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Abstract
We consider the active learning problem for a supervised learning model: That is, 
after training a black box model on a given dataset, we determine which (large batch 
of) unlabeled candidates to label in order to improve the model further. We con-
centrate on the large batch case, because this is most aligned with most machine 
learning applications, and because it is more theoretically rich. Our approach blends 
three ideas: (1) We quantify model uncertainty with jackknife-like 50-per cent sub-
samples (“half-samples”). (2) To select which n of C candidates to label, we con-
sider (a rank-(M − 1) estimate of) the associated C × C prediction covariance matrix, 
which has good properties. (3) Our algorithm works only indirectly with this covari-
ance matrix, using a linear-in-C object. We illustrate by fitting a deep neural network 
to about 20 percent of the CIFAR-10 image dataset. The statistical efficiency we 
achieve is 3× random selection.

Keywords  active learning · I-optimal · Jackknife · Deep neural networks · 
Orthogonal arrays · Prediction uncertainty

1  Introduction

In part, machine learning (ML) technology has developed in response to the large data 
volumes of online systems, so-called big data. In parallel, physical laboratories have 
applied automation to scale up the range and scale of their experiments. DNA encoded 
libraries [28] enable in  vitro selection of molecules of interest. Gregoire et  al. [17] 
develop high-throughput experiments in order to discover new materials. Gongara et al. 
[16] apply such methods to additive manufacturing to optimize macroscopic structural 
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properties. Such combinatorial experiments combine two technologies: high-through-
put fabrication and high-throughput measurement.

Such high volumes of experimental data are good candidates for machine learning 
technology. Further, they suggest an iterative experimentation loop: fabricate, measure, 
model, predict, select, validate by fabrication, and measurement. Contemporary deep 
neural network (DNN) technology is readily useful for the modeling and prediction 
steps. Active learning—ML algorithms that can actively query for additional observa-
tions—has potential for the selection and validation steps. And high-throughput fabri-
cation implies that any proposed new data (“selection”) are likely to be fabricated and 
measured in batches of substantial size.

This work considers active learning for such high-throughput experiments. We 
abstract two key properties: batches and continuous measurements. As we do so, we 
implicitly explore the boundary between the statistical theory of experimental design 
and a relatively contemporary ML technology, deep neural networks (DNNs). To this 
end, as we attend to notions of statistical efficiency, we consider primarily objects in the 
prediction—not parameter—domain.

Our key contributions revolve around three interconnected ideas: (1) We represent 
prediction uncertainty by a jackknife-like method called here half-sampling. Even in 
the canonical case where we predict a scalar, this representation of uncertainty is mul-
tivariate. (2) In a principled way, we construct batches of new candidates for labeling. 
This update-without-label property exploits the multivariate representation of uncer-
tainty. Unlike other batch active learning algorithms, which require something ad hoc 
in order to achieve diverse samples, our algorithm, with its multivariate representa-
tion of uncertainty, intrinsically ensures diversity. (3) We quantify the benefit of active 
learning by comparing sample sizes required to achieve the same global precision; this 
is a computational version of relative statistical efficiency. Each of these ideas has roots 
in statistical theory.

By way of introduction, we briefly recap some linear model theory, optimal experi-
mental design, and active learning. In Sect. 2, we discuss model ensembles. This moti-
vates Sect. 3, where we introduce a jackknife-like approach to model uncertainty, inter-
esting in its own right. To quantify the benefit of using model uncertainty, we develop 
an active learning algorithm in Sects. 4 and 5.

As our exposition proceeds, we are aware of two audiences. For statistics research-
ers, please note that two of our efficiency claims, in Sects. 3.5 and 6, are based on simu-
lations. These are perhaps amenable to theoretical analysis, so we anticipate that this 
work may attract further research on this important topic from the statistical commu-
nity. For ML researchers and practitioners, we have included a little more statistical 
background than might otherwise be expected, and for this audience, we have endeav-
ored to make our statistical arguments more accessible, if perhaps less formal.

1.1 � Supervised Training

We have a training dataset S consisting of N i.i.d. data points, 
S = {(xi, yi) ∶ i = 1, 2,… ,N}, where xi ∈ ℝ

D are D-dimensional features. For clas-
sification, yi denotes one of K classes, yi ∈ {1, 2,… ,K} . For regression, yi ∈ ℝ.
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Our development and algorithm emphasize regression; our example (Sect.  6) 
involves classification.

A note on index notation: Observed, that is, labeled data (xi, yi) are typically 
indexed by the letters h and i. Candidates for labeling are known by their features xa 
and are typically indexed by the letters a, b,  and c. Subsets of data are denoted by S,  
with subscripts j, m,  and m′ . We are not aware of any statement in the following that 
depends on these details of notation, but hope this i-vs-a-vs-j convention may assist 
the reader in inferring the author’s implied context. At any rate, in this paper, AL 
algorithms propose a batch {xa, a ∈ SC} , #SC = n , for which the labels {ya, a ∈ SC} 
are then requested.

1.2 � Experimental Design Theory

1.2.1 � Linear Models and Experimental Design

Consider the regression problem and linear models: �{yi} = x⊤
i
� , its matrix form 

�{y} = X� , with uncorrelated errors: �{(yh − x⊤
h
�)(yi − x⊤

i
�)} = 𝜎2𝛿hi where �hi 

is Kronecker’s delta. The ordinary least squares estimate of � is �̂ = (X⊤X)−1X⊤y , 
with covariance matrix ℂ𝕆𝕍{�̂} = 𝜎2(X⊤X)−1.

Experimental design is based on such linear models. The theory underlying, say, 
Box and Hunter [2, 3] and Hunter [4] is that of orthogonal arrays, arrays such that 
X⊤X are diagonal, and for which all of the diagonal elements of (X⊤X)−1 are in some 
sense small.

The algorithm-oriented branch of experimental design theory, optimal design, 
emphasizes the computational problem of making good design matrices X . Optimal 
design can proceed in settings where orthogonal arrays are unavailable.

Optimal experimental design needs to map the design or feature matrix X into a 
scalar, to enable the scoring, ranking, and selection of better designs. Consider the 
error ellipse defined by this equation in � ∶ (�̂ − �)⊤(X⊤X)−1(�̂ − �) = �������� . 
Its (squared) volume is proportional to ���((X⊤X)−1), which is Wald’s (1943) 
D-optimality criterion and is to be minimized.

