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Abstract
The skewness coefficient (G) of the generalized logistic (GLO) distribution is a
function of its shape parameter (a) only. Both the methods of probability-weighted
moments and maximum-likelihood (ML) mostly yield magnitudes for the shape
parameter much different from that by the method of moments, the gap narrowing
with increasing length of the sample series. The computation of ML parameters by
the conventional Newton–Raphson method is problematic with no solution for a non-
negligible number of sample series. Here, the three-step Newton–Raphson algorithm,
which was previously proposed for the generalized extreme values distribution, is
adapted to the GLO distribution, and on many recorded annual flood peaks and annual
maximum rainfalls series and through a comprehensive Monte-Carlo experiment it is
shown to improve the rate of convergent solutions considerably.

Keywords Parameters of the generalized logistic distribution by the methods of
moments · Probability-weighted moments · Maximum-likelihood

1 Introduction

The generalized logistic (GLO) distribution has been one of the widely used distri-
butions for frequency analyses of annual flood peaks (AFPs) and other hydrologic
extremes like annual maximum rainfalls (AMRs) (e.g., [1–3], Seckin et al. 2010, [4]).
Mostly, the generalized extreme values (GEV), GLO, Pearson-3, log-Pearson-3, and
3-parameter log-normal (LN3) distributions turn out to be more suitable to fairly long
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recorded series of AFPs and AMRs. GLO has been used for other random phenomena
encountered in demography, agriculture, and economics, also (e.g., [5, 6]).

While there are quite a few potential probability distributions deemed suitable for
the frequency analyses of either AFPs or AMRs series, there exist yet a few dif-
ferent methods for estimation of distribution parameters out of the available sample
series, which mostly have record lengths as long as 100 years even in the developed
countries. Among these methods, the classical moments (Moments), probability-
weightedmoments (PWMs) (or equally, L-Moments), andmaximum-likelihood (ML)
are widely used (e.g., [1]). Because there may result large differences in magnitudes of
right-tail quantiles calculated by the same probability distribution whose parameters
are computed by different methods, any distribution whose parameters are computed
by a different method is actually a different distribution.

The procedural steps of theMLmethod to maximize the logarithm of the likelihood
function of the distribution using the data of the available sample series are analytically
and numerically demanding and yet with a serious disadvantage of taking futile and
deadlocked paths with no results for some short series (e.g., [1], Hosking et al. [7],
Prescott and Walden [8], Wilks [9]). For example, Khamnei and Abusaleh [6] in
applying the ML method to the GLO distribution first make the value of the location
parameter zero and next solve for the scale and shape parameters. Alkasasbeh and
Raqab [5] also used the 2-parameter version of the GLO distribution by forcing the
location parameter to be zero in computing the parameters by the ML method along
with five other methods. Shao [10] examined the existence of ML estimates for the
three parameters of the GLO distribution analytically.

The objective of this study is to adapt the three-step Newton–Raphson algorithm,
which was proposed for the generalized extreme values distribution [11], to the gen-
eralized logistic distribution, and to verify first on series of AFPs and AMRs recorded
in Turkey and the America, and next by detailed Monte-Carlo experiments that the
three-step Newton–Raphson algorithm brings about a considerable improvement over
the conventional Newton–Raphson procedure for convergent solutions.

2 Brief Review About the Generalized Logistic (GLO) Distribution

The probability density (pdf), cumulative distribution (cdf), and quantile functions
(qf) of the generalized logistic distribution are (e.g., [12]):

pd f : f (x) = b−1 · exp[−(1−a) · y] · [
1 + exp(−y)

]−2 (1)

cd f : F(x) = [
1 + exp(−y)

]−1 (2)

where, y = −a−1 · ln[1−a · (x−c)/b] (3)

q f : x(F) = c + b · {
1−[(1−F)/F]a

}
/a (4)
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a, b, c are the shape, scale, and location parameters in these equations. Because
both the cdf and the qf are analytically available, the GLO distribution does not require
either a special table or a special computer program for computation of the quantile↔
probability of non-exceedence (x ↔ Pnex) relationships both ways. The skewedness
of the pdf of the GLO distribution is determined directly by the shape parameter, and
hence, the skewness coefficient (G) is a function of the shape parameter (a) only.

