSEs given in (4.20).

To obtain the optimum choices of «;, 8; and y;, we differentiate the expressions of
MSE:s given in (3.20) partially with respect to «;, B; and y; and equate them to zero,
we get

d
S MSEGr) = aiA; + BiD; +yiE; —G; =0 (4.37)
l
d
a—ﬂMSE(tpi) =a;D;+ BB, +v;F/ —H =0 (4.38)
]
d
S -MSE(p) = a; El+BiF{+vC —1/=0 (4.39)

1

Solving Egs. (4.37)-(4.39) for «;, B; and y;, we get the optimum values given in
(4.22)—(4.24). By putting these optimum values in (4.20), we get the expressions for
minimum MSEs of ¢p, given in (4.21). O

Corollary 4.1 The MSEs of the unbiased estimators tq, (i = 1,2, 3) to the first-order
approximations are given by
MSE(ty) = V? [szi + BARiC + v RS [i:CF + 2B i Ri Ry fi 01 CCr
_2,31' R fipyx Cy Cy + Zyi RZfiIOyr Cy Cr] (4.40)

The minimum MSEs of the estimators ty, (i = 1, 2, 3) to the first-order approximations
are given by

min.MSE(tg;) = Y*C}(f> — fiR 4.41)

2
_varx)
for the optimum values

ﬁ (Pyx — Pyr, Pxr,)

(4.42)
Cx - p,%rx

Di(opr) =
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Cy (Pyry = Pyx Pxr,)
) — Y PYXPN S 4.43
Pi(opt) Cr 1— p)%rx ( )
2 2
2 [ Pyx +p',-rx —2Pyx Pyry Pxry
where Rj ., = ( : 1*/)3; . )

Proof By putting ; = 1 and ¥ = 0 in (4.20), we get the expressions for MSEs of the
estimators #4, given in (4.40).

To obtain minimum MSE:s of 7,4, we differentiate the expressions of MSEs given
in (4.40) partially with respect to ¢; and ¢; and equate them to zero, we get

2 MSE(g) = ¢ R ,C?
el . BRI

T@i RIR: i prr CxCr = R fipyx CyCx = 0 (4.44)
a%MSE(%) = @i R1 R fi pxr Cx C;

+9i R3 fiC} = Ri fipyxCyCx = 0 (4.45)

Solving Eqgs. (4.44) and (4.45) for ¢; and ¢;, we get the optimum values given in (4.42)
and (4.43). By putting these optimum values in (4.40), we get the minimum MSE of
tg; givenin (4.41). O

Corollary 4.2 The biases and MSEs of the estimators tp, (i = 1, 2, 3) to the first-order
approximations are given by

B(tp) =Y (o} — 1) (4.46)
and
MSE(tp,)
= 72 [a(1 4+ £2CD) + B R fiCh 4 72 R3[iCE = 20 B R fi 3Oy C
+207 V" Ra fipyr Cy Cr + 287 ¥ Ri Ry fi pxr CCr — 2017 |

(4.47)
The minimum MSEs of the estimators tp, are given by
Y2min.MSE (1,
min.MSE(tp,) = —— " (ta;) (4.48)
Y2+ min.MSE(tg)
for the optimum values
O5;k(()pl) = 2 1 2 (449)
I+ Cy(fZ - fiRyier)
Cy (Pyx — PyrePxry)
/31'*(0,70 = “i*(opt)c_— (4.50)
X

1 - p)%rx
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% Cy (Pyrx - pyxpxrx)

* = —
yi(()pt) - Oli(opt) Cr 1— /)2 (451)
Xy

Proof By putting ¥ = 0 in (4.19) and (4.20), we get the expressions for biases and
MSE:s of the estimators fp, given in (4.46) and (4.47).

To obtain minimum MSEs of ¢p,, we differentiate the expressions of MSEs given
in (4.47) partially with respect to ", B and y;* and equate them to zero, we get

d
S MSE(p) = of (1 + f2C3) = Bf R fipyxCyCr + v Rafipyr CyCr = 1 =0

1

(4.52)

d
957 MSE (D) = o RifipyxCyCr = BIRLfiCT = ¥/ RiRy fipeyCoCr =0
i

(4.53)

d
5,7 MSE(D) = & Rafipyr CyCr 4 B RiR2 fipsr CxCr + ViR /iG] =0

1

(4.54)

Solving Equations (4.52)—(4.54) for ', B and y*, we get the optimum values given
in (4.49)—(4.51). By putting these optimum values in (4.47), we get the minimum MSE
of tp, given in (4.48).

