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Abstract
In this paper, it is shown thatCβ -smooth functions can be approximated by deep neural
networks with ReLU activation function and with parameters {0,± 1

2 ,±1, 2}. The l0
and l1 parameter norms of considered networks are thus equivalent. The depth, the
width and the number of active parameters of the constructed networks have, up to a
logarithmic factor, the same dependence on the approximation error as the networks
with parameters in [−1, 1]. In particular, this implies that the nonparametric regression
estimation with constructed networks achieves, up to logarithmic factors, the same
minimax convergence rates as with sparse networks with parameters in [−1, 1].

Keywords Neural networks · Function approximation · Entropy · Nonparametric
regression

1 Introduction

The problemof function approximationwith neural networks has been of big interest in
mathematical research for the last several decades. Various results have been obtained
that describe the approximation rates in terms of the structures of the networks and
the properties of the approximated functions. One of the most remarkable results in
this direction is the universal approximation theorem, which shows that even shallow
(but sufficiently wide) networks can approximate continuous functions arbitrarily well
(see [9] for the overview and possible proofs of the theorem). Also, in [6] it was shown
that integrable functions can be approximated by networks with fixed width. Those
networks, however, may need to be very deep to attain small approximation errors.
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Yet, from a pragmatic point of view, and, in particular, in statistical applications,
allowing very big number of network parameters may be impractical. The reason is
that in this case controlling the complexity of approximant networks at an optimal rate
becomes problematic.Complexities of classes of neural networks are usually described
in terms of their covering numbers and entropies. Those two concepts also play an
important role in various branches of statistics, such as regression analysis, density
estimation and empirical processes (see, e.g., [1,3,8]). In particular, in regression
estimation the following dichotomy usually comes up while selecting the class of
functions fromwhich the estimator will be chosen: On the one hand, the selected class
of approximants should be “big” enough to be able to approximate various non-trivial
functions, and on the other hand it should have “small” enough entropy to attain good
learning rates. Thus, the general problem is to obtain powerful classes of functions
with well-controllable entropies.

As to the powerfulness of classes of neural networks, it has recently been shown
([10,13]) that with properly chosen architecture the classes of sparse deep neural
networks with ReLU activation function can well approximate smooth functions.
In particular, it is shown in [13] that Cβ -smooth functions on [0, 1]d can be ε-
approximated by deep ReLU networks with O(ε−d/β log2(1/ε)) active (nonzero)
parameters. A similar result for sparse ReLU networks with parameters in [−1, 1]
has been obtained in [10]. The number of active parameters s in those networks is
much smaller than the total number of network parameters, and the network depth
L depends logarithmically on the approximation error. Boundedness of parameters
of the networks constructed in [10] implies that the ε−entropy of the approximating
networks has order O(sL2 log2(1/ε)). The main advantages of this entropy bound are
its logarithmic dependence on 1/ε, which allows to take the covering radius ε to be
very small in applications, and its linear dependence on the sparsity s and quadratic
dependence on the depth L , both of which, as described above, can also be taken to be
small. Using this entropy bound, it is then shown in [10] that if the regression function
is a composition of Hölder smooth functions, then sparse neural networks with depth

L � log2 n and the number of active parameters s ∼ n
t

2β+t log2 n, where β > 0 and
t ≥ 1 depend on the structure and the smoothness of the regression function and attain

the minimax optimal prediction error rate n
−2β
2β+t (up to a logarithmic factor), where n

is the sample size. It would therefore be desirable to obtain a similar entropy bound
for the spaces of networks for which the above l0 (sparsity) regularization is replaced
by the better practically implementable l1 regularization.

Networks with l1 norm of all parameters bounded by 1 are considered in [12]. As
in those networks, there are at most 1/ε2 parameters outside of the interval (−ε2, ε2);
an entropy bound of order O((2/L)2L−1/ε2) has been obtained by taking in the
covering networks the remaining parameters to be 0. This bound, however, depends
polynomially on 1/ε, and it leads to the convergence rate of order 1/

√
n for regression

estimation with given n samples. As it is discussed in [12], the rate 1/
√
n is seemingly

the best possible for l1 regularized estimators. Alternative approaches of sparsifying
neural networks using derivatives, iterative prunings and clipped l1 penalties are given
in [2,4,5] and [7].