3 Parameters of the GLO Distribution by theMethod of Moments

The analytical relationships among the parameters of the GLO distribution and the
mean (μ), variance (σ 2), and skewness coefficient (G) are (e.g., [1]):

μ = c + (b/a) · [1−�(1 + a) · �(1−a)] (5)

σ 2 =
(
b2/a2

)
·
[
�(1 + 2a) · �(1−2a)−�2(1 + a) · �2(1−a)

]
(6)

G = (a/a) · [−�(1 + 3a) · �(1−3a) + 3 · �(1 + a) · �(1−a) · �(1 + 2a)

· �(1−2a)−2 · �3(1 + a) · �3(1−a)]/[�(1 + 2a) · �(1−2a)−�2(1 + a)

· �2(1−a)]1.5 (7)

Equation (7) is valid when the shape parameter is within the range of –1/3 < a < +
1/3. Initially, Eq. (7) is solved for the shape parameter (a) replacing G by its unbiased
estimate SC computed using the n-element sample series. Next, the scale (b) and the
location parameters (c) are computed first by Eq. (6) and next by Eq. (5), substituting
the sample mean for μ and the sample variance for σ 2. Here, for the numerical values
of the complete gamma function: Γ (argument), the subprogram given in the book by
Press et al. [13] is used. The solution of the root of Eq. (7) is done by the Secant iterative
method after having determined a fairly narrow interval of the shape parameter within
(–1/3 < a < + 1/3) which makes the right-hand side of Eq. (7) change sign.

4 Parameters of the GLO Distribution by theMethod
of Probability-WeightedMoments

The analytical relationships among the parameters of the GLO distribution and the
L-moments are (e.g. [1, 12]):

a = − (λ3/λ2) (8)

b = λ2/�(1 + a) · �(1−a)] (9)

c = λ1 + (λ2−b)/a (10)
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In these equations, the L-moments (λj’s) are defined as:

λ1 = μ, λ2 = 2 · PWM1− λ1, λ3 = 6 · PWM2− 6 · PWM1 + λ1 (11)

where, PWM1 and PWM2 are the 1st and 2nd probability-weighted moments of the
distribution, which are defined as:

PWMj =
1∫

0

x(F) · F j · dF =
u.b.∫

1.b.

x · [F(x)] j · dx, j = 0, 1, 2 (12)

Here, l.b. and u.b. are the lower and upper bounds of the random variable x. Because
the parameters are not known at the beginning, the estimates of both the PWM1 and
PWM2 are made from the available sample series by approximating the probability of
non-exceedence of the i’th element (F(x = xi) ≈ pnexi) by a suitable formula. In this
study, as suggested by Landwehr et al. [14], the sample probability-weightedmoments
are computed by:

pwm1 =
{∑

xi · (i−1)/(n−1)
}
/n,

pwm2 =
{∑

xi · [(i−1) · (i−2)]/[(n−1) · (n−2)]
}
/n (13)

Here, the summations are from i = 1 (the 1st element) to i = n (the last element)
of the sample series, where i is the rank number of the i’th element (xi) of the series
arranged in ascending order.

5 Parameters of the GLO Distribution by theMaximum-Likelihood
Method and Solution by the Conventional Newton–Raphson
Algorithm

Inserting the right hand side of Eq. (1) by substituting xi for x in the log-likelihood
function (LLF) of the generalized logistic distribution, the below equation results:

LLF = −n · ln b− (1−a) ·
∑

yi− 2 ·
∑

ln
[
1 + exp(−yi )

]
(14)

Here, yi is as defined by Eq. (3) by substituting xi for x, xi being the i’th element of
the observed sample series which has a total of n elements, and, the summations are
from i = 1 to i = n, x1 and xn being the values of the first and the last elements in the
sample series.