In the prediction domain, ya is predicted as x⊤
a
�̂ with a squared standard error of 

𝜎2x⊤
a
(X⊤X)−1xa , and ℂ𝕆𝕍{x⊤

a
�̂, x⊤

b
�̂} = 𝜎2x⊤

a
(X⊤X)−1xb follows easily.

G-optimality [22] also acts in the prediction domain; it seeks to minimize 
�������(X(X⊤X)−1X) , while I-optimality [40] minimizes the average prediction 
error. A numerical calculation of I-optimality involves minimizing this criterion:

the summation over some integration grid {xa, a ∈ SG} with #SG elements.
The more standard implementation of I-optimality minimizes instead this crite-

rion, which is free of the numerically enumerated integration grid SG.

∑

a

x⊤
a
(X⊤X)−1xa∕#SG,

∫ x⊤(X⊤X)−1xdx = �����((X⊤X)−1 ∫ xx⊤dx) = �����((X⊤X)−1�), say,
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the integration taking place over a specified experimental domain which is ulti-
mately represented by the constant matrix �. In the following, we implement a ver-
sion of I-optimality that depends on a numerical integration grid like SG.

1.2.2 � Rank‑1 Updates

Optimal experimental design is inherently computationally intensive, and tech-
niques that reduce computational burden are therefore quite attractive. One class 
of such techniques updates the inverse matrix (X⊤X)−1 rather than recalculating 
it from scratch. An example is the rank-1 update of Sherman-Morrison (1949): If 
X1 = (X⊤

0
, x)⊤ , the one-more-row version of X0 , then

An analogous result updates when a row x is deleted:

(Eq. (2) follows from (1) by replacing x with 
√
−1x .) Equation (2) has at least a pair 

of uses: (a) When x = xi , the i-th row in X1 , then Eq. (2), or its second term, can be 
fashioned as a measure of influence for observation xi . (b) There is a class of opti-
mal design algorithms that alternately add and delete rows to matrices like X1 and 
X0 . The canonical exchange algorithm is that of Fedorov [15]. Equations (1) and (2) 
can be applied in tandem to accelerate such algorithms.

Sherman-Morrison is the rank-1 version of Woodbury’s (1950) rank-k result. The 
author is not aware of Woodbury’s update being used for optimal design algorithms, 
but this potential remains.

In the prediction domain, of particular interest are the prediction variances and 
covariances of candidates. An analog to (1) can update prediction variances and 
covariances:

In the case where xa = xb = x, the first term, x⊤(X⊤

0
X0)

−1x , is reduced by the multi-
plier 1∕(1 + x⊤(X⊤

0
X0)

−1x). This makes precise an often-cited intuition about experi-
mental design: prediction variances are most reduced near where the new observa-
tions are added. Further, such updates as (3) work intrinsically to discourage the 
repeated selection of any particular x ; once selected, prediction variances nearby to 
x are reduced, so points further from x represent relatively better opportunities for 
variance reduction.

If we define the covariance function V1[xa, xb] as x⊤
a
(X⊤

1
X1)

−1xb and V0[xa, xb] as 
x⊤
a
(X⊤

0
X0)

−1xb , Eq. (3) can be re-expressed as

(1)
(X⊤

1
X1)

−1 =(X⊤

0
X0 + xx⊤)−1

=(X⊤

0
X0)

−1 − (X⊤

0
X0)

−1xx⊤(X⊤

0
X0)

−1∕(1 + x⊤(X⊤

0
X0)

−1x).

(2)
(X⊤

0
X0)

−1 =(X⊤

1
X1 − xx⊤)−1

=(X⊤

1
X1)

−1 + (X⊤

1
X1)

−1xx⊤(X⊤

1
X1)

−1∕(1 − x⊤(X⊤

1
X1)

−1x).

(3)
x⊤
a
(X⊤

1
X1)

−1xb

= x⊤
a
(X⊤

0
X0)

−1xb − x⊤
a
(X⊤

0
X0)

−1xx⊤(X⊤

0
X0)

−1xb∕(1 + x⊤(X⊤

0
X0)

−1x)



1 3

Journal of Statistical Theory and Practice (2021) 15:66	 Page 5 of 28  66

This remains a rank-1 update, involving the outer product of the column V0[⋅, x] with 
itself. Note the following is the analog to (2):

The utility of updates (4) and (5) derive from four properties: (1) They operate in the 
prediction domain, making them more suitable for deep neural network applications. 
(2) They do not require the label y associated with new observation x . This update-
before-label property helps us select batches of new observations. (3) V0 and V1 can 
be used to quantify useful design criteria, e.g., G-optimality minimizes quantities 
like ���(����(V1)) , while I-optimality minimizes objective functions of the form 
�����(V1). (4) These updates work intrinsically to ensure diversity among selected 
candidates.

We pause to recognize two open issues. (a) V is a C × C matrix. When the num-
ber of candidates C to label is not small, V does not appear scalable. This we address 
in Sect. 5, algorithm 2. (b) We have not specified how to calculate the initial value of 
V . This we address in Sect. 4, which in turn depends importantly on Sect. 3.

1.3 � Active Learning

Active learning (AL) is the machine learning specialty that addresses the problem of 
which additional candidates to label for training. Settles [35] offers a still well-cited 
survey of this field. Lewis and Gale [26] describe the classic sequential algorithm, 
and Seung et al. [36] present what has come to be called the query-by-committee 
algorithm. Cohn et al [10] implement AL for statistical models, while Schohn and 
Cohn [34], Tong and Koller [42], and Tong and Chang [41] interweave AL with 
support vector machines.

For batch labeling problems, Brinker [5] and Xu et  al. [48] build on Tong and 
Koller [42] by explicitly incorporating a diversity measure; Brinker uses a mini-
max correlation, Xu et al a Kullback-Liebler density distance. Working within the 
framework of logistic regression, Hoi et  al [20] consider the parameters’ Hessian 
matrix. Guo and Schuurmans [18] propose the entropy of any proposed batch, work-
ing around the problem of not knowing labels by an “optimistic” heuristic. Zhou 
and Sun [49] extend margin sampling to the batch case; their approach (manifold-
preserving graph reduction, MPGR) uses the distances between feature vectors of 
nearest-neighbor observations.