123



Journal of Statistical Theory and Practice (2022) 16 :7 Page 3 of 14 7

To combine the advantages of both l0 and l1 regularizations, as well as to make
the networks easier to encode, we consider networks with parameters {0,± 1

2 ,±1, 2}.
The l0 and l1 parameter regularizations of those networks can differ at most by a
factor of 2, which, in particular, allows to employ all the features induced from the
sparsity of networks (including their entropy bounds) while imposing l1 constraints
on their parameters. Moreover, discretization of parameters allows to calculate the
exact number of networks (the 0–entropy) required to attain a given approximation
rate. The latter, in turn, allows to reduce the problem of selection of the estimator of an
unknown regression function to a simple and straightforward procedure of minimiza-
tion over a finite set of candidates. Importantly, the depth, the width and the number
of active parameters in the approximant networks are equivalent to those of networks
constructed in [10]. Hence, for the considered networks the l0 parameter regularization
can be replaced by the l1 parameter regularization, leading, up to a logarithmic factor,
to the same statistical guarantees as in [10]. In our construction, the parameters ±1
are used to add/subtract the nodes, change, if necessary, their signs and transfer them
to the next layers. The parameters ± 1

2 and 2 are used to attain the values of the form
k/2 j ∈ [−1, 1], j ∈ N, k ∈ Z, which can get sufficiently close to any number from
[−1, 1]. Note that this can also be done using only the parameters ± 1

2 and 1. The
latter, however, would require a larger depth and a bigger number of active nodes.

Notation. The notation |v|∞ is used for the l∞ norm of a vector v ∈ R
d and

‖ f ‖L∞[0,1]d denotes the sup norm of a function f defined on [0, 1]d , d ∈ N. For
x, y ∈ R, we denote x ∨ y := max{x, y} and (x)+ := max{0, x}. Also, to make them
multiplicable with preceding matrices, the vectors fromR

d , depending on the context,
are considered as matrices from R

d×1 rather than R
1×d .

2 Main Result

Consider the set of neural networks with L hidden layers and with ReLU activation
function σ(x) = 0 ∨ x = (x)+ defined by

F(L,p) := { f : [0, 1]d → R
pL+1 | f (x) = WLσvLWL−1σvL−1 . . .W1σv1W0x},

where Wi ∈ R
pi+1×pi are weight matrices, i = 0, . . . , L, vi ∈ R

pi are shift vectors,
i = 1, . . . , L, and p = (p0, p1, . . . , pL+1) is the width vector with p0 = d. For a
given shift vector v = (v1, . . . , vp) and a given input vector y = (y1, . . . , yp), the
action of shifted activation function σv on y is defined as

σv(y) = (
σ(y1 − v1), · · ·, σ (yp − vp)

)
.

It is assumed that the network parameters, that is, the entries of weight matrices Wi

and the coordinates of shift vectors vi , are all in [−1, 1]. For s ∈ N, let F(L,p, s)
be the subset of F(L,p) consisting of networks with at most s nonzero parameters.
In [10], Theorem 5, the following approximation of β-Hölder continuous functions
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belonging to the ball

Cβ
d (K ) =

{
f : [0, 1]d → R :

∑

0≤|α|<β

‖∂α f ‖L∞[0,1]d

+
∑

|α|=�β�
sup

x,y∈[0,1]d
x 
=y

|∂α f (x) − ∂α f (y)|
|x − y|β−�β�∞

≤ K

}

with networks from F(L,p, s) is given:

Theorem 2.1 (Schmidt-Hieber, [10], Theorem5)For any function f ∈ Cβ
d (K ) and any

integers m ≥ 1 and N ≥ (β +1)d ∨ (K +1)ed , there exists a network f̃ ∈ F(L,p, s)
with depth

L = 8 + (m + 5)(1 + �log2(d ∨ β)�),

width

|p|∞ = 6(d + �β�)N

and number of nonzero parameters

s ≤ 141(d + β + 1)3+d N (m + 6),

such that

‖ f̃ − f ‖L∞[0,1]d ≤ (2K + 1)(1 + d2 + β2)6d N2−m + K3βN− β
d .

The proof of the theorem is based on local sparse neural network approximation of
Taylor polynomials of the function f .

