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Abstract
An inhomogeneous gamma process is a compromise between a renewal process 
and a nonhomogeneous Poisson process, since its failure probability at a given time 
depends both on the age of the system and on the distance from the last failure time. 
The inhomogeneous gamma process with a log-linear rate function is often used in 
modelling of recurrent event data. In this paper, it is proved that the suitably non-
uniform scaled maximum likelihood estimator of the three-dimensional parameter 
of this model is asymptotically normal, but it enjoys the curious property that the 
covariance matrix of the asymptotic distribution is singular. A simulation study is 
presented to illustrate the behaviour of the maximum likelihood estimators in finite 
samples. Obtained results are also applied to real data analysis.

Keywords Modulated gamma process · Trend-renewal process · Maximum 
likelihood estimation · Asymptotic normality

Mathematics Subject Classification 62F10 · 62F12

1 Introduction

An inhomogeneous gamma process (IGP) was defined by Berman [5] in the follow-
ing manner. Consider a Poisson process with intensity function �(t) . Suppose that 
an event occurs at the origin, and that thereafter only every � th event of the Poisson 
process is observed. Then, if T1,… , Tn are the times of the first n events observed 
after the origin, their joint density is the following
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where

and t0 = 0. If � is any positive number, not necessarily an integer, then (1) is still 
a joint density function. An interpretation of the real positive value of � one can give 
basing on the form of the conditional intensity function

where {N(t), t ≥ 0} is the corresponding counting process and z is the hazard func-
tion of the gamma distribution G(�, 1) with unit scale parameter and shape param-
eter �. The hazard function z(t) of the G(�, 1) distribution with 𝜅 < 1 decreases to 1 
when t tends to infinity. If 𝜅 > 1 , then the function z(t) increases to 1 when t tends to 
infinity. Therefore, if the events are thought of as shock, then a value of 𝜅 > 1 indi-
cates that the system is in better condition just after a repair than just before a failure 
and the larger � is, the larger the improvement will be. A value of 𝜅 < 1 indicates 
that the system is in worse condition just after a repair than just before a failure. 
When � = 1, the IGP reduces to the nonhomogeneous Poisson process. From the 
above interpretation, one can see that the IGP is an important process especially in 
the cases when the assumption of minimal repair which characterizes inhomogene-
ous Poisson process models is violated. Point and interval estimation of the param-
eter � is thus an important task from a practical point of view because allows us to 
detect whether a system is in better or worse condition after a repair than just before 
a failure.

A point process {Ti, i = 1, 2,… , n} with the joint density (1) for all positive inte-
gers n and all real positive � is called the IGP with rate function �(t) and shape 
parameter �.

An alternative method of deriving the IGP is the following one. Suppose that the 
random variables

i = 1,… , n, are independently and identically distributed according to the gamma 
G(�, 1) distribution. It then follows that (1) is the joint distribution of T1,… , Tn.

The IGP is a compromise between the renewal process (RP) and the nonho-
mogeneous Poisson process (NHPP), since its failure probability at a given time t 
depends both on the age t of the system and on the distance of t from the last fail-
ure time. Thus, it seems to be quite realistic model in many practical situations. 
The IGP for which limt→∞ �(t) = ∞ can be regarded as a special case of a trend 
renewal process (TRP) introduced and investigated first by Lindqvist [18] and by 
Lindqvist et al. [20] (see also [11, 19, 21, 22]). The class of the TRP’s is a rich 
family of processes and was considered in the field of reliability [21], finance [34, 

(1)fn(t1,… , tn) =
{ n∏

i=1

�(ti)[�(ti) − �(ti−1)]
�−1

}
exp[−�(tn)]∕[� (�)]n,

�(t) = ∫
t

0

�(u)du

(2)�(t) = �(t)z(�(t) − �(TN(t−))),

Xi ∶= �(Ti) − �(Ti−1),
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35], medicine [25], hydrology [9], software engineering [10, 29], and to forecasts 
of volcanoes eruption [4]. The IGP, as a special case of the TRP, can be therefore 
a relevant model of recurrent events in the above mentioned fields.

In this paper, we consider the maximum likelihood (ML) estimation of the 
parameters of the IGP with the log-linear intensity function

where 𝜚 > 0 and 𝛽 > 0. For 𝛽 > 0 , the times Wi ∶= Ti − Ti−1, i = 1,… n, where 
T0 = 0, between events tend to get smaller, and the larger � is, the larger this trend 
will be. To give an interpretation of the parameter � , let us notice that the intensity 
function (3) can be written in the following form

When 𝜚 < 1 (and 𝛽 > 0 ), the summand (ln �)∕� is less than 0, so the intensity � 
increases slowly in the initial phase (for t ∈ (0,−(ln �)∕�) ). When 𝜚 > 1, the sum-
mand (ln �)∕� is greater than 0, so the intensity function � increases very fast from 
the beginning. Therefore, the summand (ln �)∕� can be viewed as the parameter of 
time translation, and for 𝜚 < 1 we have a translation to the left, for 𝜚 > 1–to the right.

The IGP with the rate function (3) will be denoted by IGPL(�, �, �). Statistical 
inference for the IGP was considered by Berman [5] and for modulated Poisson 
process (a special case of IGP) by Cox [6]. Both papers only seriously addressed 
questions of hypothesis testing (via the likelihood ratio test), but did not satis-
factorily solve the problem of parameter estimation. Inferential and testing pro-
cedures for log-linear nonhomogeneous Poisson process (a special case of the 
IGP considered in this paper) can be found in Ascher and Feingold [1], Lewis 
[17], MacLean [23], Cox and Lewis [7], Lawless [16] and Kutoyants [14, 15]. In 
the paper of Bandyopadhyaya and Sen [3], the large-sample properties of the ML 
estimators of the parameters of IGP with power-law form of the intensity function 
are studied.