In the context of language models, Hartford et al. [19] adapt AL algorithms to 
increase observations of rare categories. Oversampling of rare cases is relatively 
robust to diversity issues. Hu et  al. [21] consider small-batch active learning on 
graph neural networks, and in particular on the problem of transferring or borrowing 
knowledge from labeled graphs to unlabeled ones. They seek to label the candidates 
with maximum entropy—most uncertainty—in their predicted labels.

(4)
V1[xa, xb] =V0[xa, xb]

− V0[xa, x]V0[x, xb]∕(1 + V0[x, x]).

(5)
V0[xa, xb] =V1[xa, xb]

+ V1[xa, x]V1[x, xb]∕(1 − V1[x, x]).
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2 � Ensembles

Given input features x , let us consider DNN predictions of y given x from a 
model f (x), say. In particular, we are interested in an ensemble of such neural net-
work models, indexed by m: {fm(⋅) ∶ m = 1, 2,… ,M}.

Ensembles are sets of predictive models. Their predictions are typically aver-
aged together to achieve better results than that of any single ensemble mem-
ber. DNNs can be sensitive to the starting point of its internal coefficients (its 
“weights”); ensembling several such models mitigates this sensitivity. Ensembles 
are naturally trained in parallel, which makes them quite amenable to cloud-based 
approaches to model fitting. For online applications, the extra computations that 
ensembles involve make them rather unattractive; in the present context, sup-
porting experiments performed in physical laboratories, the extra computation 
of ensembles is much less of an issue. Research continues to reduce ensemble 
computation; see Wenzel et  al. [46] and Singh and Jaggi (2020) and references 
therein.

Cross-validation, e.g., Allen [1] and Stone [39], is one popular approach to 
ensemble making: A training set is partitioned into M mutually exclusive folds, 
and model m is trained on the M − 1 folds {1, 2, ...,M} ⧵ {m} , resulting in M dif-
ferent models. Cross-validation solves a particular problem, quantifying the effect 
of fitting and over-fitting by comparing predictions to out-of-sample labels. For 
this reason, cross-validation-based ensembles are rather popular in practice.

Breiman (1996) offers an alternative form of ensemble making, bagging, 
whereby each model is fit to a with-replacement (bootstrap) sample of training 
data. Breiman observes that bagging helps most with unstable models, of which 
DNNs are an example.

Perrone and Cooper (1992) recognize that for neural networks, ensembles 
work better (a) when each individual ensemble member predicts well, and (b) 
when the ensemble members correlate less with one another. The latter has come 
to be called ensemble diversity.

Considerable research goes into increasing ensemble diversity. In addition to 
manipulating training data just alluded to, Dietterich [12] enumerates Bayesian 
voting [31], feature subsets [7], bit-vector encoding target classes [13], and rand-
omized initial values [23].

Building on Liu’s (1998) negative correlation learning, Brown et  al. [6] pro-
pose a term penalizing the systematic agreement of  the predictions of different 
ensemble members. Mariet et  al. [29] propose an analogous term to inhibit the 
correlation among a DNN’s internal coefficients (the so-called weights).

Lakshminarayanan, et  al. (2017) combine neural network ensembles with 
adversarial training to fit a two-output model, one that predicts the prediction 
mean function and prediction variance functions, jointly.

By data structure, ensembles would seem to be useful for estimating a predic-
tion’s uncertainty. Section  2.1 shows this limitations of this idea, while Sect.  3 
constructs a new class of ensembles to estimate uncertainty better.
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2.1 � Minimum Variance Ensemble Weights

Perrone and Cooper (1992) calculate variance-minimizing weights on ensemble 
members, which we briefly recap and slightly expand.

Consider an ensemble of M models, each of which predicts the same quantity, 
i.e., has the same estimand. Let us postulate an M ×M matrix U of the covari-
ances of the predictions among the M ensemble members. We want weights w , 
which sum to one, and minimize the variance of the combined predictions:

This yields the solution w∗ = U−1
1∕1

⊤U−1
1.

When U′ is diagonal, w∗ is proportional to the reciprocals of U ’s diagonal ele-
ments; this recapitulates a well known rule of thumb.

Of course, ensembles constructed by symmetric processes such as bootstrap-
ping and cross-validation do not to benefit from calculating optimal weights, 
since such symmetry implies equal weights. In particular, if Uij = constant for all 
i ≠ j , then the off-diagonal elements of U−1

ij
 also equal a constant. That fact, and 

that the diagonal elements are also constant, together imply the row sums U−1
1 

are constant too.
Note, however, that w∗ sets a lower limit on the variance achievable from reweight-

ing the ensemble with covariance U : 1∕1⊤U−1
1 , one that is quite informative:

A symmetric ensemble’s covariance matrix is proportional to its correla-
tion matrix U𝜌 = (1 − 𝜌)I + 𝜌11

⊤ , where � is the (constant) correlation between 
any pair of ensemble members m,m′. In this case, its inverse is also symmet-
ric: U−1

𝜌
= (I − a11⊤)∕(1 − 𝜌), where a = �∕(�M + 1 − �). This implies that 

1
⊤U−1

𝜌
1 = M∕(𝜌M + 1 − 𝜌), so it follows that the lower bound on the ensemble vari-

ance is

As M → ∞ , the lower bound approaches �, not 0,   so this relationship limits the 
practical benefits of reducing variance by increasing ensemble size.

2.2 � Prediction Correlations for Cross‑Validation and Bagging

Consider M i.i.d. folds fully and equally partitioning the training data. Sup-
pose the estimand is the population average, � , estimated by the overall average 
ȳ =

∑M

m=1
ȳm∕M , the average over all M folds. Consider two cross-validation sam-

ples, ȳ(m) and ȳ(m�) , each based on folds {1, 2,… ,M} ⧵ m and {1, 2,… ,M} ⧵ m� , 
respectively. Then ℂ𝕆ℝ(ȳ(m), ȳ(m�)) = (M − 2)∕(M − 1), for m ≠ m′ . This correla-
tion generalizes to model families amenable to convex optimization, that converge 
to unique solutions, that is, the stable models in the sense of Breiman (1996). (Sec-
tion 3.4.2 also offers an analysis in the framework of stable models.)