Our goal is to attain an identical approximation rate for networks with parameters
in {0,± 1

2 ,±1, 2}. In our construction, we will omit the shift vectors (by adding a
coordinate 1 to the input vector x) and will consider the networks of the form

{
f : [0, 1]d → R | f (x) = WL ◦ σ ◦ WL−1 ◦ σ ◦ . . . ◦ σ ◦ W0(1, x)

}
(1)

with weight matrices Wi ∈ R
pi×pi+1 , i = 0, . . . , L, and with width vector p =

(p0, p1, . . . , pL+1), p0 = d. In this case, the ReLU activation function σ(x) acts
coordinate-wise on the input vectors. Let F̃(L,p) be the set of networks of the form
(1) with parameters in {0,± 1

2 ,±1, 2}. For s ∈ N, let F̃(L,p, s) be the subset of
F̃(L,p) with at most s nonzero parameters. We then have the following.
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Theorem 2.2 For any function f ∈ Cβ
d (K ) and any integers m ≥ 1 and N ≥ (β +

1)d ∨ (K + 1)ed , there exists a network f̃ ∈ F̃(L̃, p̃, s̃) with depth

L̃ ≤ 4� + 2L,

width

|p̃|∞ ≤ 2(1 + d + R + �) ∨ 2d |p|∞

and number of nonzero parameters

s̃ ≤ (1 + d + R + �)L̃ + 2ds,

such that

‖ f̃ − f ‖L∞[0,1]d ≤ (2K + 1)(1 + d2 + β2)12d N2−m + (K + 1)3βN− β
d ,

where � ≤ 2 log2(N
β+d Ked), R ≤ (2β)d N and L,p and s are the same as in

Theorem 2.1.

Let us nowcompare the above two theorems. First, the approximation errors in those
theorems differ by a constant factor depending only on the input dimension d. (Note
that the values of β, d and K are assumed to be fixed.) The depths and the number
of nonzero parameters of the networks presented in Theorems 2.1 and 2.2 differ at
most by log2 N multiplied by a constant depending on β, d and K , and the maximal
widths of those networks differ at most by a constant factor C(β, d, K ). Thus, the
architecture and the number of active parameters of network given in Theorem 2.2
have, up to a logarithmic factor, the same dependence on the approximation error as
the network given in Theorem 2.1.

Application to nonparametric regression Consider a nonparametric regression
model

Yi = f0(Xi ) + εi ,

where f0 : [0, 1]d → [−F, F] is the unknown regression function that needs to be
recovered from n observed iid pairs (Xi ,Yi ), i = 1, . . . , n. The standard normal noise
variables εi are assumed to be independent ofXi . For a set of functionsF from [0, 1]d
to [−F, F] and for an estimator f̂ ∈ F of f0, define

�n = �n( f̂ , f0,F) = E f0

[
1

n

n∑

i=1

(Yi − f̂ (Xi ))
2 − inf

f ∈F
1

n

n∑

i=1

(Yi − f (Xi ))
2
]
.

The subscript f0 indicates that the expectation is taken over the training data generated
by our regression model and �n( f̂ , f0,F) measures how close the estimator f̂ is to
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the empirical risk minimizer. Let also

R( f̂ , f0) = E f0 [( f̂ (X) − f0(X))2]

be the prediction error of the estimator f̂ ∈ F , where X D= X1 is independent of the
sample (Xi ,Yi ). Prediction errors are assessed by oracle inequalities, which, in turn,
are usually given in terms of below-defined covering numbers and the entropies of the
function class F from which the estimator is chosen.

Definition 2.1 For δ ≥ 0, the covering number N (δ,F , ‖ · ‖∞) of radius δ of the set
of functions F taken with respect to the ‖ · ‖∞ distance of functions on [0, 1]d is the
minimal number N ∈ N such that there exist f1, . . . , fN from [0, 1]d to R with the
property that for any f ∈ F there is some k ∈ {1, . . . , N } such that

‖ f − fk‖L∞[0,1]d ≤ δ.

The number log2 N (δ,F , ‖ · ‖∞) is then called a δ-entropy of the set F .