4.3 Practicability of the suggested estimators

The suggested imputation methods 7p, (i = 1, 2, 3) are designed using the scalars
(i, Bi, vi). Therefore, we have to choose the appropriate value for these scalars in
order to estimate the population mean. We have seen in (4.22), (4.23) and (4.24) that
the optimum values of «;, B;, and y;) depend on the parameters Y, X, Pyx> Cy, Cy,
etc., which may not be available every time. In such situations, they can be estimated
using a pilot survey or guessed from a past survey and subsequently employed for
estimation of the population mean. Similarly, the optimum values of scalars used in
estimators #4, and #p, can be obtained at the estimation stage. O

4.4 Some other members of proposed classes of estimators tp,, tp, and tp,

Many estimators can be generated using tp,, p, and tp, families of estimators by
choosing various values of u and v in (4.4), (4.5) and (4.6). Some of them in strategy
I, strategy II and strategy III, respectively, are given in Table 1.

The respective imputations for the data can be formed just by putting the suitable
values of u and v in (4.1), (4.2) and (4.3). The biases and minimum MSEs of the
estimators tg)(i =1,2,3)and (j = 1,2, ..., 10) can be easily obtained by putting
suitable values in (4.19) and (4.20).
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Table 1 Some members of proposed family of estimators 7p, , tp, and tp,

Cx

Estimators
:| = t;",l (say)
1

b e

SEE:

X4Cy
Xn+Cx
_X+Pyx 1
Xn+pyx
I p}'XX+CX

pyxin"'cx
I Cx )_(+Pyx
Cxxn +pyx

Strategy 1
[15r + B1 (X — Xn) + 1 (Rx
rx(n))] [

D =

Pyx

- ':x(n))]

1) = o3 + B (X — %) + 11 (R —

3) _
P
Cx

[O‘l)_’r + 81 ()_( —Xn) + y1(Rx
’:x(n))]

[al)’r + .BL(X —Xn) + V1 (Rx
= Fxw)]

— [ )_(+ﬂ2(x)

_ I'x(n))] 2n+ﬁ2(x) :|

I Ba(x) X+Cx

ﬁz(x)fn“‘cx

“)
p, =

(5)
p, =

6) _
P

[e13r + B1(X — %) + 71 (Rx

[@13r + B1(X — %) + y1 (Rx
1D = o153 + B1(X = %) + 11 (Rx — Fa(ny)]
P = 1Yr 1 n Y1 (Ky x(n)
= I /SZ(X))?+Py.x
rx(n))] ﬁz(x)fn“‘ﬂyx
[ PyxX‘HsZ()r)
| PyxntPa(x)

Cx X+B2x)
CxXn+Po(x)

1) = o3 + B (X — ) + 11 (R —
)
tPl

(10)

[‘Xl)’r + ﬂl(}? —Xn) + y1(Ry — rx(n))]

[al)’r + B1(X — ) + 11 (Rx _"x(n))] [

Strategy I
th) = o3 + BIX = &) + 1 (R

2)
p, =

[al)_r + ,31()_( —Xr) + y1(Rx

I Pyx X+Cx
P}'X)Er‘f’cx

C,\':?‘H’yx
Cxxr+,0yx

1) = [erdr + BI (X = %)+ 71 (R
1) = [erdr + BI(X = %)+ 71 (R

(5) P
tp, =

©) _
tp, =

[ X+B20x)
Xr+Pa(x)

I ﬂZ():) X+Cx

ﬂZ(x)ir +Cx

[13r + B1(X = %) + y1 (Ry

[o1 3 + B1(X — %) + y1 (Rx
1 (Ry — 7

Pyx

Cx

Bax)

Cx

Ba(x)

Pyx

Ba(x)

(N
p, =

®)
p, =

(9)