The article is organized as follows. In Sect. 2, the log-likelihood equations for 
the IGPL(�, �, �) are derived. In Sect.  3, asymptotic properties of ML estima-
tors of the unknown parameters are given. As in the case of IGP with power-law 
intensity, considered by Bandyopadhyay and Sen [3], in the IGP with log-linear 
intensity the Hessian matrix of the log-likelihood function converges in probabil-
ity to a singular matrix. Therefore, to prove the asymptotic normality of ML esti-
mators in the model considered, we used an analogous method as in the paper of 
Bandyopadhyay and Sen [3]. In Sect. 4, we present the results of simulation study 
concerning the behaviour of the ML estimators of the model parameters in finite 
samples. We also illustrate the differences in behaviour of the ML estimator of 
the parameter � compared to ML estimators of � and �. The asymptotic distribu-
tion of the ML estimators, derived in Sect. 3, we apply to obtain the realizations 
of the pointwise asymptotic confidence intervals for the unknown parameters of 
IGPL model in the real data analysis contained in Sect. 5. Section 6 contains con-
clusions and some prospects. Proofs of all theorems formulated in this paper are 
given in Sect. 7.

(3)�(t) = � exp(�t),

�(t) = exp(�t + ln �) = exp{�[t + (ln �)∕�]}.
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2  The ML Estimation in the IGPL Model

Let us notice that for the IGPL(�, �, �)

and

Therefore, in contrast to the IGP with power-law intensity considered by Ban-
dyopadhyay and Sen [3], the IGPL can be used to model reliability growth with 
bounded unknown number of failures. For example in the case 𝛽 < 0 and � = 1 , the 
IGPL(�, �, �) is known as the Goel–Okumoto software reliability model (see [8]). 
Maximum likelihood estimation for the class of parametric nonhomogeneous Pois-
son processes (NHPP’s) software reliability models with bounded mean value func-
tions, which contains the Goel–Okumoto model as a special case, was considered 
by Zhao and Xie [33]. They showed that the ML estimators need not be consist-
ent or asymptotically normal. They also derived asymptotic distribution for a spe-
cific NHPP model which is called the k-stage Erlangian NHPP software reliabil-
ity model (see [13]) (for k = 1 this model is IGPL(�, �, 1) with 𝛽 < 0 ). Nayak et al. 
[24] extended the inconsistency results of Zhao and Xie [33] for all estimators of 
the unknown number of failures (not just the MLE), and for all NHPP models with 
bounded mean value functions.

From the above-mentioned results, one can see that properties of the ML esti-
mators of IGPL parameters can depend on an assumed model (with decreasing or 
increasing rate function) and should be considered separately. We will consider 
the IGPL(�, �, �) for which 𝜚 > 0, 𝛽 > 0, 𝜅 > 0 . We suppose that the IGPL(�, �, �) 
is observed up to the nth event (failure) appears for the first time, and the values 
t1,… , tn of the jump times T1,… , Tn are recorded. In other words, we consider the 
so-called failure truncation (or inverse sequential) procedure. It should be noted 
that the failure truncation procedure cannot be applied to IGPL(�, �, �) with 𝛽 < 0. 
Denote � = (t1,… , tn) . The likelihood function of the IGPL(�, �, �), observed until 
the nth failure occurs, is

�(t) =

{
�

�

[
exp(�t) − 1

]
for � ≠ 0,

�t for � = 0,

lim
t→∞

𝛬(t) =

{
−

𝜚

𝛽
for 𝛽 < 0,

∞ for 𝛽 ≥ 0.
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The log-likelihood function of the IGPL(�, �, �) is of the following form

where

Therefore, the possible MLE’s of IGPL(�, �, �) parameters are solutions to the fol-
lowing system of the log-likelihood equations

where

and � (�) denotes the digamma function.

Ln(�, �, �;�) =

[
��

� (�)

]n
exp

(
�

n∑
i=1

ti

)
exp

[
− �∫

tn

0

exp(�x)dx
]

⋅

n∏
i=1

[
∫

ti

ti−1

exp(�x)dx

]�−1

=

[
��

� (�)��−1

]n
exp

[
�

n∑
i=1

ti −
�

�

(
exp(�tn) − 1

)]

⋅

n∏
i=1

[
exp(�ti) − exp(�ti−1)

]�−1
.

�n(�, �, �;�) =n log

[
��

� (�)��−1

]
+ �Sn(�) −

�

�

[
exp(�tn) − 1

]

+ (� − 1)Vn(�;�),

(4)Sn(�) =

n∑
i=1

ti,

(5)Vn(�;�) =

n∑
i=1

log
[
exp(�ti) − exp(�ti−1)

]
.

(6)

��n(�, �, �;�)

��
=
n�

�
−

1

�

[
exp(�tn) − 1

]
= 0,

��n(�, �, �;�)

��
= −

n(� − 1)

�
+

�

�2

[
(1 − �tn) exp(�tn) − 1

]

+ Sn(�) + (� − 1)Wn(�;�) = 0,

(7)
��n(�, �, �;�)

��
=n log � − n� (�) − n log � + Vn(�;�) = 0,

(8)Wn(�;�) =

n∑
i=1

ti exp(�ti) − ti−1 exp(�ti−1)

exp(�ti) − exp(�ti−1)
,
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Remark 1 The system of likelihood equations given above not always has a  solu-
tion (�̂�, 𝛽, �̂�) ∈ (0,∞)3 (see [12]). However, for some realizations of the IGPL, it has 
more than one solution.

3  Asymptotic Properties of ML Estimators

From now on, we denote vector of process parameters by � = (�, �, �)� , and 
�0 = (�0, �0, �0)

� indicates the true parameters values. We will use standard sym-
bols oP(⋅) and OP(⋅) for convergence and boundedness in probability, respectively. 
All limits mentioned in this section will be taken as n → ∞ unless mentioned 
otherwise.

Denote An(�) = −�2�n(�,�)∕����
�. Then, An(�) = (aij(�)), i, j = 1, 2, 3, where

Now, define the scaled matrix

obtained from the matrix An(�).