The following oracle-type inequality is obtained in [10], Lemma 4:

Lemma 2.1 For any δ ∈ (0, 1]

R( f̂ , f0) ≤ 4

[
inf
f ∈F

E[( f (X) − f0(X))2]

+F2 18 log2 N (δ,F , ‖ · ‖∞) + 72

n
+ 32δF + �n

]
,

where N (δ,F , ‖ · ‖∞) is the covering number of F of radius δ.

Assume now that the unknown regression function f0 : [0, 1]d → [−F, F] belongs to
the classCβ

d (K )with F ≥ max(K , 1). Taking inTheorem2.2 r = d,m = �log2 n� and
N = n

d
2β+d ,we get the existence of a network f̃n ∈ F̃(L̃n, p̃n, s̃n)with L̃n ≤ c log2 n,

|p̃n|∞ ≤ cn
d

2β+d and s̃n ≤ cn
d

2β+d log2 n such that

‖ f̃n − f0‖2L∞[0,1]d ≤ cn
−2β
2β+d , (2)

where c = c(β, d, F) is some constant. In order to apply Lemma 2.1, it remains to esti-
mate the covering numberN (δ, F̃(L̃n, p̃n, s̃n), ‖ · ‖∞). Note, however, that since the
parameters of networks from F̃(L̃n, p̃n, s̃n) belong to the discrete set {0,± 1

2 ,±1, 2},
we can calculate the exact number of networks from F̃(L̃n, p̃n, s̃n), or, in other words,
we can upper-bound the covering number of radius δ = 0. Indeed, as there are at most
(L̃n+1)|p̃n|2∞ parameters in the networks from F̃(L̃n, p̃n, s̃n), then for a given s there

are at most

(
(L̃n + 1)|p̃n|2∞

)s

ways to choose s nonzero parameters. As the nonzero
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parameters can take one of the 5 values {± 1
2 ,±1, 2}, the total number of networks

from F̃(L̃n, p̃n, s̃n) is bounded by

∑

s≤s̃n

(
5(L̃n + 1)|p̃n|2∞

)s

≤
(
5(L̃n + 1)|p̃n|2∞

)s̃n+1

.

Together with (2) and Lemma 2.1, for the empirical risk minimizer

f̂n ∈ arg min
f ∈F̃(L̃n ,p̃n ,s̃n)

n∑

i=1

(Yi − f (Xi ))
2

we get an existence of a constant C = C(β, d, F) such that

R( f̂n, f0) ≤ Cn
−2β
2β+d log22 n (3)

which coincides, up to a logarithmic factor, with the minimax estimation rate n
−2β
2β+d

of the prediction error for β-smooth functions.

Remark 2.1 Note that if s and sp denote, respectively, the l0 and l p parameter norms
of a network with parameters {0,± 1

2 ,±1, 2}, then s1/p/2 ≤ sp ≤ 2s1/p, p > 0.
Therefore, in the above application the same convergence rate as in (3) can be attained
by replacing F̃(L̃n, p̃n, s̃n) with the subclass of F̃(L̃n, p̃n) consisting of networks
with l p parameter norms bounded by s̃1/pn . In particular, taking p = 1 we get that both
in Theorem 2.2 and in the application above the same approximation and prediction
rates can be obtained by replacing the sparsity constraint with the l1 network parameter
regularization.

3 Proofs

One of the ways to approximate functions by neural networks is based on the neural
network approximation of local Taylor polynomials of those functions (see, e.g., [10,
13]). Thus, in this procedure, approximation of the product xy given the input (x, y)
becomes crucial. The latter is usually done by representing the product xy as a linear
combination of functions that can be approximated by neural network-implementable
functions. For example, the approximation algorithm presented in [10] is based on the
approximation of a function g(x) = x(1 − x), which then leads to an approximation
of the product

xy = g

(
x − y + 1

2

)
− g

(
x + y

2

)
+ x + y

2
− 1

4
. (4)

The key observation is that the function g(x) can be approximated by combinations
of triangle waves and the latter can be easily implemented by neural networks with
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ReLU activation function. In the proof of Theorem 2.1, neural network approximation
of function (x, y) �→ xy is followed by approximation of the product (x1, . . . , xr ) �→∏r

j=1 x j which then leads to approximation of monomials of degree up to β. The
result then follows by local approximation of Taylor polynomials of f . Below, we
show that all those approximations can also be performed using only the parameters
{0,± 1

