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Abstract
There are situations in survey sampling where the study characters are sensitive. Due
to the sensitivity of characters, practitioners don’t get the actual response. Randomized
response technique (RRT)models are developed to reduce the bias raised by an evasive
response on the sensitive variable. The measurement error (ME) is usually always
present in the surveys so we need to study the RRT models with ME. We propose an
estimator to predict the population mean of a sensitive variable in the influence of ME.
The properties of the proposed estimator are studied and comparisons are made with
the existing estimators. At last, a simulation study is executed to illustrate the results
numerically.
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1 Introduction

A variable having some sensitive information about a person or enterprise can be clas-
sified as a sensitive variable. Direct observation on the study variable is sometimes not
possible in surveys because the information may be sensitive. That is, a respondent
may be uncomfortable to provide the information that the interviewer required due
to some personal or any reasons, e.g., the questions seeking the information regard-
ing corruption, criminality, abortion, drug addiction, etc. To handle such situations,
Warner [1] proposed a randomized response technique (RRT) to reduce the bias on
evasive response. In RRT, a scramble variable which is independent of sensitive study
variable and auxiliary variable is used to estimate the population mean of a sensitive
variable. It is assumed that the distribution of the scramble variable is known. The
interviewee is asked to provide a scrambled response to sensitive variable but give
true response to the auxiliary variable. Pollock and Bek [2] proposed an additive RRT
model for a quantitative sensitive variable, which is further discussed by Himmelfarb
and Edgell [3]. Based on multiplicative scrambling, Eichhorn and Hayre [4] intro-
duced an RRT model to get information on the sensitive variable. A question in the
survey questionnaire may be sensitive for one respondent but not for another. That is,
for the same question some respondents provide scrambled response while some of
them may provide true response. Addressing this issue, Gupta, Gupta and Singh [5]
proposed the concept of the optional randomized response technique (ORRT) model
and explained that an ORRT model is generally more efficient than the corresponding
RRT model. Gupta et al. [6] show that there is no extra loss of privacy in using ORRT
models as compared to the corresponding RRT models. The problem of estimation of
population mean of a sensitive variable considered by many authors as Wu, Tian and
Tang [7], Gupta, Shabbir and Sehra [8], Sousa et al. [9], Gupta et al. [10], Koyuncu,
Gupta and Sousa [11], Tarray and Singh [12], Shahzad et al. [13], Mushtaq and Noor-
ul-Amin [14], Saleem and Sanaullah [15], Su et al. [16], etc. None of these studies
have examined the impact of measurement errors (ME) that happen commonly in sur-
veys. ME is the difference between observed and true value. ME is one of the very
common contributors to non-sampling error. The problem of ME is inherent in survey
sampling. It may increase in the case of a sensitive issue as the surveyor has to deal
with an evasive response. And so, RRT in the presence of ME seeks attention for an
extensive study. Very limited efforts have been made to estimate the finite population
mean of a sensitive variable in the presence of ME. Recently some researchers focuses
on this issue. Blattman et al. [17] developed a survey validation technique for quali-
tative variables to check for ME when dealing with sensitive attributes. Khalil, Gupta
and Hanif [18] propose a study in stratified sampling in the presence of scrambled
response and ME. Khalil, Zhang and Gupta [19] use the ORRT model under ME to
study some estimators of population mean. Zahid and Shabbir [20] use dual auxiliary
variable to estimate population mean of a sensitive variable in the presence of ME.
Onyango, Oduor and Odundo [21] propose an estimator using RRT and ME in double
stratified sampling. Zhang, Khalil and Gupta [22] propose a study on mean estimation
comprising sensitive variable, ME and non-response. Some more recent work on the
sensitive issue in the presence ofME are Khalil, Noor-ul-Amin and Hanif [23], Zhang,
Khalil and Gupta [24], Zahid, Shabbir and Alamri [25].
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We propose an estimator of the population mean of a sensitive variable using a
non-sensitive auxiliary variable when there is a presence of ME in the study.