A simple approximation allows us to estimate the correlation between two boot-
strap samples. For observations i = 1, 2,… ,N , define two N−vectors of weights 

��������w⊤Uw��������w⊤
1 = 1.

(6)(�M + 1 − �)∕M = � + (1 − �)∕M.
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as i.i.d. draws from the Poisson distribution with mean rate �;� = 1 is the standard 
bootstrap, w1 and w2 , respectively.

So for the standard bootstrap with � = 1, this correlation is 0.5. The 2× bootstrap, 
which uses bootstrap samples of size 2N and � = 2 , the inter-ensemble correlation 
grows to 2/3. Again, this correlation generalizes to model families amenable to con-
vex optimization, i.e., stable models.

Using the value of 0.5, one can observe that an ensemble size of M = 10 achieves 
a variance only 10 percent higher than the lower bound in (6); this reproduces a rule 
of thumb that Breiman (1996) observed empirically: “[M]ost of the improvement 
us[es] only 10 bootstrap replicates. More that 25 bootstrap replicates is love’s labor 
lost.”

2.3 � Zero‑Correlation Ensembles?

Given the lower bound in (6) of �, can ensembles be formed with correlations of 
� = 0 ? Were that achieved, then the squared standard errors gained by ensembles 
becomes proportional to 1/M, the more ensembles the better.

Note that there are two effects here: For an ensemble member m using weights wm 
on observations in S to estimate the prediction function fm(⋅) , then

And,

(8) quantifies the efficiency of ensemble member m—proportional to the amount of 
data, while (9) quantifies ensemble diversity.

So, of course, one can achieve zero correlations, trivially, by defining ensembles 
that have no observations in common. But (8) tells us how such a practice would be 
highly inefficient.

However, when the weights wm ∈ {−1,+1}, rather than {0,+1}, (8) can be mini-
mized and in (9) zero correlations achieved. Such weights are available from two-
level orthogonal arrays.

Orthogonal arrays (OAs) are matrices with a finite set of symbols; two-level 
orthogonal arrays consist of two symbols, {0, 1} or {−1, 1}, say. The defining prop-
erty of an orthogonal array is that for any pair of columns, m,m′ , all combinations of 
symbol pairs occur with equal frequency. For an M-row two-level orthogonal array 
Z encoded with ±1, orthogonality implies that Z⊤Z = MI.

(7)
ℂ𝕆ℝ(w⊤

1
y,w⊤

2
y)

= 𝔼{w⊤

1
w2}∕𝔼{w

⊤

1
w1} = N𝜆2∕N𝜆(1 + 𝜆) = 𝜆∕(1 + 𝜆).

(8)𝕍𝔸ℝ(fm(x)) ∝ 1∕w⊤
m
wm.

(9)

ℂ𝕆ℝ(fm(x), fm� (x))

=
w⊤
m
wm�

(w⊤
m
wm ⋅ w⊤

m�wm� )1∕2
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OA(M) signifies an orthogonal array of M rows; two-level OAs have M − 1 
columns. In this paper, we use only two-leval OAs with M = 2k, k = 4, 5, 6, and 
7. Plackett and Burman (1946) construct many two-level OAs for integer mul-
tiples of 4. Under the term “fractional factorial designs,” OAs are typically the 
concluding topic in an undergraduate class in experimental design for engineers 
(Box, Hunter, and Hunter [4]; Montgomery [30]).

Obviously, applying wm ∈ {−1,+1} requires some interpretation. This is the 
topic of Sect. 3, to which we now turn.

3 � Half‑Samples

3.1 � Signed Weights and Half‑Samples

We interpret the signed weights wm of Sect. 2.3 as follows:
We denote our training data by S,   where S = {(xi, yi), i = 1, 2, ...,N} is com-

prised of i.i.d observations.
Let us denote a model trained on a dataset Sj ⊆ S by f (⋅|Sj).
Consider a given signed weight N-vector w, and assume the sign of w[i] 

assigned at random.
Denote two half-samples S+ = {i ∈ S ∶ w[i] = +1} and 

S− = {i ∈ S} ∶ w[i] = −1} for some signed weight vector w . By construction, 
S+ ∩ S− = � and S+ ∪ S− = S . Without much loss of much generality, we assume 
both S+ and S− have N/2 observations, i.e., #S+ = #S− = N∕2.

Consider the predictions based on models f (⋅|S+) and f (⋅|S−) , and in particular 
consider their half-difference d(x) ≡ (f (x|S+) − f (x|S−))∕2. Because the observa-
tions of S are i.i.d. and S+ and S− are mutually exclusive, ℂ𝕆ℝ{f (x|S+), f (x|S+)} 
= 0. By the symmetry in constructing S+ and S− , which are both random half-
samples of S,𝕍𝔸ℝ{f (x|S+)} = 𝕍𝔸ℝ{f (x|S+)} . Therefore,

The argument for equating the terms 𝕍𝔸ℝ{f (x|S+)} and 𝕍𝔸ℝ{f (x|S−)} to 
𝕍𝔸ℝ{f (x|S)} has three steps: (1) asserts a square-root-N rule:

(2) recalls that #S+ = #S− = #S∕2 , and (3) divides both sides by N = #S.

In the following, d(x)2 is treated as an estimate of 𝕍𝔸ℝ{f (x|S)}—with one 
degree of freedom.

(10)
𝕍𝔸ℝ{d(x)} =

𝕍𝔸ℝ{f (x|S+)}
4

+
𝕍𝔸ℝ{f (x|S−)}

4

=
𝕍𝔸ℝ{f (x|S+)}

2
=

𝕍𝔸ℝ{f (x|S−)}
2

≈ 𝕍𝔸ℝ{f (x|S)}

#S+ × 𝕍𝔸ℝ{f (x|S+)}
= #S− × 𝕍𝔸ℝ{f (x|S−)} ≈ #S × 𝕍𝔸ℝ{f (x|S)},
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3.2 � File Shards

In what follows, we break the training set S into mutually exclusive, exhaustive, equally 
sized, i.i.d. partitions called shards. Our resampling scheme is in terms of these shards.