2 ,±1, 2}. As it is formalized in (1), in our constructions we add a coordinate
1 to the input vector to omit the shift vectors. To check the equivalence of those two
approaches, suppose that a given hidden layer of a network is determined by a weight
matrix W ∈ R

d1×d2 and a shift vector v ∈ R
d1 and let W̃ ∈ R

d1×d2+1 be the matrix
obtained by appending the matrix W to the column −v : W̃ = (−v,W ). Then, for a
given input vector y ∈ R

d2 we have that σ W̃ (1, y) = σvWy from which the desired
equivalence follows.

We start our constructions with Lemma 3.1 which shows that networks with
parameters {0,± 1

2 ,±1}, depth 2m + 4 and width 9 can approximate the product
xy exponentially fast in m:

Lemma 3.1 For any positive integer m, there exists a networkMultm ∈ F̃(2m+4,p),
with p0 = 3, pL+1 = 1 and |p|∞ = 9, such that

|Multm(1, x, y) − xy| ≤ 2−m, for all x, y ∈ [0, 1]. (5)

Proof Consider the functions T k : [0, 22−2k] → [0, 2−2k], k ∈ N, defined by

T k(x) := (x/2)+ − (x − 21−2k)+ = T+(x) − T k−(x), (6)

where T+(x) := (x/2)+ and T k−(x) := (x −21−2k)+. In [11], Lemma A.1, it is shown
that for the functions Rk : [0, 1] → [0, 2−2k],

Rk = T k ◦ T k−1 ◦ . . . ◦ T 1, (7)

and for any positive integer m,

|g(x) −
m∑

k=1

Rk(x)| ≤ 2−m, x ∈ [0, 1], (8)

where g(x) = x(1 − x). Taking into account (4) and (8), we need to construct a
network that computes

(1, x, y) �→
( m+1∑

k=1

Rk
(
x − y + 1

2

)
−

m+1∑

k=1

Rk
(
x + y

2

)
+ x + y

2
− 1

4

)

+
∧ 1. (9)
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Let us first construct a network Nm with depth 2m, width 4 and weights {0,± 1
2 ,±1}

that computes

(1/4, T+(u), h(u), T 1−(u)) �→
m+1∑

k=1

Rk(u) + h(u), u ∈ [0, 1].

For this goal, we modify the network presented in [11], Fig. 2, to assure that the
parameters are all in {0,± 1

2 ,±1}. More explicitly, denote

A :=

⎛

⎜
⎜
⎝

1
2 0 0 0
0 1

2 0 − 1
2

0 1 1 −1
− 1

2 1 0 −1

⎞

⎟
⎟
⎠

and

B :=

⎛

⎜⎜
⎝

1
2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠ .

Then,

Nm = σ ◦ (0 1 1 − 1) ◦ σ ◦ B ◦ σ ◦ A ◦ . . . ◦ σ ◦ B ◦ σ ◦ A ◦ σ ◦ B ◦ σ ◦ A,

where each of the mutually succeeding matrices A and B appears in the above repre-
sentation m times. Using parameters {0,± 1

2 ,±1}, for a given input (1, x, y) the first
two layers of the network Multm compute the vector

(
1,

1

4
, T+

(
x − y + 1

2

)
,

(
x + y

2

)

+
, T 1−

(
x − y + 1

2

)
,
1

4
, T+

(
x + y

2

)
,

1

4
, T 1−

(
x + y

2

))
.

(Note that as in our construction we omit shift vectors, throughout the whole construc-
tion we will keep the first coordinate equal to 1.) We then apply the network Nm to
the first and last four coordinates of the above vector that follow the first coordinate
1. We thus obtain a network with 2m + 2 hidden layers and of width 9 that computes

(1, x, y) �→
(
1,

m+1∑

k=1

Rk
(
x − y + 1

2

)
+ x + y

2
,

m+1∑

k=1

Rk
(
x + y

2

)
+ 1

4

)
. (10)

Finally, the last two layers ofMultm compute (1, u, v) �→ (1−(1−(u−v))+)+ applied
to the vector obtained in (10). (Note that this computation only requires parameters 0
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and ±1.) We thus get a network Multm computing (9), and the inequality (5) follows
by combining (4) and (8). ��
Lemma 3.2 For any positive integer m, there exists a network Multrm ∈ F̃(L, p), with
L = (2m + 5)�log2 r�, p0 = r + 1, pL+1 = 1 and |p|∞ ≤ 9r , such that

|Multrm(1, x) −
r∏

i=1

xi | ≤ r22−m, for all x = (x1 . . . xr ) ∈ [0, 1]r .