2 Notations and Existing Estimators

Let � = {�1,�2,..,�N } be a finite population of size N . A sample of size n is taken
using simple random sampling without replacement from �. Let Y be the sensi-
tive study variable, which cannot be observed directly and X be a non-sensitive
auxiliary variable correlated with Y . Let S be a scrambling variable independent
of Y and X . We assume that S has a known distribution with mean zero and
variance σ 2

s . Here we use the additive RRT model of Pollock and Bek [2]. In
the survey, the scrambled response variable Z is observed as Z = Y + S. It
is assumed that E(S) = 0 and E(Z) = E(Y ) + E(S), so E(Z) = E(Y ).
That is, Z̄ = Ȳ . So we have to estimate the population mean of the scrambled
response variable Z and that will be the population mean of sensitive variable Y .
The degree of protection for the additive RRT model is � = E(Z − Y )2 =
σ 2
s . For detail, see Yan, Wang and Lai [26] and Saleem, Sanaullah and Hanif

[27].
Let (xi , zi ) be the observed values and (Xi , Zi ) be the true values of the variables

X , Z . Let u be the ME on Z and v be the ME on X . The measurement errors on i th

observed unit are ui = zi − Zi and vi = xi − Xi . Since the measurement errors
are independent of each other and there is both under and over reporting so it is
assumed that u and v are uncorrelated with mean zero and variances σ 2

u and σ 2
v ,

respectively.
Some other notations used in the article are: X̄ , Ȳ , Z̄ and x̄ , ȳ, z̄ pop-

ulation and sample means of X , Y and Z , respectively, coefficient of skew-
ness for auxiliary variable β1(x), coefficient of kurtosis for auxiliary variable
β2(x), σ 2

z population variance for Z , σ 2
x population variance for X , ρzx cor-

relation coefficient between Z and X , Cx = σx
X̄
, Cz = σz

Z̄
, λ = 1

n −
1
N .
The need of efficiency motivate the researchers to work on development of esti-

mators. Sample mean per unit estimator ˆ̄Y1 = ȳ is the usual estimator of population

mean. To get better efficiency over ˆ̄Y1, Cochran [28] uses ratio method of estimation

as ˆ̄Y2 = ȳ X̄
x̄ . It is found that ˆ̄Y2 works better than ˆ̄Y1 when there is high positive cor-

relation between Y and X . Using coefficient of variation of auxiliary variable, Sisodia

and Dwivedi [29] propose ˆ̄Y2 = ȳ
[
X̄+Cx
x̄+Cx

]
and show its worth over ˆ̄Y2. Following

Sisodia and Dwivedi [29], Upadhaya and Singh [30], Singh [31], Singh and Tailor
[32] and Singh et al. [33] propose various estimators using coefficient of kurtosis,
coefficient of skewness, correlation coefficient, standard deviation, etc. Some other
works in the process are Kadilar and Cingi [34], Yan and Tian [35], Abid et al. [36],
etc.
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The RRT sample mean per unit estimator is μ̂1 = z̄. The MSE of μ̂1 is

MSE(μ̂1) = λσ 2
z .

When there is sensitivity on the study variable, Sousa et al. [9] defined the ratio

estimator as μ̂2 = z̄
(
X̄
x̄

)
and obtained the bias and MSE of μ̂2 up to first order of

approximation as

Bias(μ̂2) = λZ̄
(
C2
x − ρzxCzCx

)
(1)

MSE(μ̂2) = λZ̄2
(
C2
z + C2

x − 2ρzxCzCx

)
. (2)

Further, Sousa et al. [9] propose four more estimators to estimate the population mean
of the sensitive variable using auxiliary information as

μ̂3 = z̄

[
X̄ + β1(x)

x̄ + β1(x)

]

μ̂4 = z̄

[
X̄ + β2(x)

x̄ + β2(x)

]

μ̂5 = z̄

[
β1(x)X̄ + β2(x)

β1(x)x̄ + β2(x)

]

μ̂6 = z̄

[
β2(x)X̄ + β1(x)

β2(x)x̄ + β1(x)

]
.