To determine those magnitudes for the parameters which make the LLF maximum,
the system of three simultaneous equations formed by equating each partial derivative
of the LLFwith respect to each parameter to zero is solved for the parameters. Skipping
the intermediate steps, these three equations for the GLO distribution are:
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∂LLF/∂a =
∑

yi− (1−a) ·
∑

∂ yi/∂a + 2 ·
∑

exp(−yi )

· ∂ yi/∂a/
[
1 + exp(−yi )

] = 0 (15)

where, ∂yi/∂a is:

∂ yi/∂a = a−2 ·
∑

ln[1−a · (xi−c)/b] +
[
a−1 · (xi−c)/b

]
/[1−a · (xi−c)/b]

(16)

∂LLF/∂b = −n/b− (1−a) ·
∑

∂ yi /∂b + 2 ·
∑

exp
(−yi

) · ∂ yi /∂b/
[
1 + exp

(−yi
)] = 0 (17)

where, ∂yi/∂b is:

∂ yi/∂b = − (xi−c)/b2]/[1−a · (xi−c)/b] (18)

∂LLF/∂c = − (1−a) ·
∑

∂ yi /∂c + 2 ·
∑

exp
(−yi

) · ∂ yi /∂c/
[
1 + exp

(−yi
)] = 0 (19)

where, ∂yi/∂c is:

∂ yi/∂c = −b−1/[1−a · (xi−c)/b] (20)

Starting out with reasonable initial estimates for the three parameters, the system
of three linear equations, whose coefficient matrix is the Jacobian matrix formed
by the nine partial derivatives of the right-hand sides of the three nonlinear equations
expressed by Eqs. (15) through (20), are solved for increments of the three coefficients
(�ai, �bi, �ci) during each iteration and the improved estimates are computed by:

ai+1 = ai + �ai , bi+1 = bi + �bi , ci+1 = ci + �ci (21)

For a convergent solution, the iterations terminate when all of the three absolute
relative differences are sufficiently small, which are defined by the inequalities given
as follows:

�ai/ai+1 ≤ 10−M ,�bi/bi+1 ≤ 10−M ,�ci/ci+1 ≤ 10−M (22)

where, M is taken as large as 6 (6 significant digits), which is good enough for most
real-life problems.

Because the analytical forms of the three equations: ∂LLF/∂a = 0, ∂LLF/∂b =
0, ∂LLF/∂c = 0 are already considerably long and involved, we have refrained from
analytically taking altogether nine partial derivatives, and instead we have numerically
computed themby thefirst order differentiation formulae, hencemaking a lot of savings
from analytically long expressions.
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6 Maximum-Likelihood Parameters of the GLO Distribution
by the Three-Step Newton–Raphson Algorithm