Proof In order to approximate the product
∏r

i=1 xi , wefirst pair the neighboring entries
to get the triples (1, xk, xk+1) and apply the previous lemma to each of those triples to
obtain the values Multm(1, xk, xk+1). We repeat this procedure q := �log2 r� times,
until there is only one entry left. As pairing the entries requires only parameters 0 and 1,
then it follows from the previous lemma that the entries of the constructed network are
in {0,± 1

2 ,±1}. Using Lemma 3.1 and applying the inequality |Multm(1, x, y)− t z| ≤
2−m + |x − z| + |y − t |, x, y, z, t ∈ [0, 1], q times we get |Multrm(1, x) − ∏r

i=1 xi | ≤
3q−12−m ≤ r22−m . ��

For γ > 0, letCd,γ denote the number of d-dimensional monomials xα with degree
|α| < γ . Note that Cd,γ < (γ + 1)d . From Lemma 3.2, it follows that using weights
{0,± 1

2 ,±1}, we can simultaneously approximate monomials up to degree γ :

Lemma 3.3 There exists a network Mondm,γ ∈ F̃(L,p) with L ≤ (2m + 5)�log2(γ ∨
1)� + 1, p0 = d + 1, pL+1 = Cd,γ and |p|∞ ≤ 9�γ �Cd,γ such that

∣∣∣∣Mondm,γ (1, x) − (xα)|α|<γ

∣∣∣∣∞
≤ γ 22−m, x ∈ [0, 1]d .

Proof For x ∈ [0, 1]d and for a given exponent vector α = (α1, . . . , αd)with |α| < γ ,
define an (|α| + 1)-dimensional vector

x̃α := (1, x1, . . . , x1︸ ︷︷ ︸
α1

, . . . , xd , . . . , xd︸ ︷︷ ︸
αd

).

Using only the parameters 0 and 1 and having width at most �γ �Cd,γ , the first
hidden layer of the network Mondm,γ ∈ F̃(L,p) computes the vector

(1, x) �→ (1, x̃α2 , . . . , x̃αCd,γ
), x ∈ [0, 1]d , (11)

where the first coordinate 1 of the computed vector is the value of the monomial xα1

corresponding to the zero exponent vector α1 and α2, . . . ,αCd,γ
are all the exponent

vectorswith 0 < |αi | < γ, i = 2, . . . ,Cd,γ . ByLemma3.2, for each i = 2, . . . ,Cd,γ ,
there is a network Multαi

m ∈ F̃((2m + 5)�log2 γ �, 9�γ �) such that

|Multαi
m (x̃αi ) − xαi | ≤ γ 22−m, x ∈ [0, 1]d .
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The network Mondm,γ is obtained by applying in parallel the networks Multαi
m to the

components of the output vector (11) obtained in the first step while leaving its first
coordinate unchanged. ��

Note that the depths and thewidths of networks presented inLemmas3.1, 3.2 and3.3
that, respectively, approximate the products xy and

∏r
i=1 xi and the monomials up to

degree γ are at most twice as large as the depths andwidths of corresponding networks
constructed in Lemmas A.2, A.3 and A.4 in [11]. Thus, by enlarging the network sizes
at most by a constant factor of 2 and using the parameters {0,± 1

2 ,±1, 2} we can
achieve the same rates of approximations of monomials as with the networks with
parameters in [−1, 1].

We now present the final stage of the approximation, that is, the local approximation
of Taylor polynomials of f .