Theorem 1 The matrix Cn(�0) converges in probability to

a11(�) = −
�2�n(�,�)

��2
=

n�

�2
,

a12(�) = −
�2�n(�,�)

����
=

1

�
Tn exp(�Tn) −

1

�2
[exp(�Tn) − 1] = a21(�),

a13(�) = −
�2�n(�,�)

����
= −

n

�
= a31(�),

a22(�) = −
�2�n(�,�)

��2
= −

n(� − 1)

�2
+

2�

�3
[exp(�Tn) − 1] −

2�

�2
Tn exp(�Tn)

+
�

�
T2
n
exp(�Tn) + (� − 1)

n∑
i=1

exp[�(Ti + Ti−1)](Ti − Ti−1)
2

[exp(�Ti) − exp(�Ti−1)]
2

,

a23(�) = −
�2�n(�,�)

����
=

n

�
−

n∑
i=1

Ti exp(�Ti) − Ti−1 exp(�Ti−1)

exp(�Ti) − exp(�Ti−1)
= a32(�),

a33(�) = −
�2�n(�,�)

��2
= n� �(�).

Cn(�) = (cij(�)) ∶= n−1

⎡
⎢⎢⎢⎢⎢⎢⎣

a11(�)
a12(�)

log n
a13(�)

a21(�)

log n

a22(�)

log2 n

a23(�)

log n

a31(�)
a32(�)

log n
a33(�)

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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Note that �C is a singular matrix with rank 2. Therefore, we cannot use standard 
methods (see for example [27, 31, 32]) to prove asymptotic normality of the ML esti-
mators in the model considered. We proceed by reducing the problem to two-dimen-
sions and appealing to the distributional properties of the IGPL. The parameter � will 
be partitioned as follows �� = (�, �, �) = (�, ��). Substituting � by n��[exp(�tn) − 1]−1 
into (6) and (7), the score functions 

��n(�, �, �;�)

��
 and 

��n(�, �, �;�)

��
 reduce to 

�
∗
n
(�) = (�∗

1n
(�),�∗

2n
(�))� , where

Denote

where � and h are fixed numbers, 0 < 𝛿 <
1

2
 , 0 < h < ∞.

Theorem 2 With probability tending to 1 as n → ∞, there exists a sequence of roots 
�̂�n = (𝛽n, �̂�n) ∈ Mn(𝜃0) of the equations �∗

1n
(�) = 0 and �∗

2n
(�) = 0.

Denote by �n = (Z1n, Z2n, Z3n)
� , where

are the centered and scaled �̂�n, 𝛽n, �̂�n, where

and 𝛽n, �̂�n are given in Theorem 2.

�C =

⎡
⎢⎢⎢⎢⎢⎢⎣

�0

�2
0

�0

�0�0
−

1

�0
�0

�0�0

�0

�2
0

−
1

�0

−
1

�0
−

1

�0
� �(�0)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

�
∗
1n
(�) =

n

�
+

n∑
i=1

ti −
n�tn exp(�tn)

exp(�tn) − 1

+ (� − 1)

n∑
i=1

ti exp(�ti) − ti−1 exp(�ti−1)

exp(�ti) − exp(�ti−1)
,

�
∗
2n
(�) = n log

n�

exp(�tn) − 1
− n�(�) +

n∑
i=1

log[exp(�ti) − exp(�ti−1)].

(9)Mn(�0) = {� = (�, �)� ∶ � = �0 + �1n
−� , � = �0 + �2n

−� , ||�|| ≤ h},

(10)
Z1n =n

1

2 (log n)−1(�̂�n − 𝜚0),

Z2n =n
1

2 (𝛽n − 𝛽0),

(11)Z3n =n
1

2 (�̂�n − 𝜅0)

(12)�̂�n = n�̂�n𝛽n[exp(𝛽ntn) − 1]−1,
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Theorem 3 Vector �n is asymptotically (singular) normal with mean vector zero and 
covariance matrix

Corollary 1 Theorem 3 can be applied to construct pointwise asymptotic confidence 
intervals for the parameters of the IGPL.

Remark 2 As in the case of the MPLP considered by Bandyopadhyay and Sen [3], 
the asymptotic result of Theorem 3 provides some curious insights into the behav-
iour of the MLE’s of the IGPL parameters. Apart from the singularity and non-
uniform scalings of the MLE’e, we have also that the estimator �̂� is asymptotically 
independent of the estimators �̂� and 𝛽.

Remark 3 The asymptotic result for the ML estimators of the parameters of non-
homogeneous Poisson process with log-linear intensity, namely, the process 
IGPL(�, �, 1) , can be obtained by substituting �0 = 1 in the top 2 × 2 top left subma-
trix of �

�
.

4  Simulation Study

In this section, we report a simulation study of the finite sample performance of 
the ML estimators of the IGPL model parameters. For each selected combination 
of (�0, �0, �0) and n number of events, where n ∈ {25, 50, 75, 100} , Monte Carlo 
simulations with 1000 replications were performed. The IGPL(�, �, �) realiza-
tions (t1,… , tn) were generated according to the formula

where G(�0) is a random value generated from gamma G(�0, 1) distribution and 
t0 = 0 . For each realization (t1,… , tn) , the MLE of �0 was calculated as a solution to 
the following equation

where

�
�
=

⎡
⎢⎢⎢⎢⎢⎢⎣

�2
0

�0

�0�0

�0
0

�0�0

�0

�2
0

�0
0

0 0
�0

�0�
�(�0) − 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

ti =
1

�0
log

(
exp(�0ti−1) +

�0

�0
G(�0)

)
,

(13)log[n�(�;�)] − � [�(�;�)] − log[exp(�tn) − 1] +
1

n
Vn(�;�) = 0,
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where Sn(�) and Wn(�;�) are given by (4) and (8), respectively. A solution to Eq. 
(13) was obtained using Newton–Raphson method, implemented in nleqslv function 
inside R package nleqslv, with the initial value

The initial value �start was taken on the basis of an analogous reasoning to the con-
struction of simple estimators, presented in the paper of Bandyopadhyay and Sen 
[3].