The bias and MSE of μ̂3, μ̂4, μ̂5 and μ̂6 are

Bias(μ̂i ) = λȲ
(
q2i C

2
x − qiρzxCzCx

)
(3)

MSE(μ̂i ) = λȲ 2
(
C2
z + q2i C

2
x − 2qiρzxCzCx

)
(4)

where i = 3, 4, 5, 6 and q3 = X̄
X̄+β1(x)

, q4 = X̄
X̄+β2(x)

, q5 = β1(x)X̄
β1(x)X̄+β2(x)

, q6 =
β2(x)X̄

β2(x)X̄+β1(x)
.

Using a simulation study, Sousa et al. [9] show that μ̂3 achieve modest gain over
other member estimators. The performance of these estimators in the presence of ME
will be discussed hereafter.

The MSEs of the estimators μ̂i , i = 1, 2, . . . , 6 in the presence of measurement
error can be derived as

MSE(μ̂i ) = λ(σ 2
z + σ 2

u ) + q2i λ(σ 2
x + σ 2

v ) − (2qiλρzxσzσx ) (5)

where i = 1, 2, 3, 4, 5, 6 and q1 = 0, q2 = Z̄
X̄
, q3 = X̄

X̄+β1(x)
, q4 = X̄

X̄+β2(x)
,

q5 = β1(x)X̄
β1(x)X̄+β2(x)

, q6 = β2(x)X̄
β2(x)X̄+β1(x)

.
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3 Proposed Estimator

As it is known that ratio estimators usually do not perform better than regression type
estimators and so to get a better estimate than Sousa et al. [9], we propose a class
of difference type randomized response estimator to estimate the population mean of
a sensitive variable Y using a non-sensitive auxiliary variable X in the presence of
measurement error. The proposed estimator is

t(δ) =
[
η1 z̄ + η2(X̄ − x̄)

]
exp

[
δ(X̄ − x̄)

X̄ + x̄

]
(6)

where η1, η2 are constants to be optimize for minimum MSE of t(δ) and δ is suitable
constant which takes real or parametric values. By giving different values to δ, we can
generate new members of the class of estimators t(δ), e.g., for δ = c(constant), the
member estimator will be denoted by t(c).

4 Bias andMSE

To derive the bias and mean squared error (MSE) of the proposed class of estimator,
let

ωz = ∑N
i=1

(
Zi − Z̄

)
, ωu = ∑N

i=1 ui , ωx = ∑N
i=1

(
Xi − X̄

)
and ωv = ∑N

i=1 vi .

Adding ωz and ωu , we get ωz + ωu = ∑N
i=1

(
Zi − Z̄

) + ∑N
i=1 ui . Now, divide

both sides by n and simplify, we get

z̄ = Z̄ + ξz where ξz = 1

n
(ωz + ωu) .

Similarly, using ωx and ωv we get

x̄ = X̄ + ξx where ξx = 1

n
(ωx + ωv) .

The error terms to get bias and MSE of estimators are ez = z̄−Z̄
Z̄

= ξz

Z̄
and ex =

x̄−X̄
X̄

= ξz

X̄
.

The expected values are E(e2z ) = λ(σ 2
z +σ 2

u )

Z̄2 , E(e2x ) = λ(σ 2
x+σ 2

v )

X̄2 and E(ezex ) =
λρzxσzσx

Z̄ X̄
.

Now, express proposed estimator t(δ) in terms of errors ez and ex , we have

t(δ) =
[
η1 Z̄(1+ ez) + η2

{
X̄ − X̄(1+ ex )

}]
exp

[
δ{X̄ − X̄(1+ ex )}
X̄ + X̄(1+ ex )

]

t(δ) =
[
η1 Z̄ + η1 Z̄ez − η2 X̄ex

]
exp

[−δex
2

(
1+ ex

2

)−1
]

.