Proof of Theorem 2.2 For a given N , let Ñ ≥ N be the smallest integer with Ñ =
(2ν + 1)d for some ν ∈ N. Note that Ñ/2d ≤ N ≤ Ñ . We are going to apply
Theorem 2.1 with N in the condition of that theorem replaced by Ñ . For a ∈ [0, 1]d ,
let

Pβ
a f (x) =

∑

0≤|α|<β

(∂α f )(a)
(x − a)α

α! :=
∑

0≤|γ |<β

ca,γ xγ (12)

be the partial sum of Taylor series of f around a. Choose M to be the largest integer
such that (M+1)d ≤ Ñ , that is, M = 2ν , and consider the set of (M+1)d grid points
D(M) := {x� = (� j/M) j=1,...,d : � = (�1, . . . , �d) ∈ {0, 1, . . . , M}d}. Denoting
x� = (x�

1, . . . , x
�
d), it is shown in [11], Lemma B.1, that

‖Pβ f − f ‖L∞[0,1]d ≤ KM−β, (13)

where

Pβ f (x) =
∑

x�∈D(M)

Pβ
x�
f (x)

d∏

j=1

(1 − M |x j − x�
j |)+.

As in our construction we only use parameters {0,± 1
2 ,±1, 2}, we need to modify the

coefficients given in (12) to make them implementable by those parameters. Denote
B := �2Ked� and let b ∈ N be the smallest integer with 2b ≥ BMβ(β + 1)d . As
|ca,γ | < B ([11], eq. 34), then for each ca,γ there is an integer k ∈ [−2b, 2b] with
ca,γ ∈ [ k

2b
B, k+1

2b
B). Denote then c̃a,γ = k

2b
B and define

P̃β
a f (x) =

∑

0≤|γ |<β

c̃a,γ xγ .
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As the number of monomials of degree up to β is bounded by (β + 1)d , then

‖Pβ
a f − P̃β

a f ‖L∞[0,1]d ≤ (β + 1)d
B

2b
≤ M−β.

Also, as

∑

x�∈D(M)

d∏

j=1

(1 − M |x j − x�
j |)+ = 1,

then

‖Pβ f (x) −
∑

x�∈D(M)

P̃β
x�
f (x)

d∏

j=1

(1 − M |x j − x�
j |)+‖L∞[0,1]d ≤ M−β.

Thus, defining

P̃β f (x) =
∑

x�∈D(M)

P̃β
x�
f (x)

d∏

j=1

(1 − M |x j − x�
j |)+,

we get that

‖P̃β f − f ‖L∞[0,1]d ≤ (K + 1)M−β. (14)

In the proof of Theorem 2.1, the neural network approximation of the function
(x1, . . . , xr ) �→ ∏r

j=1 x j is first constructed followed by approximation of monomi-

als of degree up to β. The result then follows by approximating the function Pβ f (x)
and applying (13). In the latter approximation, the set of parameters not belonging to
{0,± 1

2 ,±1} consists of:
• shift coordinates j/M, j = 1, . . . , M − 1, (the grid points);
• at most (β(M + 1))d weight matrix entries of the form cx�,γ /B, where cx�,γ are

coefficients of the polynomial Pβ
x�
f (x), x� ∈ D(M), |γ | < β;

• a shift coordinate 1/(2Md) (used to scale the output entries).

Note that the above list gives at most D := M + (β(M + 1))d different parameters.
Taking into account (14), we can use P̃β f instead of Pβ f to approximate f . Thus, we
can replace the entries cx�,γ /B by the entries c̃x�,γ /B = k

2b
, where k is some integer

from [−2b, 2b]. Also, as M = 2ν , then denoting � = max{νd + 1; b} we need to
obtain D parameters from the set S = { k

2� , k ∈ Z ∩ (0, 2�]}. As any natural number

can be represented as a sum of powers of 2, then for any y1, . . . , yD ∈ Z∩ (0, 2�] we
can compute

(1, x1, . . . , xd) �→ (1, x1, . . . , xd , y1, . . . , yD)
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with parameters from {0, 1, 2} using at most � hidden layers. The number of active
parameters required for this computation is bounded by (1 + d + D + �)�. Hence,
for any z1, . . . , zD ∈ S, we can compute

(1, x1, . . . , xd) �→ (1, x1, . . . , xd , z1, . . . , zD)

with 2� hidden layers and 2(1 + d + D + �)� active parameters. Applying Theo-
rem 2.1, we get the existence of a network f̃ ∈ F̃(L̃, p̃, s̃)with the desired architecture
and sparsity. ��
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