[+ B1(X —%) +y

(10)
th

[al)_’r + 81 ()_( —Xr) + y1(Rx

[al)’r + 81 (X —Xr)+ ¥ (Rx

ﬂZ(x)XJFP} X
132()() Xr+pyx

Pyx X+B2(x)
Pyxxr+52(x)

= o3 + B1 (X — 5) + 71 Re — Fer))] [

]

CxX+Bo)
CxXr+B2(x)

Bax)

Pyx
Ba(x)

Cx

Cx

Pyx
Cx Pyx
B2(x)

Ba(x) Cx

Ba(x)
Ba(x)

Pyx
Bax)

Cx
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Table 1 continued

Estimators u v
Strategy 111

1) = o5 + B1 Gin = 5) + 11 Gaimy = Fer)] [ ] = 15, (5a3) ! 0
(2) =[a1yr + B1Gn — %) + ¥1 Fr(n) — Tx )] [fjigﬂ 1 Cy
l;ai) [o13r + B1Gn = %) + 1 (n) = Fx(r)] [i’;ig:i } 1 Pyx
tg? [a13r + B1Gin — ) + V1 Fr(ny — ()] [ﬁ’vi’;figj ] Oyx Cy
t;’? [a13r + B1Gin — %) + V1 Frgny — Fr(r)] [Eﬁ’j’;jﬁg ] Cy Pyx
) = L3+ B1 G = %) + 11 Gy — o) [ | ! Bro,
1) = [orr + B G = 5+ 11 ey — Forn)] [ b | Brco) C.
fg) [e13r + B1Gn — %) + v1 Feny — ()] [%} B Pyx
1 = [o3r + 1 G = 50) + 11 oy — Fein)] [ 2 | px Brco
e e e

5 Theoretical Comparisons

In this section, we compare the proposed estimators with above existing estimators

based on their theoretical results.

5.1 Parallel Comparisons

5.1.1 Comparisons of tp, (i = 1, 2, 3) with Other Existing Estimators

From (3.2), (3.9), (3.16), (3.23), (3.30), (3.37), (3.47) and (4.20), we get

(i) min.MSE(tp,) < MSE(§,), if

QZ

02 1
B + foCs >

(ii) min.MSE(tp) < MSE(tg,), if

Q2

P f2C2 + fiCx(Cy — 2loyxcy)] > 1

(iii) min. MSE(tp)) < MSE(tkc,), if
2

S+ LACT + fi(CF = pCD] > 1

L
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(iv) min.MSE(tp,) < min.MSE(ig,) ot MSE(tpp,)., if

Q—"z+c2(f — fip2)>1
P, yl2 iPyx
(V)Y min. MSE(tp,) < min. MSE(tgp,), if

07 1
_l+
P 1+

1 > 1
Ci(fa=find)

(vi) min.MSE(tp;) < min.MSE(t;PI_), if

5.1.2 Comparisons of tg, (i = 1, 2, 3) with Other Existing Estimators

(5.4)

(5.5)

(5.6)

From (3.2), (3.9), (3.16), (3.23), (3.30), (3.37), (3.47) and (4.41), we get

(i) min.MSE(tz,) < MSE(3,), if
2
Ry.x,x >0
(ii) min.MSE(tg,) < MSE(tg,), if
R} . + Cx(Cx —2pyCy) > 0

(iii) min.MSE(14,) < MSE(1gc,), if

R}, +(C;—p3,CH]>0
(iv) min.MSE(tg,) < min.MSE(tg,) or MSE(tpp,), if

(Oyr, — ,nypx”)2 >0

(V)Y min. MSE(ty,) < min. MSE(tgp,), if

1 1
— —-C?>0
(fZ_fiRg.xrx f2_fip,%x> Y

(vi) min.MSE(tg,) < min.MSE(tZPI_), if

H2 2 2
=5 |~ O = fiR ) = 0

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)
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From (5.10), it is clear that the estimator t4, (i = 1, 2, 3) are always better than 7pp,
which contradicts the statement of Diana and Perri [8]. Diana and Perri [8] stated
“Using the same amount of auxiliary information, no further improvement upon the
regression estimator is possible, at least if the first order approximation is considered”
which appears to be false over here.