Assuming | ex |< 1 expand above equation and terminate the terms having e’s
degree greater than two and simplify, using Z̄ = Ȳ we get
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t(δ) − Ȳ = (η1 − 1)Ȳ + η1Ȳ ez −
(

η2 X̄ + η1Ȳ δ

2

)
ex

+
[
η2 X̄δ

2
+

(
1+ δ

2

)
η1Ȳ δ

4

]
e2x

−η1Ȳ δ

2
ezex . (7)

Taking expectation on both sides of Eq. (7), we get the bias.

Bias(t(δ)) = (η1 − 1)Ȳ + 1

2X̄

[{
η2δ +

(
1+ δ

2

)
η1Ȳ δ

2X̄

}

× λ(σ 2
x + σ 2

v ) − η1δλρzxσzσx

]
. (8)

Squaring Eq. (7) and terminate terms having e’s degree greater than two and sim-
plify, we get

(t(δ) − Ȳ )2 = (η1 − 1)2Ȳ 2 + η21Ȳ
2e2z

+
[
η22 + η21

(
δR2

2
+ δ2R2

4

)
+ 2η1η2δR

]
X̄2e2x

−[2η1η2 + 2δη21R]X̄ Ȳ ezex (9)

where R = Ȳ
X̄
.

Taking expectation on both sides of Eq. (9), we get

MSE(t(δ)) = (η1 − 1)2Ȳ 2 + η21ν1

+
[
η22 + η21

(
δR2

2
+ δ2R2

4

)
+ 2η1η2δR

]
ν2 − [2η1η2 + 2δη21R]ν3

(10)

where ν1 = λ(σ 2
z + σ 2

u ), ν2 = λ(σ 2
x + σ 2

v ) and ν3 = λρzxσzσx .

MSE(t(δ)) = Ȳ 2 − 2Ȳ 2η1

+
[
Ȳ 2 + ν1 +

(
δR2

2
+ δ2R2

4

)
ν2 − 2δRν3

]
η21 + ν2η

2
2

+(2δRν2 − 2ν3)η1η2. (11)

The optimum values of η1 and η2 to minimize MSE(t(δ)) are

η1O = 4Ȳ 2ν2
4Ȳ 2ν2+4ν1ν2−4ν23+2δR2ν22−3δ2R2ν22

and

η2O = 4Ȳ 2ν3−4Ȳ 2δRν2
4Ȳ 2ν2+4ν1ν2−4ν23+2δR2ν22−3δ2R2ν22

.
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For optimum values of η1 and η2, the minimum MSE of t(δ) is

MSEmin(t(δ)) = Ȳ 2 − 4Ȳ 4ν2

4Ȳ 2ν2 + 4ν1ν2 − 4ν23 + 2δR2ν22 − 3δ2R2ν22
. (12)

As MSEmin(t(δ)) depends on δ so the optimum MSE of any member t(c) of the class
of estimators t(δ) can be obtained by putting δ = c in Eq. (12). So, for δ = c the
member estimator is t(c) and optimum MSE is MSEmin(t(c)).

5 Efficiency Comparison

The proposed class of estimators t(δ) will be more efficient than the estimators μ̂i ,
i = 1, 2, . . . , 6 whenever the condition MSEmin(t(δ)) < MSE(μ̂i ) satisfied.

From Eqs. (5) and (12), we found that MSEmin(t(δ)) < MSE(μ̂i ) if

Ȳ 2 + 2qiν3 < ν1 + q2i ν2 +
4Ȳ 4ν2

4Ȳ 2ν2 + 4ν1ν2 − 4ν23 + 2δR2ν22 − 3δ2R2ν22

where i = 1, 2, . . . , 6 and ν1 = λ(σ 2
z + σ 2

u ), ν2 = λ(σ 2
x + σ 2

v ), ν3 = λρzxσzσx .

6 Monte Carlo Simulation

In this section, we do a simulation to see the performance of the proposed estimator
against the existing estimator. For that, we have generated three different populations
using R software. The scrambling variable S is employed to get the observation from
the bivariate normal population as Z = Y + S. Also, there is measurement error u and

v on z and x , respectively. Here, μ is the population mean vector as μ =
[
X̄
Ȳ

]
and

∑

is the covariance matrix. We have made 15000 replication to get a reliable result. The
input data used to derive the three different populations and their descriptive statistics
are given below.