Estimates of � and � were determined by the formulas

and

 respectively.
Performance of the estimates is investigated in terms of bias (Bias) and mean 

square error (MSE), given by following formulas

In Tables  1 and 2, we present the empirical biases and MSE’s for � = 1.5 and 
� = 0.5 , respectively, for simulated data sets. We have taken values � = 1.5 and 
� = 0.5 to consider the case of the intensity function which increases very fast from 
the beginning ( 𝜌 > 1 implies time translation to the right) and the case of the inten-
sity function which increases slower in the initial phase ( 𝜌 < 1 implies time transla-
tion to the left). From the results collected in these tables, we conclude that:

• the empirical biases and MSE’s of the estimators 𝛽  and �̂� are not so big even 
for n = 25 , but the estimator �̂� has rather big empirical MSE’s, especially for 
small n;

• the empirical MSE’s of the estimator � decrease a much slower rate than the 
empirical MSE’s of the estimator 𝛽  and �̂� as n increases;

• the empirical MSE‘s of the estimator �̂� for n = 100 are almost the same for 
various values of � and � when the value of � is fixed.

�(�;�) =

Wn(�;�) − Sn(�) −
n

�

Wn(�;�) − ntn
exp(�tn)

exp(�tn) − 1

,

�start =
n∑n

i=1
(tn − ti)

.

�̂� = 𝜅(𝛽;�)

�̂� =
n𝛽�̂�

exp(𝛽tn) − 1
,

Bias(�̂�) = E(�̂�) − 𝜗, MSE(�̂�) = E(�̂� − 𝜗)2.
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5  Application to Some Real Data Set

In this section, we apply Theorem 3 to obtain realizations of pointwise asymp-
totic confidence intervals for the parameters of the IGPL model fitted to a real 
data set.

For each data set, we calculated the Akaike information criterion (AIC) and 
Bayesian information criterion (BIC) for five special cases of inhomogeneous 
gamma process model: the power-law process (PLP), the modulated power-law 
process (MPLP) considered by Bandyopadyay and Sen [3], the gamma renewal 
process (GRP), the nonhomogeneous Poisson process with log-linear intensity 
function (NHPPL), and the IGPL considered in this paper.

Table 1  Simulation results for 
asymptotic behaviour of ML 
estimators ( �

0
= 1.5)

n Bias(�̂�) MSE(�̂�) Bias(𝛽) MSE(𝛽) Bias(�̂�) MSE(�̂�)

�
0
= 1.5 ; �

0
= 0.2 ; �

0
= 0.75

25 0.1475 0.9633 0.0505 0.0204 0.1006 0.0610
50 0.0527 0.5473 0.0189 0.0051 0.0453 0.0244
75 0.0599 0.3801 0.0105 0.0025 0.0344 0.0135
100 0.0196 0.2877 0.0080 0.0016 0.0223 0.0102
�
0
= 1.5 ; �

0
= 0.8 ; �

0
= 0.75

25 0.3674 2.4713 0.1091 0.1361 0.1147 0.0784
50 0.1089 1.0165 0.0563 0.0435 0.0447 0.0247
75 0.1019 0.6412 0.0241 0.0202 0.0271 0.0130
100 0.0512 0.4948 0.0262 0.0151 0.0260 0.0102
�
0
= 1.5 ; �

0
= 0.2 ; �

0
= 1

25 0.1821 0.9307 0.0305 0.0109 0.1420 0.1169
50 0.0705 0.5002 0.0135 0.0032 0.0615 0.0409
75 0.0634 0.3673 0.0070 0.0017 0.0449 0.0243
100 0.0248 0.2462 0.0063 0.0010 0.0340 0.0182
�
0
= 1.5 ; �

0
= 0.8 ; �

0
= 1

25 0.2390 1,6693 0.0840 0.0762 0.1472 0.1356
50 0.1221 0.8444 0.0456 0.0299 0.0711 0.0480
75 0.1110 0.5536 0.0194 0.0142 0.0498 0.0279
100 0.0360 0.4038 0.0199 0.0099 0.0262 0.0182
�
0
= 1.5 ; �

0
= 0.2 ; �

0
= 1.25

25 0.2587 1,1184 0.0229 0.0076 0.2120 0.2277
50 0.1004 0.4396 0.0095 0.0020 0.0904 0.0763
75 0.0803 0.3012 0.0046 0.0011 0.0579 0.0448
100 0.0579 0.2660 0.0035 0.0007 0.0365 0.0294
�
0
= 1.5 ; �

0
= 0.8 ; �

0
= 1.25

25 0.2782 1,4204 0.0600 0.0514 0.2080 0.2459
50 0.1218 0.7337 0.0342 0.0209 0.0895 0.0732
75 0.0932 0.4847 0.0184 0.0106 0.0616 0.0450
100 0.0425 0.3264 0.0170 0.0079 0.0396 0.0310
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5.1  Diesel Engine

We consider the failure times (in thousands) in operating hours to unscheduled main-
tenance actions for the USS Halfbeak No.3 main propulsion diesel engine (see [2]). 
The data were considered by Rigdon [28], where the author assumed the power-law 
process model and obtained the ML estimates of the parameters. We assumed that 
the system was observed until the 71st failure at 25518 h.

The values of AIC and BIC are given in Table 3.
The smallest values of the AIC and BIC are for the IGPL model, and therefore, 

the IGPL model is the best within the class of models considered, regardless of cri-
terion. It is better than the PLP model considered by Rigdon [28].

Table 2  Simulation results for 
asymptotic behaviour of ML 
estimators ( �

0
= 0.5)

n Bias(�̂�) MSE(�̂�) Bias(𝛽) MSE(𝛽) Bias(�̂�) MSE(�̂�)

�
0
= 0.5 ; �

0
= 0.2 ; �

0
= 0.75

25 0.0705 0.1882 0.0273 0.0089 0.0946 0.0623
50 0.0347 0.0836 0.0125 0.0027 0.0501 0.0243
75 0.0195 0.0615 0.0081 0.0015 0.0257 0.0139
100 0.0205 0.0515 0.0066 0.0011 0.0274 0.0107
�
0
= 0.5 ; �

0
= 0.8 ; �

0
= 0.75

25 0.1034 0.3125 0.0952 0.0857 0.0953 0.0663
50 0.0524 0.1337 0.0422 0.0297 0.0482 0.0235
75 0.0352 0.1064 0.0303 0.0166 0.0384 0.0144
100 0.0287 0.0818 0.0216 0.0119 0.0213 0.0102
�
0
= 0.5 ; �

0
= 0.2 ; �

0
= 1

25 0.0726 0.1608 0.0216 0.0054 0.1457 0.1300
50 0.0430 0.0795 0.0086 0.0017 0.0689 0.0447
75 0.0248 0.0515 0.0053 0.0009 0.0494 0.0258
100 0.0169 0.0386 0.0042 0.0006 0.0309 0.0177
�
0
= 0.5 ; �

0
= 0.8 ; �

0
= 1

25 0.1046 0.2623 0.0724 0.0542 0.1533 0.1243
50 0.0620 0.1202 0.0290 0.0195 0.0709 0.0462
75 0.0455 0.0886 0.0192 0.0122 0.0426 0.0258
100 0.0385 0.0645 0.0118 0.0078 0.0335 0.0188
�
0
= 0.5 ; �

0
= 0.2 ; �

0
= 1.25

25 0.0664 0.1479 0.0201 0.0041 0.1987 0.2300
50 0.0436 0.0721 0.0064 0.0013 0.0845 0.0676
75 0.0324 0.0465 0.0039 0.0007 0.0666 0.0451
100 0.0194 0.0355 0.0033 0.0005 0.0432 0.0331
�
0
= 0.5 ; �

0
= 0.8 ; �

0
= 1.25

25 0.1104 0.2425 0.0528 0.0400 0.1849 0.1913
50 0.0446 0.1055 0.0304 0.0149 0.0926 0.0801
75 0.0394 0.0705 0.0167 0.0087 0.0672 0.0482
100 0.0207 0.0528 0.0152 0.0062 0.0413 0.0298
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The estimates (point and interval) of the IGPL parameters are given in Table 4. 
Realizations of 95% pointwise asymptotic confidence intervals are obtained 
using Theorem 3. In Table 4, the bootstrap confidence limits are also given for 
comparison.

The estimated value of � is less than 1, what indicates that the system is in 
worse condition just after a repair than just before a failure.

5.2  Air Conditioning

As the second example, we consider the successive failures of the air condition-
ing system of Boeing 720 jet airplanes nr 7912, presented in work of Proschan 
[26]. The system was observed till 30th failure at 1788 hours. For numerical rea-
sons, we consider event times in hundreds of hours. The values of AIC and BIC 
are given in Table 5.

According to AIC and BIC, the most appropriate model for air conditioning 
failure process is NHPPL. Let us notice that NHPPL is a special case of IGPL 
process with � = 1.

The estimates, pointwise asymptotic confidence intervals and bootstrap confi-
dence limits of the IGPL parameters are given in Table 6.

It can be observed that both (asymptotic and bootstrap) realizations of the 
confidence intervals for � include 1, what suggests the correctness of the model 
choice based on the previously considered criteria.

Table 3  The values of AIC for 
diesel engine failure data

IGPL MPLP PLP NHPPL GP

AIC −65.4373 −61.0063 −52.9312 −62.7147 −33.6303
BIC −58.6493 −54.2183 −48.4058 −58.1893 −29.1049

Table 4  Estimates and 95% 
confidence intervals from the 
diesel engine failure data

Parameters Esti-
mates

Confidence limits

Asymptotic Bootstrap

Lower Upper Lower Upper

IGPL � 0.166 0 0.360 0.042 0.410
� 0.152 0.110 0.193 0.109 0.222
� 0.724 0.521 0.928 0.564 0.987

Table 5  The values of AIC for 
air conditioning failure data

IGPL MPLP PLP NHPPL GP

AIC 28.3998 29.9496 28.5421 26.6378 32.0244
BIC 32.6034 34.1532 31.3445 29.4402 34.8268
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6  Concluding Remarks

Asymptotic properties of ML estimators of the unknown parameter of the IGPL model 
were given. As in the case of IGP with power-law intensity, considered by Bandyopad-
hyay and Sen [3], in the IGPL the Hessian matrix of the log-likelihood function con-
verges in probability to a singular matrix. Therefore, to prove the asymptotic normality 
of ML estimators in the model under study, a non-standard method has been applied. 
Moreover, the ML estimator enjoys the curious property that the covariance matrix of 
the asymptotic distribution is singular. The consistency of ML estimators in the IGPL 
model, as well as in the modulated power-law process considered by Bandyopadhyay 
and Sen [3], remains as the open problem.

Appendix

Proof of Theorem 1

To prove Theorem 1, we shall first formulate and prove some lemmas. To simplify the 
notation of the proof, we define the following random variables

and

(14)U1n =n
−

1

2

[ n∑
i=1

log
exp(�0Tn)

exp(�0Ti)
− n

]
,

(15)U2n =n
−

1

2

{�0

�0
[exp(�0Tn) − 1] − n�0

}
,

(16)U3n =n
−

1

2

n∑
i=1

{
log

[�0
�0

[
exp(�0Ti) − exp(�0Ti−1)

]]
− �(�0)

}
,

Table 6  Estimates and 95% 
confidence intervals from the air 
conditioning failure data

Param-
eters

Esti-
mates

Confidence limits

Asymptotic Bootstrap

Lower Upper Lower Upper

IGPL � 0.584 0 1.335 0.169 1.602
� 0.093 0.058 0.128 0.033 0.192
� 0.897 0.501 1.293 0.629 1.567
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The next lemma provides some necessary results concerning random variables 
Yi, i = 1,… , n.

Lemma 1 The random variables Yi, i = 1, 2,… , are such that

 (i) n
1

2 (Yn − 1) → N(0, �−1
0
) in distribution as n → ∞,

 (ii) n
1

2 (Yn − Ȳn) → N(0, 𝜅−1
0
) in distribution as n → ∞,

 (iii) U3n and n
1

2 (Yn − Ȳn) are uncorrelated,
 (iv) n

−
1

2

∑n

i=1
log

�
Yn∕Yi

�
= n

1

2 (Yn − Ȳn) + oP(1).

Proof 

 (i) Let us note that 

 where 

i = 1,… , n, are independent gamma random variables with shape parameter 
�0 and scale parameter 1. Next by application of the Lindeberg–Feller central 
limit theorem, we obtain the result.

 (ii) Denote by 

 From (17) and using the interchange of summation formula 

 we obtain 

Yi =

𝜚0

𝛽0
exp(𝛽0Ti)

i𝜅0
,

Ȳn =
1

n

n∑
i=1

Yi.