The three-step Newton–Raphson (N-R) algorithm was suggested by Haktanir [11]
for the GEV distribution. Here, we are applying the three-step N-R algorithm to the
GLO distribution. The approach of the three-step N-R algorithm can be summarized
as follows. Because the relative differences of the magnitudes of both the scale and
the location parameters by the ML and PWMs methods are much smaller than the
relative difference of the shape parameter, initially it is assumed that both the scale
and the location parameters are constants and their magnitudes by the PWMs method
are assigned to them. This makes Eq. (15) along with Eq. (16) a single equation having
one unknown, the shape parameter. Then, Eq. (15) is solved for the shape parameter
in two stages. In the first one, the value given by the method of PWMs for the shape
parameter is taken as the initial estimate. All of the arguments of n number of ln[1–
a•(xi–c)/b] terms in Eq. (16) are checked whether they are all positive real. As a1
symbolizes the initial estimate of a, a2 is taken as 1.01*a1, and the Secant iterative
method is used to solve for the root of ∂LLF/∂a = 0 to four significant digits. If any
of the arguments of n ln[1– a•(xi–c)/b] terms in Eq. (16) turns out to be negative with
the PWMs magnitude of the shape parameter, then the initial estimate is searched in
the set: (− 1.0, − 0.95, − 0.90, …, − 0.40, − 0.38, − 0.36, …, − 0.02, − 0.01, −
0.001, 0.001, 0.01, 0.02, …, 0.40, 0.45, 0.50, …, 1.00) which will make the left-hand
side of Eq. (15) (∂LLF/∂a) change sign. It is observed with 62 sample series of annual
flood peaks recorded in Turkey, 12 such series recorded in America, and 2156 sample
series of annual maximum rainfalls recorded in Turkey that the end value of so many a
parameters is− 0.67while themajority fall in the range:− 0.4≤ a≤ + 0.1. Therefore,
the interval of− 1.0≤ a≤ + 1.0 should be sufficient to comprise the root of ∂LLF/∂a
= 0. Next, the bisected value of these two a’s is taken as the initial estimate. And again,
the root to four significant digits is computed by the Secant iterative method. Next,
taking this value for the shape parameter and the PWMs magnitude for the location
parameter as constants in Eq. (17) together with Eq. (18), Eq. (17) is solved for the
scale parameter, b, to four significant digits again by the Secant method taking the
PWMs magnitude of b as the initial estimate. Next, taking the recent values of the
shape and the scale parameters as constants in Eq. (19) together with Eq. (20), Eq. (19)
is solved for the location parameter, c, to four significant digits again by the Secant
method taking the PWMs magnitude of c as the initial estimate. This completes the
first cycle. A second cycle of solving Eqs. (15), (17), and (19) individually in this
order is done once again with the recent values of the other two parameters treated as
constants. At the end of this second cycle, the recent values of all three parameters are
used as initial estimates and the set of three nonlinear equations, which are Eqs. (15),
(17), and (19) are solved simultaneously by the algorithm of the conventional N-R
method summarized above. This a little winding way always improves the chance of
convergence for the ML method. Yet, the total amounts of the intermediate iterations
are just a few, and they consume very little execution time of a few split seconds.

Our experience has indicated that the magnitudes of the location and scale param-
eters of the GLO distribution by the methods of Moments, ML, and PWMs are fairly
close to each other, whereas the magnitudes of the shape parameter are far apart.
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Table 1 Parameters of the GLO
distribution by the methods of
Moments, PWMs, and ML using
the 68-element series of AFPs
given in Table 9.2.1 of the book
by Rao and Hamed [1]

Parameter estimation methods

Parameters Moments PWMs ML

Shape (a) – 0.055147 – 0.096756 – 0.14415

Scale (b) 9029.7 9239.5 9305.0

Location (c) 31,892 31,227 30,912

Although the conceptual and hence analytical approaches of the methods of PWMs
and ML are quite different from each other, the difference in magnitudes of the shape
parameters by these two methods is smaller than that in magnitudes by the ML and
Moments methods. For example, the values of the GLO parameters with the sample
series of annual flood peaks (AFPs) recorded at the gaging station of Seymour on the
East Fork White River given in Table 9.2.1 in the book by Rao and Hamed [1] are
presented in Table 1.

There are 12 sample series of AFPs of lengths between 30 and 85 elements recorded
on various natural streams in America given in tables all over the book by Rao and
Hamed [1] for their examples. These 12 series are among the material used in this
study. The three-step N-R algorithm applied here to the GLO distribution on these
12 series has become successful on 11 of them, and it has failed with the 36-element
AFP series at Salt Creek near Harrodsburg in Indiana (Table 1.8.3. in [1]), while the
conventional N-R algorithm has been successful on nine of these series. The averages
of 11 absolute relative differences (ARDs) of the three parameters computed by the
ML method from those computed by the Moments and PWMs methods are given in
Table 2 .