5.1.3 Comparisons of tp, (i = 1, 2, 3) with Other Existing Estimators

From (3.2), (3.9), (3.16), (3.23), (3.30), (3.37), (3.47) and (4.48), we get
(i) min.MSE(tp,) < MSE(5,), if

f2
HC; (1 - fiRi,m) > 1 (5.13)

(ii) min.MSE(tp,) < MSE(tg,), if

1 . )
[1 " Ci(fr— ﬁRim)} [/2C5 + fiCx(Cx —2py:C] > 1 (5.14)

(iii) min.MSE(ip,) < MSE(ixc,), if

! 2 2 2 2
[1 o ﬁRs,x,)} LG+ filCE = puCil =1 (515)

(iv) min.MSE(tp,) < min.MSE(tg,) or MSE(tpp,), if

1
R vy i | KOl ke 5.16
[ ¥ (f2— f,-Rg_m)} (f2 = firyx) > (5.16)

(V) min. MSE(tp,) < min.MSE(tpp,), if

R2
LSS | (5.17)
02
yx

(Vi) min. MSE(tp,) < min. MSE(t}p). if

Cy(f2 fllzyxrl) Gl

Thus, the estimators tp, (i = 1, 2, 3), 14, and tp, are better than the traditional estimators
IR;» 1G;» tkc;» tpp;, tgp; and IZPI- in parallel if the conditions (5.1)—(5.6), (5.7)—(5.12)
and (5.13)—(5.18) are, respectively, satisfied.
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5.2 Mutual Comparisons of the Proposed Estimators
Here, we discuss the mutual comparisons of the estimators tp, (i = 1,2, 3), #4, and

Ip;-
(i) min. MSE(te,) < min.MSE(t,,), if

ni 5.19
r><2N—n> (5.19)

(i) min.MSE(t.,) < min. MSE(t,,), if

r<n (5.20)
(iii) min. MSE (t,,) < min. MSE(t,,), if
n<N (5.21)

This means that in the respective sets of estimators, the second estimators ¢p, , ¢4, and
tp, are always better than first estimators ¢p,, f4, and fp, and third estimators ¢p,,
t4; and tp,, whereas the first estimators tp,, t4, and ¢p, are better than the estimators
tp,, t4; and tp,, respectively, if the condition (5.19) holds. The similar conditions also
holds for other existing estimators discussed above in the respective strategies.

6 Empirical Comparisons and Computations

To judge the merits of the proposed class of estimators ?p,, tp, and tp, over the other
considered estimators in the respective strategies, we have chosen 10 real data sets
whose parametric details are given as follows:

Dataset-1: [13,p-428]: The data are on capital expenditures (y) and approximations (x)
for the years 1953-1967 on a quarterly basis. These data are from the National Industrial
Conference Board. The description of the parameters for this datais: N = 60, n = 20,
r=16,Y =3092.417, X = 3319.483, Cy = 0.3725059, C, = 0.4159578, C, =
0.5725904, py, = 0.8832073, py,, = 0.7818964, p,r, = 0.9592037.

Data set-2: [13,p-108]: The data present experience and salary structure of University
of Michigan economists in 1983-1984. Let y be the salary (thousands of dollars) and
x be the years of experience (defined as years since receiving Ph.D.). The description
of the parameters for these datais: N = 32, n = 12, r = 8§ Y = 47.37812, X =
18.375, Cy = 0.1819515, C, = 0.4548528, C, = 0.5677532, py, = 0.4245114,
Pyr, = 0.3368753, pyr, = 0.9447145.

Data set-3: [13,p-41]: The data are on the weekly cash inflows (x) and outflows (y)
of a business firm for 30 weeks. The description of the parameters for these data
iss N =30,n = 12,7 =8, Y = 51.73333, X = 62.93333, C, = 0.4261637,
C, = 0.3361672, C, = 0.5676459, p,, = —0.009132783, py,, = —0.02862014,
Pxr, = 0.9927513.
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Data set-4: [19,p-108]: A list of 70 villages in a Tehsil of India along with their popu-
lation in 1981 and cultivated area (in acres) in the same year is taken into consideration.
Let y be the cultivated area(in acres) and x be the population of village. The descrip-
tion of the parameters for these data is: N = 70, n = 20, r = 15, Y = 981.2857,
X = 1755.529, Cy = 0.625359, C, = 0.8009741, C, = 0.57327, py, = 0.7779,
Pyr, = 0.7588, pyr, = 0.8497.