When implemented in a computer file system, large datasets often consist of multi-
ple physical files, shards. A computationally convenient interpretation of half-sampling 
is that each half-sample uses half the shards. A recognizably natural practice is for the 
number of shards to be M = 2k for some integer k; k = 5 to 12 give shard counts rang-
ing from 32 to 4096. Using a two-level OA ensures that each shard is used in exactly 
half the samples Sj.

For each observation i ∈ S , it is convenient to assign it to a single shard (i), where 
����� ∶{1, 2, … ,N} → {0, 1, … ,M − 1}. Any given half-sample is defined by a set 
H,   where SH = {i ∶ �����(i) ∈ H} , where H ⊂ {0, 1,… ,M − 1} and #H = M∕2, 
exactly half the shards. For observations in approximately random order, a common 
sharding function is �����(i) = (i−1) mod M , which assigns observations to shards as 
most card games deal out cards into players’ hands.

3.3 � Half‑Sampling and the Jackknife

Half-sampling is a particular form of the jackknife of Quenouille [33] and Tukey [43]. 
In our use, half-samples (a) are not exhaustive of all possible half-samples and (b) are 
guided by an orthogonal array. For these—arguably second-order—distinctions, we 
find it appropriate to designate this jackknife-like scheme by its own term, hence half-
sampling. Half-sampling is random to the extent that the initial assignment of observa-
tions (yi, xi) to shards can be considered random.

Half-samples have a minor, if intriguing, property. The variance among random 
half-samples is an unbiased estimate of the variance of estimates based on the whole 
sample.

As above, denote all available observations by S, which has N observa-
tions and denote the j-th half-sample by Sj , which has Nj = N∕2 observa-
tions. Denote the estimand by � = �{T(S)} = �{T(Sj)} . Of primary interest is 
𝕍𝔸ℝ(T(S)) = 𝔼{(T(S) − �)2} . Of course, this cannot be calculated directly because � 
is unknown. However,

When Nj = N∕2 , then �{(T(Sj) − �)2} = 2 × �{(T(S) − �)2} , so

Note that the right hand side of (11) is estimable, and of course, it estimates 
�{(T(S) − �)2} , exactly the squared standard error we want to estimate. This deriva-
tion has a geometric version, presented in Fig.  1a.

�{(T(Sj) − �)2}

= �{(T(Sj) − T(S))2} + �{(T(S) − �)2}.

(11)
�{(T(S) − �)2}

= �{(T(Sj) − T(S))2}.
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Many ML practitioners find Nj > N∕2 of special interest, and, indeed, this case 
is the more traditional use of the jackknife. Consider a random subset Sj ⊂ S , con-
sisting of #Sj = Nj < N observations. Nj now is not necessarily equal to N/2 : 

As before, �{(T(Sj) − �)2} = �{(T(Sj) − T(S))2} + �{(T(S) − �)2} . Now, 
�{(T(Sj) − �)2} = (N∕Nj)�{(T(S) − �)2} , so

The geometric argument for this calculation is presented in Fig.  1(b).
In our applications below, we consistently use half-sampling, so Nj = N∕2 

uniformly.

3.4 � Orthogonal Arrays and Half‑Samples

A two-level orthogonal array such as OA(M) has M − 1 columns. Each col-
umn j of orthogonal array OA, j = 1, 2,… ,M − 1 defines two half-sam-
ples: Sj+ = {i ∶ OA[�����(i), j] = +1} and Sj− = {i ∶ OA[�����(i), j] = −1} . 
These pairs of sets (Sj+, Sj−) and especially the associated models fit to them, 
f (⋅|Sj+), f (⋅|Sj−) we call an ensemble pair. Indeed, as suggested in Sect. 3.1, the 
critical quantity for any such ensemble pair is, for a given feature vector x , their 
half-difference, d(x|j) = (f (x|Sj+) − f (x|Sj−))∕2.

The orthogonality property ensures that these M − 1 columns have approxi-
mately zero correlation, that is, for j ≠ k , �{d(x|j), d(x|k)} ≈ 0.

The case for zero correlation has two elements, the assertion of additive attri-
bution and an heuristic argument in favor of additive attribution. These are the 

�{(T(Sj) − T(S))2} =((N∕Nj) − 1)�{(T(S) − �)2} or

=�{
[
(Nj∕(N − Nj))

1∕2(T(S) − �)
]2
}.

Fig. 1   Geometrical interpretation of the jackknife correction factors, (a) for half-sampling and (b) for the 
more general case of sampling Nj of N 
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respective topics of Sects.  3.4.1 and 3.4.2, which might reasonably be by-passed 
on first reading.

3.4.1 � Additive Attribution and Zero Correlation

Consider two pairs of half-samples, (Sj+, Sj−) and (Sm+, Sm−) , j ≠ m. Additive attri-
bution means that any estimator of interest T(Sj) can be decomposed in to a sum its 
shards’ contributions:

for some function L(s) of shard s. For Sect. 3.1, recall that we are interested in the 
half-differences (T(Sj+) − T(Sj−))∕2:

where �j is the j-th column in the orthogonal array and �j(s) = +1 when s ∈ Sj+ and 
�j(s) = −1 when s ∈ Sj−.

Consider now the covariance of such differences:

The first term factors into 
∑

s1∈S
�j(s1)�{L(s1)} × 

∑
s1∈S

�j(s1)�{L(s1)} . Because 
the shards are randomly assigned their observations, �{L(s)} is constant. Because 
orthogonal arrays are balanced, 

∑
s∈S �j(s) = 

∑
s∈S �m(s) = 0 . As a result, both fac-

tors of this first term are zero.
For the same reason, ℂ𝕆𝕍{L(s1), L(s2)} is constant for s1 ≠ s2 , and 𝕍𝔸ℝ{L(s)} is 

also constant. The second term simplifies as follows:

T(Sj) =
∑

s∈Sj

L(s),

T(Sj+) − T(Sj−)

2
=

1

2

∑

s∈S

L(s)�j(s),

(12)

ℂ𝕆𝕍{(T(Sj+) − T(Sj−), T(Sm+) − T(Sm−)}

=
∑

s1

∑

s2

�j(s1)�m(s2)𝔼{L(s1)L(s2)}

=
∑

s1

∑

s2

�j(s1)�m(s2)
[
𝔼{L(s1)}𝔼{L(s2)} + ℂ𝕆𝕍{L(s1), L(s2)}

]

(13)

∑

s1

∑

s2

�j(s1)�m(s2)ℂ𝕆𝕍{L(s1), L(s2)}

=
∑

s1

∑

s2

�j(s1)�m(s2)[C + �s1,s2 (V − C)]

= C × [
∑

s1

�j(s1)][
∑

s2

�m(s2)]

+ (V − C) ×
∑

s

�j(s)�m(s)
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Because orthogonal arrays are balanced, 
∑

s �j(s) = 0, and the C term becomes 
zero. By defining property of two-level orthogonal arrays, 

∑
�j(s)�m(s) = 0 , so the 

(V − C) term is also zero.