Other than these 12 AFPs series from America, 62 AFPs series recorded on many
natural streams in Turkey whose lengths vary from 36 to 76 elements with an average
of 54 also are used as the material of this study. These data are retrieved from the
Gauged Streamflow Yearbooks of the General Directorate of State Water Works of
Turkey (DSI 1935–2011) [15]. Table 3 presents some concise information about these
series of AFPs observed at gaging stations which do not have a dam upstream on
various natural streams in Turkey.

The parameters of the GLO distribution are computed by the methods of (1)
Moments, (2) PWMs, (3) ML by the conventional N-R algorithm, and (4) ML by

Table 2 Averages of 11 absolute
relative differences (ARDs) in
percent of parameters of the
GLO distribution computed by
the ML method from those
computed by the methods of
Moments, and PWMs of 11
sample series of AFPs measured
on natural streams in America

Averages of ARDs (%) of ML parameters from PWMs and
Moments parameters

Parameters ARDs from moments ARDs from PWMs

Shape (a) 145% 29%

Scale (b) 9.2% 0.7%

Location (c) 5.4% 0.7%
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Table 3 Station ID numbers and some basic peculiarities of series of annual flood peaks recorded at sections
of natural streams in Turkey, upstream of which there are no dams

Station ID
number

Drainage area
(km2)

Record
length

Sample mean
(m3/s)

Variation
coefficient

Skewness
coefficient

302 9629.0 72 681.0 0.776 + 2.602

311 1622.0 66 61.47 0.717 + 1.117

314 2309.0 54 577.0 0.587 + 1.332

316 6454.0 59 702.1 0.605 + 1.794

321 1291.0 53 126.2 0.551 + 1.852

509 901.6 52 128.6 0.724 + 1.416

514 689.6 48 203.0 1.08 + 1.803

701 948.0 74 228.5 0.504 + 0.712

713 3946.0 60 34.29 0.494 + 1.847

902 1942.0 72 861.4 0.511 + 1.366

1203 3938.4 76 38.24 0.823 + 2.810

1222 2021.6 61 159.1 0.505 + 0.699

1223 1608.4 43 25.13 0.773 + 1.019

1226 7140.0 48 75.05 0.716 + 1.203

1233 2003.2 49 232.5 0.600 + 1.332

1237 1073.4 57 67.79 0.763 + 1.900

1302 1988.0 60 231.8 0.408 + 1.199

1307 1097.6 49 111.7 0.453 + 0.405

1314 5086.8 49 297.9 0.534 + 0.839

1319 786.3 45 75.67 0.831 + 2.775

1327 953.6 45 115.6 0.438 + 0.350

1331 1342.0 36 471.9 0.657 + 1.352

1332 340.0 45 67.59 0.344 – 0.552

1334 1095.3 47 66.06 0.550 + 3.725

1335 13,300.4 47 970.8 0.604 + 1.604

1402 33,904.0 71 696.1 0.397 + 1.184

1412 3668.8 58 56.39 0.707 + 0.942

1413 21,667.2 58 307.3 0.486 + 0.697

1422 1714.0 45 80.60 0.532 + 1.618

1424 1032.8 44 32.88 0.458 + 0.730

1501 15,581.6 66 447.7 0.409 + 0.903

1517 8592.4 50 60.80 0.557 + 0.757

1535 6606.5 50 310.9 0.356 + 0.359

1538 1962.0 42 135.0 0.744 + 2.151

123



Journal of Statistical Theory and Practice (2022) 16 :44 Page 9 of 14 44

Table 3 (continued)

Station ID
number

Drainage area
(km2)

Record
length

Sample mean
(m3/s)