Data set-5: [18]: Let y be the number of successful students and x be the number of
teachers considered in a survey data of 923 districts of Turkey in 2007. The description
of the parameters for these data is: N = 261, n = 90, r = 70, Y = 2225824, X =
306.4483, Cy = 1.8654, C, = 1.7595, C, = 0.57623, py, = 0.9705, py,, = 0.6371,
Pxr, = 0.6265.

Data set-6: [20,p-1111]: Let y be the amount (in $000) of real estate farm loans and x
be the amount (in $000) of non-real estate farm loans in different states of USA during
1997. The details of the parameters for this data set are: N = 50, n = 20r = 8§,
Y = 878.1626, X = 555.4345, C, = 1.235167, C, = 1.052916, C, = 0.571662,
oyx = 0.8038, py,, = 0.7461, py,, = 0.9236.

Data set-7: [7,p-182]: Let y be the number of paralytic polio cases in the placebo
group and x be the number of placebo children. The details of the parameters for this
datasetare: N = 34,n = 12r =8, Y = 2.588235, X = 4.923529, C, = 1.233278,
C, = 1.023331, C, = 0.5687383, py, = 0.7328235, p,,, = 0.6571887, py,, =
0.8165117.

Data set-8: [7,p-152]: The data show the number of inhabitants in LARGE UNITED
STATES CITIES (in 1000’s). Let y be the number of inhabitants in 1930 and x be
the number of inhabitants in 1920. The details of the parameters for this data set are:
N =49, n=15r = 12, Y = 127.7959, X = 103.1429, Cy, = 0.9634205, C, =
1.012237, C, = 0.5714601, py, = 0.981742, py,, = 0.7207159, p,,, = 0.7915108.
Data set-9: [7,p-34]: We investigate food cost of family for y and the family size
for x. The values of the population parameters are: N = 33, n = 107 = 8, Y =
27.49091, X = 3.727273, Cy, = 0.3685139, C, = 0.4094911, C, = 0.555573,
Pyx = 0.432738, py,, = 0.4495658, p,, = 0.9820251.

Dataset-10: [14,p-399]: Consider y as area under wheat in 1964 and x as the area under
wheat in 1963. The statistical summary of the populationis: N =34,n = 11r =8,
Y =199.4412, X = 208.8824, Cy =0.7531797,C, = 0.7205298, C, = 0.5689992,
Pyx = 0.9800867, p,,, = 0.9152007, p,,, = 0.94166809.

We have computed the MSEs of the estimators y,, tg, (i = 1,2, 3), tG,, tkc;, tpPp;»
Igp;, tz P and the different members of 7p, at their optimum situations based on their
theoretical results, are given in Tables 2 and 3. The relative performance of all the
above estimators is computed in terms of percentage relative efficiency (P RE) with
respect to mean estimator y,. To calculate the PREs of the estimators y,, tg;, G, tk c;
tpp,tep;, t; po Ldis 1Dy and tp, with respect to y,, we have used the formula, given by

V(yr)

PRE(t.,3,) = WSED

x 100 6.1)

The results are shown in Table 4.
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Interpretation of the results:

In Table 2, we see that the lowest amount of MSE values occurred for the members
t;‘,l_ (i =1, 2, 3) of suggested class of estimators  p, , respectively, in parallel comparison
with the estimators tg,, tG;, tk c;» tpp;» LB P » tgpi ,tq; and tp, as well as y,. Further, we
see that the special members ¢p, (i = 1,2, 3) of proposed estimators #p,, respectively,
have the second lowest amount of MSE values in the parallel comparisons of other
existing estimators. In Table 3, we observe that the MSE values of all the discussed
members of the proposed estimators in respective strategies are same in the Populations
1,2, 3,4, 5 and 10 but a tiny bit change in the Populations 6, 7, 8 and 9 which can
also be admitted as negligible difference. Thus, it can be argued that the MSEs of
all the members of proposed class of estimators (in Table 3) are equal and smaller
than all other discussed estimators in the respective strategies. Subsequently, their
PREs with respect to y, will also be same. Therefore, we have considered the notation
tp,(i = 1,2,3) only, for all the members 1) (i = 1,2,3; j = 1,2, .., 10) in Table 4
for our convenience which present the PRESs of all the members of proposed classes
of estimators in the respective strategies.