3.4.2 � Heuristic for Additive Attribution

In this section, we make the case for additive attribution. Our development uses 
linear approximations reminiscent of maximum likelihood theory, and implicitly 
assumes that small changes in the underlying data induce approximately linear 
changes.

Our heuristic assumes we can uniquely fit a model by maximizing an objective 
function LS(�) with respect to parameters � . Further, we assume LS(⋅) is a sum over 
i.i.d. shards indexed by t: LS(�) =

∑
t Lt(�) . For dataset S, define �S as the solution 

to this equation in �:

Now let us consider the dataset S without exactly one shard, S ⧵ u , denoted more 
compactly as −u with solution �−u such that ∇L−u(�−u) = 0.

Because −u is only a small perturbation of S, our heuristic assumes we can 
approximate �−u linearly:

The second line recognizes that LS = L−u + Lu , the latter term specific to shard u. 
The third line notes that �−u solves the equation ∇L−u(�−u) = 0 . The fourth line 
asserts that the hessian ∇LS∇

⊤ evaluated at �−u can be approximated by evaluating 
it at �S . The fifth line approximates the u-shard-specific gradient ∇Lu(⋅) evaluated 
at �−u with one evaluated nearby at �S. The last line merely shifts notation from 
+∇LS(�S)∇

⊤ to −HS.
Expressions (15) suggests this approximation:

Note that HS is the sum over all shards, so HS is rather big—at least compared 
to ∇Lu(⋅), which is based on only one shard. For this reason, approximation (16) 
approximates �−u by only a small shift from �S.

Now consider a generic estimator T based on parameters �−u . By approximation 
(16),

(14)∇�LS(�S) =
∑

t∈S

∇�Lt(�S) = 0.

(15)

0 =∇LS(�S) ≈ ∇LS(�−u) + ∇LS(�−u)∇
⊤(�)(�−u − �S)

=∇L−u(�−u) + ∇Lu(�−u) + ∇LS(�−u)∇
⊤(�−u − �S)

=0 + ∇Lu(�−u) + ∇LS(�−u)∇
⊤(�−u − �S)

≈∇Lu(�−u) + ∇LS(�S)∇
⊤(�−u − �S)

≈∇Lu(�S) + ∇LS(�S)∇
⊤(�−u − �S)

=∇Lu(�S) −HS(�−u − �S), say.

(16)�−u ≈ �S +H−1
S
∇Lu(�S).
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If we sum the latter expression over all shards u ∈ S , the right hand side sums to 
zero, because 

∑
u∈S ∇Lu(�S) = ∇LS(�S) = 0, and the operator ∇𝛽T(�S)

⊤H−1
S

 does 
not depend on u. This implies that 

∑
u

�
T(�−u) − T(�S)

�
≈ 0 , and, on rearranging 

terms,

where M is the number of shards. Approximation (17) motivates the linear attribu-
tion of the quantity T(�S) to the u-shard-specific quantities

Equation (12) assumes attributions have a constant correlation. Note that for shards 
t ≠ u,ℂ𝕆𝕍{∇Lt(�),∇Lu(�)} = 0, while the constraint 

∑
t ∇Lt(�S) = 0 implies 

ℂ𝕆𝕍{∇Lt(�S),∇Lu(�S)} is slightly negative, corresponding to correlations of 
about −1∕(M − 1), so ever smaller as the number of shards increases.

3.4.3 � Recap

Sections 3.4.1 and 3.4.2 help motivate how half-differences guided by orthogonal 
arrays might plausibly achieve nearly zero correlation. Their common framework 
assumes that the equation ∇LS(�) = 0 yields a unique � solution. Of course, this 
assumption is in substantial tension with our primary application of interest, deep 
neural networks, which are quite sensitive to their initial � starting point.

This same tension shapes the implementation of half-sampling for DNNs: 
All half-samples are given the same initial starting point, those to which the full 
training set S has converged. Computationally, this can be accomplished through 
checkpoints. Checkpoints consist of recording parameter states before an algo-
rithm has converged. Usually recorded as insurance against computer crashes, 
checkpoints allow restarting a computation from an intermediate state rather than 
at the beginning. In our applications, we use checkpoints to reduce the sensitivity 
to the initial values of parameters, which are often initialized by pseudo-random 
values, giving them instead the parameters to which the fully trained model has 
converged, �S . Half-samples thereby move away from �S as a result of (randomly) 
subsetting the underlying training data and not from the more arbitrary mecha-
nisms of resetting the initial starting point.

To conclude, Sect. 3.1, for each j, d(x|j), j = 1, 2,… ,M − 1 gives a one degree-
of-freedom estimate of 𝕍𝔸ℝ{f (x|S)} . For this reason,

(17)

T(�−u) ≈ T(�S +H−1
S
∇Lu(�S))

≈ T(�S) + ∇𝛽T(�S)
⊤H−1

S
∇Lu(�S) or

T(�−u) − T(�S) ≈ ∇𝛽T(�S)
⊤H−1

S
∇Lu(�S).

(18)T(�S) ≈
1

M

∑

u

T(�−u),

∇𝛽T(�S)
⊤H−1

S
∇Lu(�S).
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so the mean square term in the left hand side of (19) estimates the uncertainty of 
f (x|S) and does so with M − 1 degrees of freedom. (The half-normal plots of Daniel 
[11] depend on similar contrasts and a similar relationship.) The result (19) gives an 
interesting estimate of model uncertainty in its own right. Our basic plan is to apply 
Eqs. (19) and (4) to achieve a batch-based active learning algorithm.