(17)Yn =
1

n�0

( n∑
i=0

Xi +
�0

�0

)
,

Xi = �(ti) − �(ti−1) =
�0

�0
[exp(�0Ti) − exp(�0Ti−1)],

Kn = −n1∕2(Yn − Ȳn) = n−1∕2
n∑
i=1

(Yi − Yn) = n−1∕2
( n∑

i=1

Yi − nYn
)
.

(18)
n∑
i=1

n∑
j=1

aibj =

n∑
i=1

n∑
j=i

biaj,
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 Therefore, 

 where 

 Denote the first and second term of Kn by Kn1 and Kn2, , respectively. Using 
(18), we obtain that 

 Setting a correspondence of ein with a Riemann sum, we observe that as 
n → ∞ , 

 as n → ∞. These facts enable us to use the Lyapunov’s central limit theo-
rem. From the fact that Kn2 converges to 0 as n → ∞, part (ii) of the lemma 
is proved.

 (iii) Note that 

n∑
i=1

Yi =�
−1
0

n∑
i=1

i−1
[
�0

�0
+

n∑
j=1

Xj

]
= �−1

0

n∑
i=1

Xi

n∑
j=i

j−1 +
�0

�0�0

n∑
i=1

i−1,

nYn =�
−1
0

n∑
i=1

Xi +
�0

n�0�0
= �−1

0

n∑
i=1

Xi

n∑
j=i

(n − i − 1)−1 +
�0

n�0�0
.

Kn = �−1
0
n−1∕2

n∑
i=1

Xiein + n−1∕2
�0

�0�0

n−1∑
i=1

i−1,

ein =

n∑
j=i

[j−1 − (n − i − 1)−1].

E(Kn1) = n−1∕2
n∑
i=1

ein = 0,

Var(Kn1) =
1

n�0

n∑
i=1

e2
in
,

�−4
0
n−2

n∑
i=1

E(Xi)
4e4

in
= �−3

0
(�3

0
+ 6�2

0
+ 11�0 + 6)n−2

n∑
i=1

e4
in
.

Var(Kn1) → �−1
0 ∫

1

0

[
∫

1

u

(
1

v
−

1

1 − u

)
dv

]2
du =

1

�0
,

�−4
0
n−2

n∑
i=1

E(Xi)
4e4

in

∼ n−1�−3
0
(�3

0
+ 6�2

0
+ 11�0 + 6)∫

1

0

[
∫

1

u

(1
v
−

1

1 − u

)
dv

]4
du → 0,
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 (iv) Denote by 

 From the inequality x − 1

x
≤ log x ≤ x − 1 for x > 0 , we have 

 Using Slutsky’s theorem in conjunction with the results in parts (i) and (ii), 
we can conclude that the lower bound in the above expression is oP(1) . The 
upper bound in expression (19) is equal to 

 Denote the first and second term of (20) by B1 and B2 , respectively. By part 
(i) of this lemma B1 = oP(1) . Using the Cauchy–Schwarz inequality, 

 Note that 

 where 

Cov[U3n, n
1∕2(Yn − Ȳn)]

= Cov
[
n−1∕2

n∑
i=1

(logXi − 𝜓(𝜅0)),

n−1∕2𝜅−1
0

n∑
i=1

Xiein + n−1∕2
𝜚0

𝛽0𝜅0

n−1∑
i=1

i−1
]

= Cov
[
n−1∕2

n∑
i=1

(logXi − 𝜓(𝜅0)), n
−1∕2𝜅−1

0

n∑
i=1

Xiein
]

= (n𝜅0)
−1

n∑
i=1

Cov[logXi − 𝜓(𝜅0),Xi − 𝜅0]ein

= (n𝜅0)
−1

n∑
i=1

ein = 0.

Gin = log(Yn∕Yi) − (Yn − Yi).

(19)(1∕Yn − 1)n−
1

2

n∑
i=1

(Yn − Yi) ≤ n
−

1

2

n∑
i=1

Gin ≤ n
−

1

2

n∑
i=1

(Yn − Yi)(1∕Yi − 1).

(20)

n
−

1

2

n∑
i=1

[(Yn − 1) − (Yi − 1)](1∕Yi − 1)

= n
1

2 (Yn − 1)
[
n−1

n∑
i=1

(1∕Yi − 1)
]
− n

−
1

2

n∑
i=1

(Yi − 1)(1∕Yi − 1).

B2
2
≤ (log n)−1

n∑
i=1

(Yi − 1)2
[ log n

n

n∑
i=1

(1∕Yi − 1)2
]
.

log n

n

n∑
i=1

(
1∕Yi − 1

)2 ≤ log n

n

n∑
i=1

(
1∕Ỹi − 1

)2

,
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 Furthermore, 

 as n → ∞. Using Markov inequality, we obtain that 

 To show that (log n)−1
∑n

i=1
(Yi − 1)2 = OP(1), we note that 

 Thus, (log n)−1
∑n

i=1
(Yi − 1)2 is OP(1) , which implies B2 = oP(1).

  ◻

Lemma 2 The sequence �n = (U1n,U2n,U3n)
�, n = 1, 2,… , converges in distribu-

tion to a multivariate normal random variable with mean vector zero and covari-
ance matrix

Proof From properties of the IGPL, Xi =
�

�
[exp(�ti) − exp(�ti−1)] , for i = 1,… , n, 

are independent gamma G(�, 1) distributed random variables, and U2n and U3n can be 
re-expressed as

Ỹi =

𝜚0

𝛽0

[
exp(𝛽0ti) − 1

]

i𝜅0
.

E
[ log n

n

n∑
i=1

(
1∕Ỹi − 1

)2] ≤ log n

n

n∑
i=1

E
(
1∕Ỹi − 1

)2

=
log n

n

n∑
i=1

i𝜅0 + 2

(i𝜅0 − 1)(i𝜅0 − 2)
≤ log n

n

n∑
i=1

𝜅0 + 2

i(𝜅0 − 1)(𝜅0 − 2)
→ 0,

log n

n

n∑
i=1

(
1∕Ỹi − 1

)2
= oP(1).