6.1 Population 1

N = 250, n = 80, μ =
[
40
20

]
,

∑ =
[
75 60
60 55

]
, S = rnorm(N , 0, 10), u =

rnorm(N , 0, 7) and v = rnorm(N , 0, 9). Derived parametric values are Z̄ =
20.0074, X̄ = 40.0029, σz = 12.4384, σx = 8.6517, σu = 6.9926, σv = 8.9946,
ρzx = 0.5557, β1(x) = 0.00085, β2(x) = 2.97348.

6.2 Population 2

N = 1000, n = 150, μ =
[
2300
200

]
,

∑ =
[
12000 2900
2900 1500

]
, S = rnorm(N , 0, 25),

u = rnorm(N , 0, 10) and v = rnorm(N , 0, 13). Derived parametric values are
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Table 1 PRE of the estimators
with respect to μ̂1

Estimator PRE
Population 1 Population 2 Population 3

μ̂1 100 100 100

μ̂2 111.4157 129.1675 112.4433

μ̂3 111.4160 129.1675 112.4421

μ̂4 112.0693 129.1295 111.3223

μ̂5 100.3316 113.5626 100.2688

μ̂6 111.4158 129.1675 112.4429

t(−2) 821.4720 238.1295 171.6113

t(−1) 154.7481 179.0240 134.1503

t(0) 113.1446 160.8748 122.2855

t(1) 119.5684 164.2041 124.4751

t(2) 198.6460 192.0222 142.5413

Z̄ = 200.0065, X̄ = 2300.0016, σz = 41.5169, σx = 109.5119, σu = 9.9999,
σv = 12.9915, ρzx = 0.6370, β1(x) = 0.00116, β2(x) = 2.99341.

6.3 Population 3

N = 100, n = 25, μ =
[
15
3

]
,

∑ =
[
20 12
12 14

]
, S = rnorm(N , 0, 2), u =

rnorm(N , 0, 3) and v = rnorm(N , 0, 5). Derived parametric values are Z̄ = 3.0047,
X̄ = 15.0018, σz = 4.2342, σx = 4.4610, σu = 2.9902, σv = 4.9886, ρzx = 0.6304,
β1(x) = 0.00301, β2(x) = 2.93465.

The percent relative efficiency (PRE) of an estimator with respect to RRT sample
mean per unit estimator μ̂1 = z̄ is defined as

PRE(μ̂1, .) = MSE(μ̂1)

MSE(.)
× 100. (13)

The steps of the simulation process are:

Step 1 Using R software, generate a random population by giving inputs to N , μ,∑
, S, u and v.

Step 2 Use scrambling variable S as Z = Y + S to make study variable sensitive.
Step 3 Derive the required parametric values from the generated population.
Step 4 To get a stable value to the parameters, replicate Step 1 to Step 3 up to
15000 times and record it.
Step 5 Use the average of 15000 values to calculate the MSEs of the estimators.
Step 6 Calculate PREs of the estimators by using MSEs from Step 5 and Eq. (13).

From Table 1, we can see that the PRE values of the proposed estimator t(δ) for
δ = −2, − 1, 0, 1, 2 are higher than the all considered existing estimators μ̂i ;
i=1,2,…,6. This conclude that the proposed class of estimators t(δ) is more efficient
than the existing estimators.
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7 Conclusion

The article presents a study on the estimation of population mean of a sensitive vari-
able in the influence of measurement error. An estimator of the population mean is
proposed under randomized response technique with measurement error. The expres-
sions for bias and mean squared error derived up to the first order of approximation.
The theoretical comparison is made with the existing estimators. A simulation study is
performed to see the results numerically. The theoretical and simulation results show
that the proposed class of estimators are more efficient than the estimators of Sousa et
al. [9].
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