The next Sect. (3.5) is a slight detour from this effort, an attempt to quantify the 
benefit of implementing half-sampling by orthogonal arrays rather than by random 
selection.

3.5 � Orthogonal Arrays and Efficiency

Intuitively, the careful balancing among shards achieved by orthogonal arrays should 
be somehow better than half-sampling by random selection. Here, by simulation, we 
assess the magnitude of this benefit by simulation. We construct orthogonal arrays 
of size m = 2k, k ∈ {4, 5, 6, 7, 8}, which we assess for p ∈ {0, 1, 2, 4, 8} boolean fea-
tures. The results are presented in Fig.  2. Note that the largest p considered is 8, 
while the smallest m is 16; this boundary is chosen to reduce the probability of ran-
dom half-samples becoming fatally collinear to something manageably small and 
ignorable.

For 80,000 simulations, Fig. 2 plots the relative statistical efficiencies of orthogo-
nal arrays versus random half-sampling. The quantity estimated is the average pre-
diction variance of a linear model at the q = (1, 1,… , 0)-corner, where ���(qi) = p. 
Figure 2 plots ratio of two prediction variances, the numerator is the median pre-
diction variance from random halves, and the denominator is that estimated from 
orthogonal array-based halves. The group labeled p = 1 + 0 corresponds to an inter-
cept and no two-level features, p = 1 + 1 to an intercept and one two-level feature, 
and so on. (The median prediction variance is chosen to mitigate the problem of 
right-tailed outliers among the random half-samples.)

Note that when p/n is small, the benefit of orthogonal arrays is small 
also. When p/n is larger, by eye one can see the relative efficiency become 
roughly 1 + p∕n . Plotted by a red “|” symbol, a curve-fitting exercise empiri-
cally suggests the relative statistical efficiency can be usefully approximated as 
(n − 1)∕(n − 1 − p) =

∑∞

k=0
[p∕(n − 1)]k . According to the uppermost right point 

pair, this appears to underestimate the relative efficiency gain for the highest p/n, 
where it approaches a relative efficiency of 2× . Note that, in practice, DNNs often fit 
models in this range, with relatively high p-to-n ratios, that is, relatively high ratios 
of parameter count to observation count. For this reason, the gain in efficiency using 
orthogonal arrays would seem especially useful for a parameter-rich model.

The results reported in this section seem amenable to theoretical analysis, and we 
encourage further research into quantifying more precisely the benefit of using OAs 
for half-sampling.

(19)𝔼

{
M−1∑

j=1

d(x|j)2∕(M − 1)

}
≈ 𝕍𝔸ℝ{f (x|S)}
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4 � Considerations for Active Learning Algorithms

In this section, we describe broadly our approach to batch active learning. In Sect. 5, 
we become more precise in specifying our algorithm. Section 6 works out an exam-
ple and calculates some relative statistical efficiencies.

Suppose we have C candidates for labeling; this is an external and prescribed data 
structure, known by their features {xc, c ∈ C0} . Values of C = #C0 ≈ 106–107 are 
common enough. We want to determine which subset of size n, n ≪ C, might best 
improve model prediction error, or best improve model prediction error and some-
thing else, a yield or other measure of economic consequence.

Our approach combines three ideas.

Fig. 2   The simulated relative efficiency of orthogonal arrays relative to random half-sampling. Blue dia-
monds plot the simulation-estimated RE50 (median relative efficiency), the symbol | plots the heuristic 
approximation (n − 1)∕(n − 1 − p)
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Idea#1 Suppose we have the C × C prediction covariance matrix V . For any can-
didate c, we can update V by Eq. (4) to Vc , say. We choose that candidate that mini-
mizes �����(Vc) . As we accept (greedily) a candidate c, by Eq. (4) we update V.

Idea#2 Before any candidate selection can proceed, we need an ini-
tial estimate of V,V0 , say. We form the following C × (M − 1) matrix � : 
�[c, j] = d(xc|j), j = 1, 2,… ,M − 1 . ��⊤

∕(M − 1) estimates V with M − 1 degrees 
of freedom. (Note that, in spite of being motivated by Eqs. (6)–(8), this estimate V0 
involves no matrix inversion.)

Idea#3 For even moderate C,   V has on the order of C2 elements, awkwardly 
large. However, by idea#2, V is of rank M − 1, and we are able to select from and 
update � directly with operations on the C × (M − 1) matrix instead.

4.1 � Idea#1: The Prediction Covariance Matrix

Consider two candidates a ≠ b ∈ C0 , with feature vectors xa and xb , respectively, 
and unobserved labels ya and yb.

We have a model f (⋅|S) that predicts f (xa|S) and f (xb|S) , respectively. Let us 
suppose we can estimate V[a, b] = ℂ𝕆𝕍{f (xa|S), f (xb|S)|xa, xb, S} . When xa = xb , 
V[a, b] = V[a, a] and is merely the squared standard error of prediction ŷ(xa) . It 
is obvious, in a way approaching tautological, that V[a, b] → V[a, a] as xb → xa . 
In this way, V captures a sense in which observing xa might make observing xb 
unnecessary. This issue we call the problem of near duplicates: When xb ≈ xa , 
V[a, a] ≈ V[b, b] ≈ V[a, b] and ℂ𝕆ℝ(ŷ(xa), ŷ(xb)) → 1 , and there is not much incre-
mental improvement in uncertainty from observing both a and b beyond that from 
just observing one of a or b.

By Sherman-Morrison update in Eq.  (4), we can reflect the consequence of 
including c as

We now make three observations regarding V:
(1) First, various optimal design criteria are functions of V . In particular, its larg-

est diagonal element, ���(����(V)) , corresponds to the G-optimal criterion. In sim-
ilar vein, ���(����(V)) gives the I-optimal criterion, �����(V)∕C.