E
[

1

log n

n∑
i=1

(Yi − 1)2
]
=

1

log n

n∑
i=1

Var(Yi) =
1

log n

n∑
i=1

Var
(
Ỹi +

𝜚0

i𝛽0𝜅0

)

=
1

log n

n∑
i=1

1

i𝜅0
→

1

𝜅0
, as n → ∞.

�
�
=

⎡⎢⎢⎣

�−1
0

0 0

0 �0 1

0 1 � �(�0)

⎤⎥⎥⎦
.

U2n =n
1

2

(
1

n

n∑
i=1

Xi − �0

)
,

U3n =n
1

2

[
1

n

n∑
i=1

logXi − �(�0)
]
.
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Then, by an application of bivariate central limit theorem (U2n,U3n)
� are asymptoti-

cally normal with zero mean vector and covariance matrix

Random variable U1 can be expressed in terms of Yi as

Using Stirling’s formula, the non-random term on RHS of above equation is 
oP(1) . From properties of the IGPL and Lemma 1 follows that U1 is independent 
of (U2,U3)

� . Part (iv) of Lemma 1 also entails that U1 converges in distribution to 
N(0, �−1), which ends the proof.   ◻

Lemma 3 The random variables Ti, i = 1, 2,… , are such that

 (i) n
−

1

2

∑n

i=1

� exp(�Ti−1)

exp(�Ti) − exp(�Ti−1)
(Ti − Ti−1) − 1

�
= oP(1),

 (ii) n−1
∑n

i=1

� exp(�Ti) exp(�Ti−1)

[exp(�Ti) − exp(�Ti−1)]
2
(Ti − Ti−1)

2 − 1
�
= oP(1).

Proof 

 (i) Since exp(𝛽Ti) > exp(𝛽Ti−1) ≥ 1, using the relation x−1
x

≤ log x ≤ x − 1 for 
x > 1, we obtain 

 Using the inequality x
y
≥ x − 1

y − 1
 for x < y and x, y > 1, we have 

 Denote the lower bound of the above expression by BL . It is enough to show 
that BL = oP(1) . From properties of the IGPL, we know that 

[
�0 1

1 � �(�0)

]
.

U1 = n
−

1

2

n∑
i=1

log

(
Yn

Yi

)
+ n

−
1

2 (n log n − log n! − n).

(21)
exp(�Ti) − exp(�Ti−1)

exp(�Ti)
≤ log

exp(�Ti)

exp(�Ti−1)
≤ exp(�Ti) − exp(�Ti−1)

exp(�Ti−1)
.

n−1∕2
n∑
i=2

(
exp(�Ti−1) − 1

exp(�Ti) − 1
− 1

)
≤ n−1∕2

n∑
i=2

(
exp(�Ti−1)

exp(�Ti)
− 1

)

≤ n−1∕2
n∑
i=2

(
exp(�Ti−1)(Ti − Ti−1)

exp(�Ti) − exp(�Ti−1)
− 1

)
≤ 0.
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 are independent with B(�(i − 1), �) distribution. Therefore, 

 as n → ∞. Hence, BL = oP(1).

 (ii) From (21), we have 

 The inequalities x
y
≥ x − 1

y − 1
 for 1 < x < y, and x

y
≤ x − 1

y − 1
 for 1 < y < x, imply 

 Denote the lower and upper bound of the above expression by BL and BU , , 
respectively. The bound BL by part (i) of this lemma is oP(1). Hence, it will 
be enough to show that BU = oP(1) . We have that 

 as n → ∞, where k is sufficiently large constant, such that Var(V−1
k
) < ∞ . 

Hence, BU = oP(1).

  ◻

The elements of Cn(�) = (cij), i, j = 1, 2, 3, can be written in the following form

Vi =
exp(�Ti−1) − 1

exp(�Ti) − 1
, i = 2,… , n,

E(B2
L
) =

1

n

n∑
i=2

Var(Vi) +
1

n

[ n∑
i=2

(E(Vi) − 1)

]2

=
1

n

n∑
i=2

i − 1

i2(i� + 1)
+

1

n

( n∑
i=2

1

i

)2

→ 0,

[
exp(�Ti) − exp(�Ti−1)

exp(�Ti)

]2
≤
[
log

exp(�Ti)

exp(�Ti−1)

]2
≤
[
exp(�Ti) − exp(�Ti−1)

exp(�Ti−1)

]2
.

n−1
n∑
i=2

[exp(�Ti−1) − 1

exp(�Ti) − 1
− 1

] ≤ n−1
n∑
i=2

[exp(�Ti−1)
exp(�Ti)

− 1
]

≤ n−1
n∑
i=2

[ exp(�Ti) exp(�Ti−1)

[exp(�Ti) − exp(�Ti−1)]
2
(Ti − Ti−1)

2 − 1
]

≤ n−1
n∑
i=2

[ exp(�Ti)

exp(�Ti−1)
− 1

] ≤ n−1
n∑
i=2

[ exp(�Ti) − 1

exp(�Ti−1) − 1
− 1

]
.

E(B2
U
) =

1

n2

n∑
i=k

Var(V−1
i
) +

1

n2

[ n∑
i=k

(E(V−1
i
) − 1)

]2

=
1

n2

n∑
i=k

(i� − 1)�

(i� − � − 1)2(i� − � − 2)
+
(
1

n

n∑
i=k

�

i� − � − 1

)2

→ 0,
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where

and U1n, U2n, U3n are given by (14), (15), (16), respectively. Now, the theorem fol-
lows from Lemma 3 and the fact that �n = Op(1).