From Table 4, we report that

(i) The performance of ratio estimators tg, (i = 1, 2, 3) is good in Populations 1,
4,5,6,7, 8 and 10, while in Populations 2, 3 and 9 it is poor. Note that in the
populations 2, 3 and 9, the values of py, c} are 0.16981,-0.01157 and 0.38943,
respectively, which are not satisfying the condition (pCy/Cx) > 1/2fortg,; to
overcome the mean estimator y,.

(i1) Theoretically it has been stated above that the performances of the estimators
tg, (i = 1,2, 3) are always better than y,, tg, and tx ¢, which confirmed by this
empirical study.

(iii) The estimators tgc; (i = 1,2, 3) perform good only in Populations 5 and 10
where the numerical values of ,oyxg—i are 1.0289 and 1.02449, respectively.
Note that the condition (0oC,/Cy) > 1 is satisfied for the said populations
while for the remaining populations it does not holds.

(iv) We see that tpp, (i = 1, 2, 3) and 1, are equally efficient and ¢ p, are paral-
leling the improvement over fp p; in all the populations.

(vi) The performance of the estimators 7}, P (i = 1,2, 3) in parallel is very near to
ipp;-

(vii) We see that the proposed estimator 74, (i = 1, 2, 3) are always better than tp p,
and 7 p,, respectively, in all the populations. Therefore, it can be argued that
the regression type estimator based on dual use of auxiliary information always
outperform both the conventional regression and difference type estimators
which are based on only the prime information of an auxiliary variable. Hence,
a better overcome on missing data problem can be attained just by using dual
of an auxiliary variable.

(viii) The proposed estimators p, (i = 1, 2, 3) are paralleling the improvement over
1g; -

(ix) The performance of the proposed class of estimators tp, (i =1, 2, 3) is:

(a) Good (better than y,) in all the Populations 1-10.

@ Springer
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(b) Paralleling more efficient than the estimators tg;, G, Lk ¢;» tDP:» LB P;» T P and
their special members 74, (i = 1,2, 3) and tp,. Thus, tp, paralleling accom-
plish the maximum gain in efficiency among all the other estimators in all the
populations considered in this empirical study.

(c) We observe that the second one #p, is always better than first one ¢p, and third
one fp;.

(c) We also observe that the PREs of first proposed estimator #p, are greater than
the third proposed estimator tp; in all the populations where the condition
(5.19) holding.

Thus, the suggested class of estimators ¢p, (i = 1, 2, 3) in parallel outperform all other
estimators tg;, tG;, tkc;» IDP;» LB P;> 1 o ld; and p, considered in this study. We see
that the second proposed estimator 7 p, is always better than the first and third proposed
estimators ¢p; and tp,. We also see that the proposed estimator ¢ p, is the most efficient
among all the other estimators discussed in this study.

On the basis of this empirical study, we conclude that the proposed estimators
formulated under double(rank) use of an auxiliary variable are capable to enhance
their precision over relevant estimators based on single/prime use of an auxiliary
variable.

7 Conclusions

To exercise the problem of missing data efficiently, there are several notable
researchers, but no one has discussed the imputation technique using dual of aux-
iliary information in literature so far. In the present study, we have suggested three
imputation techniques and corresponding estimators using an auxiliary information as
well as its rank in three different sampling strategies (based on different amounts of
auxiliary information) under non-response. In the empirical study consisting 10 real
data sets, it has been found that the performance of the suggested set of estimators
paralleling are more efficient than usual mean estimator and the works Lee et al. [12],
Kadilar and Cingi [11], Gira [9], Diana and Perri [8], Bhusan and Pandey [4] and Bhu-
san et al. (2018). The present study is important in survey sampling to estimate the
population mean because it overcomes to the missing data more effectively than the
works (based on prime/single use of an auxiliary information) discussed above, just by
using the dual(rank) of an auxiliary information. Since, for the optimal solution, both
from a theoretical and practical perspectives, the proposed estimators are very simple
to apply. Hence, the suggested classes of estimators are appreciable and recommended
to use for sampling practitioners when the non-response cannot be ignored.
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