Variation
coefficient

Skewness
coefficient

1539 1642.0 42 172.6 0.469 + 0.793

1801 2596.8 76 200.2 0.608 + 1.790

1805 4242.8 70 581.7 0.554 + 1.905

1826 8698.1 54 292.5 0.554 + 2.182

1905 1768.0 58 107.0 0.486 + 0.979

1907 16,170.0 62 133.0 0.465 + 0.692

1908 22,614.4 59 370.0 0.461 + 1.120

2001 8484.0 51 547.6 0.503 + 1.476

2006 739.2 58 50.66 0.522 + 1.026

2115 3998.8 49 445.3 0.845 + 3.378

2119 10,356.0 50 451.9 0.416 + 1.212

2122 5882.4 48 535.3 0.412 + 0.677

2124 1336.4 49 41.69 0.555 + 0.684

2131 277.6 55 27.87 1.124 + 2.838

2145 5780.8 49 111.3 0.629 + 1.631

2202 635.7 47 96.85 0.432 + 1.793

2213 713.0 43 130.6 0.598 + 1.996

2215 445.2 48 82.54 0.311 + 1.450

2218 834.9 47 166.2 0.510 + 2.145

2228 191.4 47 81.65 0.577 + 1.241

2232 763.2 50 179.0 0.437 + 3.124

2233 223.1 50 43.53 0.248 + 1.069

2238 1024.4 49 158.6 0.440 + 0.514

2245 232.8 45 274.1 0.649 + 1.789

2247 1859.2 45 395.6 0.556 + 1.281

2304 1734.0 66 95.77 0.521 + 1.557

2603 2450.0 56 581.4 0.428 + 0.709

2605 5655.2 50 1200.6 0.611 + 1.145

the three-step N-R algorithm on all of these 62 AFPs series. The three-step N-R algo-
rithm has been successful on 58 of them, and the averages of 58 ARDs of all the
three parameters computed by the MLmethod from those of the Moments and PWMs
parameters are given in Table 4.

Table 5 gives the magnitudes of the elements in m3/s of the series of AFPs recorded
at the arbitrarily chosen gaging station: 316-Yahyabey, which is one of the 62 series
used. And, Table 6 presents the magnitudes of the parameters of the GLO distribution
by themethods of (1)Moments, (2) PWMs, and (3)ML, andFig. 1 shows the histogram
of relative frequencies of the elements of the series in Table 5 alongwith the probability
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Table 4 Averages of 58 absolute relative differences (ARDs) in percent of parameters of theGLOdistribution
computed by the ML method from those computed by the methods of Moments and PWMs of 58 sample
series of AFPs measured on natural streams in Turkey

Averages of ARDs (%) of ML parameters from PWMs and Moments parameters

Parameters ARDs from Moments (%) ARDs from PWMs (%)

Shape (a) 151 41

Scale (b) 7.6 0.9

Location (c) 6.2 1.8

Table 5 The series of annual flood peaks (in m3/s) recorded at the gaging station: 316-Yahyabey on Simavi
Creek in Susurluk Basin in Turkey over the period 1953–2011

568 373.2 132.6 544.8 549.8 442.3 546.4 1069 1120 804 1553 1430

2350 1250 1165 2100 777 847 960 628 547 730 758 619

513 925 836 815 1218 1223 356 772 310 649 924 566

362 511 597 270 434 676 563 356 466 568 605 496

162 608 402 502 258 427 42.4 426 614 676 431

Table 6 Values of the parameters
of the GLO distribution by the
methods of (1) Moments, (2)
PWMs, and (3) ML as applied to
the series of AFPs in Table 5

Method Shape (a) Scale (b) Location (c)

Moments – 0.165089 211.461 642.814

PWMs – 0.282543 188.156 605.880

ML – 0.245481 188.424 613.921

Fig. 1 Histogram of relative
frequencies of the series of AFPs
given in Table 5 along with the
probability density functions of
the GLO distribution whose
parameters are computed by the
methods of (1) Moments, (2)
PWMs, and (3) ML
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density functions of the three versions of the GLO distribution, GLO-Moments, GLO-
PWMs, and GLO-ML.