Proof of Theorem 2

Denote by A∗
n
(�) = −

��∗
n
(�)

��
= (a∗

ij
(�)), i, j = 1, 2, where

c11(𝜗) =
𝜅

𝜌2
,

c12(𝜗) =
𝜅

𝜌𝛽
−

U2n√
n log n𝜌𝛽

−
𝜅

log n𝜌𝛽
+

𝜅

log n𝜌𝛽
log

�U2n

n𝜅
+ 1 +

𝜌

n𝛽𝜅

�

+
U2n√
n𝜌𝛽

+
1

n𝛽2
+

�
U2n√

n log n𝜌𝛽
+

1

n log n𝛽2

��
Ũn − log

𝜌

𝛽𝜅

�

= c21(𝜗),

c13(𝜗) = −
1

𝜌
= c31(𝜗)

c22(𝜗) =
𝜅

𝛽2
+

2U2n√
n(log n)2𝛽2

−
1

(log n)2

�
Ũn − log

𝜌

𝛽𝜅
+ log n

�

�
2U2n√
n𝛽2

+
2𝜅

𝛽2
+

𝜌

n𝛽3
−

�
Ũn − log

𝜌

𝛽𝜅
+ log n

��
U2n√
n𝛽2

+
𝜌

n𝛽3

��

+
2𝜅

(log n)2𝛽2
+

�
Ũn − log

𝜌

𝛽𝜅

��
1

(log n)2

�
Ũn − log

𝜌

𝛽𝜅

�
+

2

log n

�

+
𝜅 − 1

n(log n)2𝛽2

n�
i=1

�
exp(𝛽Ti) exp(𝛽Ti−1)(Ti − Ti−1)

2

(exp(𝛽Ti) − exp(𝛽Ti−1))
2

− 1

�
,

c23(𝜗) = −
1

𝛽
+

2

𝛽 log n
+

1

log n𝛽

�U1n√
n
+ 1

�
−

1

log n𝛽

�
Ũn − log

𝜌

𝛽𝜅

�

−
1

𝛽n log n
+

n�
i=1

�
exp(𝛽Ti−1)

exp(𝛽Ti) − exp(𝛽Ti−1)
𝛽(Ti − Ti−1) − 1

�

= c32(𝜗),

c33(𝜗) = 𝜓 �(𝜅),

Ũn = log
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and

Lemma 4 The random variable Tn is such that

 (i) 
T2
n
exp(�0Tn)

(exp(�0Tn) − 1)2
= oP(1),

 (ii) 
√
nTn

exp(�0Tn) − 1
= oP(1).

Proof 

 (i) We have 

 The first factor of the above expression is OP(1). Using the Taylor series 
expand of exp function, we obtain 

 Now, it is enough to show that 1∕Tn is oP(1). For 𝜀 > 0 , we have 

 Therefore, 
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n
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 and the part (i) of the lemma is proved.
 (ii) We have 

 From (i) the first factor of the above expression is oP(1), the second factor 

 where the last convergence follows from the properties of the IGPL and the 
law of large numbers, and ends proof of (ii).

  ◻

Lemma 5 

 (i) The random variable

converges in distribution to a bivariate normal random variable with mean 
vector zero and covariance matrix 

 (ii) C∗
n
(�0) converges in probability to �∗, as n → ∞.

 (iii) 
[
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n
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n
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]
→ 0 in probability uniformly in � ∈ Mn(�0), as n → ∞.
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 Hence, using Lemmas 3, 4 and expanding log function into Taylor series 
with Lagrange remainder, we obtain 

 An application of Lemma 2 yields that �∗
n
 is asymptotically normal with 

zero mean vector and covariance matrix �∗.
 (ii) We will re-express the elements of C∗

n
(�) as 

 An application of Lemmas 3 and 4 yields that C∗
n
(�0) converges to the non-

singular matrix �∗ in probability.
 (iii) To obtain the results, we will use Markov’s inequality. Hence, we need to show 

that E�0
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ij
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ij
(�0)|) → 0, uniformly in � ∈ Mn(�0) . By Taylor series 

expansion, we have 
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 from which we obtain 

 for � ∈ Mn(�0) . Since 𝛿 > 0 , we have the required uniform convergence 
for E�0

(|c∗
22
(�) − c∗

22
(�0)|). In an analogous way, using multivariate Tay-

lor series expansion one can show that E�0
(|c∗

11
(�) − c∗

11
(�0)|) → 0 and 

E�0
(|c∗

12
(�) − c∗

12
(�0)|) → 0 uniformly in � ∈ Mn(�0).

  ◻

Let � ∈ Mn(�0) , hence � − �0 = n−�(�1, �2)
� and

where � is a point on the line segment joining � and �0.
Denoting �n(�) = (�∗

1n
(�(�)),�∗

2n
(�(�)))� , it follows that

where �∗
n
 and C∗

n
 are given by (23) and (22), respectively.

Define gn(�) = (n1−�)−1(�∗)−1�n(�) . Multiplying both sides of (24) by 
��(n1−�)−1(�∗)−1 , we obtain the relation

where I2 is the 2 × 2 identity matrix. From the fact that 𝛿 <
1

2
 , �∗ = OP(1) by Lemma 

5, and (�∗)−1C∗(�(�)) → I2 in probability by Lemma 5, we have

The above result implies that, for a given 𝜖 > 0 , there exists n0 = n0(�, h) such that 
for n > n0

According to a version of Brouwer’s fixed point theorem (see, e.g., Smith [30], 
Lemma 5), we have gn(𝜏) = 0 for some 𝜏 for which ||𝜏|| < h. Thus, for all n > n0 , 
the probability is at least 1 − � that exists a 𝜏n = (𝜏1n, 𝜏2n) satisfying gn(𝜏n) = 0 and 
||𝜏n|| < h . The corresponding �̂�n = 𝜃0 + n−𝛿(𝜏1n, 𝜏2n) meets the requirements of the 
theorem.   ◻
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Proof of Theorem 3

Assuming that the equation �∗
n
(�) = 0 has a solution �̂�n = (𝛽n, �̂�n)

� in the set 
Mn(�0) , we can expand �∗

n
(�̂�n) around �0 and obtain

where �n is a point on the line segment joining �̂�n and �0.
Then,

where �∗
n
= (Z2n,Z3n)

�, Z2n and Z3n are given by (10) and (11), respectively.
Multiplying both sides of (25) by (�∗)−1 , we have

For � ∈ Mn(�0), the last equality follows from Lemma 5. This implies that �∗
n
 is 

asymptotically normal with zero mean and covariance matrix (�∗)−1. Furthermore, 
using the equality logb(a − c) = logb a + logb(1 −

c

a
), we have

Using the asymptotic normality of U2n and �∗
n
, and the equality

it follows that

Using the delta method, we get the expected dependence.   ◻
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