Other than these 62 series of AFPs, we have also used the series of annual maximum
rainfalls (AMRs) of 14 standard durations from 5 to 1440 min (24 h) recorded at 154
rain-gaging stations in Turkey up to and including the year 2010 with record lengths
between 33 and 70 elements with an average of 44 elements. These data are retrieved
from the pertinent files of the General Directorate of State Meteorological Works of
Turkey (MGM 1940–2010) by permission [16]. Altogether, there are 2156 (= 154
× 14) series of AMRs. The results of applying the coded computer program on 62
AFPs series in Turkey, on 12 AFPs series in America, and on these 2156 AMRs
series in Turkey show that the success ratio of the three-step N-R algorithm using the
PWMs magnitudes of the parameters as the initial estimates is much better than the
conventional N-R algorithm. The source listing and the exe form of the coded program
along with 12 AFPs series in America will be provided to anybody interested naturally
freely.

7 Application of the Conventional and the Three-step
Newton–Raphson Algorithms onmany Synthetically Generated
Series with Record Lengths Between 20 and 1000 Elements

The averages of the variation coefficients of so many series of AFPs and AMRs,
whose average lengths are 54 and 44, recorded all over Turkey are 0.57 and 0.44. The
skewness coefficients of AFPs vary in the range: –0.57 < SC < + 3.73 and those
of AMRs vary in the range: –0.39 < SC < + 5.27. The variations of coefficients
of variation and skewness of similar hydrologic variables all around the world are
close to these intervals. One can find various relevant publications about the ranges
of skewness coefficients of fairly long recorded series of AFPs in the world (e.g., [4,
17]).With the purpose of checking the performance of the three-stepN-R algorithm for
the ML parameters of the GLO distribution, a series of Monte Carlo experiments are
performed in the next phase of this study. Many synthetic series of 1 million elements
whose means are equal to 1 are generated using the GLO distribution as the parent
distribution. In order to keep the number of different synthetic series at a reasonable
value, their variation coefficient is assumed to equal 0.5, which is a reasonable overall
average. It is a fact that most of the recorded series of AFPs in the world are positively-
skewed, and rarely their skewness coefficients are less than –2. Still, for the sake of
generality, eight synthetic series having skewness coefficients: SC = –0.1, –1, –2, –3,
–4, –5, –7, –10 and eight synthetic series having skewness coefficients: SC= + 0.1,+
1,+ 2,+ 3,+ 4,+ 5,+ 7,+ 10 are generated with a constant mean of 1 and a constant
variation coefficient of 0.5. So, altogether 16 synthetic series of one-million-element
each are generated.

First, using the analytical relationships among the moments and the parameters, the
magnitudes of the three parameters of the GLO distribution are computed for each one
of 16 cases. Next, beginning with a seed value of IDUM = –456, a set of 1,300,000
random numbers uniformly distributed in the interval of (0, 1) are computed using
the random number generator: RAN1 given in the book: Numerical Recipes by Press
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et al. [13]. Next, the initial 300,000 elements of this large series are discarded as a
precaution for eliminating any possible effect of the magnitude of the seed value on
the generated random numbers, and the rest of the 1,000,000 are taken. Assuming each
one of the remaining random numbers is equal to the probability of non-exceedence
(F in Eq. (4)) of an element, the magnitude of the element, which is assumed to be
distributed according to one of those 16GLOdistributions, is computed using theGLO
quantile function (Eq. (4)). 1,000,000 generated quantiles are written in the output file
row-wise by the format: (20(1PE12.4)), meaning 20 random numbers on one line each
having five significant digits.

The computer code computing the parameters of the GLO distribution by the meth-
ods of (1) Moments, (2) PWMs, (3) ML by the conventional N-R algorithm, and
(4) ML by the three-step N-R algorithm is modified for 1,000,000/n number of non-
overlapping n-element serieswhose input data file is one of the 16 one-million-element
synthetic series. We have run the program with the same input file 11 times for sample
series lengths of n = 20, 20, 30, 40, 50, 60, 80, 100, 200, 500, 1000, and the total
number of runs is 176 for 176 (= 16 × 11) combinations. Again, the source listings
and the exe forms of the coded programs, one generating the synthetic data, and the
other computing the GLO parameters by the mentioned methods, will be provided to
anybody interested freely.

8 Results and Discussion

The three-step Newton–Raphson algorithm put forth by Haktanir [11] for the gen-
eralized extreme values distribution is applied to the generalized logistic (GLO)
distribution in this study. The procedure presented by Rao and Hamed [1], which is the
solution of the simultaneous three equations directly by the iterative Newton–Raphson
(N-R) method using the magnitudes of the three parameters given by the method of
moments as the initial estimates is observed to be unsuccessful for a non-negligible
number of series of both annual flood peaks (AFPs) and annual maximum rainfalls
(AMRs) recorded in Turkey. The three-step N-R method performs much better than
the former approach, the conventional N-R algorithm. The specific results can be
summarized as follows.

The skewness of the GLO distribution is a function of the shape parameter only. It is
observed on many recorded series of AFPs and AMRs with average lengths of 54 and
44 elements that the magnitudes of the shape parameter by the method of maximum-
likelihood (ML) are considerably different from those by the method of moments.
But, the difference between the shape parameters by the methods of ML and the
probability-weighted moments (PWMs) is much smaller than the difference between
those by theML and theMomentsmethods. Yet, differences inmagnitudes of the other
two parameters, the scale and location parameters, among all of the three methods of
ML, PWMs, and Moments are much smaller than those of the shape parameter. This
fact is observed on all of (1) 12 AFPs series observed in America having an average
length of 54 elements, (2) 62 AFPs series observed in Turkey having an average length
of 54 elements (coincidence), (3) 2156 AMRs series observed in Turkey having an
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average length of 44 elements, and (4) thousands of synthetically generated series
having lengths between 20 and 1000 elements.

Choosing themagnitudes given by the PWMsmethod as the initial estimates instead
of those by the method of moments to the conventional N-R algorithm is observed to
improve its convergence ratio. The success ratio of the three-step N-R algorithm even
with the Moments values taken as the initial estimates is still greater than that by the
conventional N-R algorithm using the PWMs values as the initial estimates. However,
it is observed in a clear-cut manner that the convergence success ratio of the three-step
N-R algorithm is much better than that of the conventional N-R method.

The success ratio of the three-step N-R algorithm drops slightly with increasing
skewness coefficient and with decreasing sample lengths. The success ratios of non-
overlapping 50,000 series of 20-elements extracted from one-Million-element series
synthetically generated by twoGLOdistributions, one having a skewness coefficient of
–10 and the other + 10 as parent distributions, are 97.7% and 93.4% by the three-step
N-R algorithm, while the success ratios by the conventional N-R algorithm are 74.5%
and 71.6%, respectively. For commonly encountered series having record lengths
greater than 30 elements and with skewness coefficients in the range: + 1 < SC < +
3, the success ratio of the three-step N-R algorithm is almost 100%.

The differences in magnitudes of all of the three parameters by all of the three
methods of Moments, PWMs, and ML get narrower with increasing series lengths.

9 Conclusion

The three-step Newton–Raphson algorithm proposed by Haktanir [11] for estimation
of the parameters of the generalized extreme values distribution by the maximum-
likelihoodmethod is adapted to the generalized logistic (GLO) distribution. It is shown
on many real-life recorded sample series of annual flood peaks and annual maximum
rainfalls with average lengths of 54 and 44 elements, and on thousands of synthetically
generated series of lengths between 20 and 1000 elements that the three-step New-
ton–Raphson algorithm yields convergent solutions for the three parameters of the
GLO distribution by the method of maximum-likelihood with a much better success
ratio than the conventional Newton–Raphson approach.
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