(2) V is a precision matrix, and if we newly observe xc , we can again update V by 
the Sherman-Morrison (1949) rank-1 update (and Eq. (4)):

The (scalar) decrement from �����(Vk) is given by

This decrement has two components: (a) The scalar Vk[c, c]
2∕(1 + Vk[c, c]) 

is the influence of candidate c on its own prediction, classical leverage. (b) ∑
d≠c Vk[d, c]

2∕(1 + Vk[c, c]) is the influence of including candidate c upon the 
mean squared prediction error of all the other candidates. When (a) dominates, 

V1 = V0 − V0[, c]V0[, c]
⊤∕(1 + V0[c, c]).

Vk+1 ← Vk − Vk[, c]Vk[, c]
⊤∕(1 + Vk[c, c])

�����(Vk+1) − �����(Vk) = −Vk[, c]
⊤Vk[, c]∕(1 + Vk[c, c]).
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the I-optimal criterion prescribes labeling the most uncertain candidates (“direct 
observation”). When (b) dominates, the I-optimal criterion prioritizes those can-
didates whose predictions are more thickly correlated with many other candidates 
(“interpolation”).

(3) Note that this Sherman-Morrison update can be calculated without actually 
needing to observe y(xc) (“update before label”). This update-before-label property 
makes V attractive for designing supplemental batches, because we can reflect the 
impact of including xc without observing its associated label/response until later.

By these three properties, V emerges as a principled object for constructing sup-
plemental batches.

(Of course, for batches of size 1, one can and should update models to reflect 
the newly observed label. We strictly limit our proposal to active learning contexts 
where the batch size is intrinsically bigger than 1 by the nature of the laboratory 
setup.)

The case against using V is computational: as a C × C matrix, which we mitigate 
by idea#3. Viswanathan et al [44] likewise manage and manipulate a C × C preci-
sion matrix, in their case by using sparse matrix representations; their approach is a 
qualitatively different from that presented here.

4.2 � Idea#2: Contrast Matrix 1

For any given column of an orthogonal array, we have two half-samples, Sj+ and Sj− , 
so we fit two predictive models, f (x|Sj+) and f (x|Sj−) . A natural common estimate 
is their average,

Further, their (signed) half-difference,

estimates in some sense the sensitivity of this estimate to perturbing data. In particu-
lar, |Δ[x, j]| estimates—with one degree of freedom—the standard error of f (x|S) ≈ 
the standard error of (f (x|Sj+) + f (x|Sj−))∕2.

For a typical candidate c with features xc , we have the M − 1 half-sample con-
trasts Δ[xc, j], j = 1, 2,… ,M − 1 , one for each column in the orthogonal array. The 
C × (M − 1) matrix � has four properties: 

1.	 It estimates (approximately) 𝕍𝔸ℝ{f (x|S)} : 

2.	 As a modest extension, ��
⊤
∕(M − 1) estimates V.

3.	 For each j, each value Δ[x, j] makes use of all the data in S.
4.	 For two different half-samples, j ≠ k,ℂ𝕆ℝ(Δ[x, j],Δ[x, k]) ≈ 0.

[
f
(
x|Sj+

)
+ f

(
x
(
x|Sj−

))]/
2

Δ[x, j] = [f (x|Sj+) − f (x|Sj−)]∕2,

𝔼

{
M−1∑

j

Δ2[x, j]∕(M − 1)

}
≈ 𝕍𝔸ℝ{f (x|S)}.
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Properties 1 and 2 give us an estimate of the important prediction covariance matrix 
V. Properties 3 and 4 suggest this estimate has high statistical efficiency, as is typical 
when using two-level orthogonal arrays.

4.3 � Idea#3: Updating 1 not V

Our initial prediction covariance matrix V = ��
⊤
∕(M − 1) . Were we to include can-

didate c, the updated matrix would be Vc ← V − V[, c]V[, c]⊤∕(1 + V[c, c]) . In this 
section, we work out that (M − 1) × (M − 1) matrix Hc such that �c = �Hc is such 
that �c�

⊤

c
∕(M − 1) = Vc . With such a matrix Hc in hand, we can form algorithms 

that operate on C × (M − 1) matrices like � — linear in the number of candidates C 
— rather than C × C matrices like V , which are quadratic in C.

It is convenient to shift notation: Let us define �0 = �∕
√
M − 1 , so now 

V = �0�
⊤

0
 . Denote by the column vector �c equal the c-th row of �0; for-

mally, �c = �0[c, ]
⊤. A consequence of this notation is that V[c, c] = �⊤

c
�c and 

�0�c = V[, c] = V[c, ]⊤.
Consider the (M − 1) × (M − 1) matrix Hc = I − 𝜆�c�

⊤

c
 , where � is to 

be determined below. The key property we seek is for �0HcH
⊤

c
�
⊤

0
 to equal 

V − V[c, ]V[c, ]⊤∕(1 + V[c, c]) , and we choose � to make it so.
Consider the following as an equation in the scalar �:

from which we can conclude this quadratic equation in the scalar �,

which yields the solutions

The matrix Hc = I − 𝜆�c�
⊤

c
= I − (1 −

√
1∕(1 + V[c, c]))�c�

⊤

c
∕‖�c‖2, recalling that 

V[c, c] = �⊤
c
�c = ‖�c‖2 . If we compare Hc to I − �c�

⊤

c
∕‖�c‖2 , the latter is a pro-

jection matrix with exactly one zero eigenvalue, that associated with �c∕‖�c‖ . In 
contrast, Hc does not fully zero out the eigenvalue associated with the unit vector 
�c∕‖�c‖, but Hc does move to reduce its associated eigenvalue away from 1 and 
toward 0.

We close this section with one more observation. The I-optimal crite-
rion can be defined operationally by �����{V − V[c, ]V[c, ]⊤∕(1 + V[c, c])} 

(20)
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c
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⊤
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⊤

0
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⊤
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⊤
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�
⊤

0

= �0�
⊤

0
− (2𝜆 − 𝜆2V[c, c])�0�c�

⊤

c
�
⊤

0

= V − (2𝜆 − 𝜆2V[c, c])V[c, ]V[, c],

(21)−1∕(1 + V[c, c]) = −2� + �2V[c, c],

(22)� =
1 ±

√
1∕(1 + V[c, c])

V[c, c]
.
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= �����{�0HcH
⊤

c
�
⊤

0
} . With operators like Hc available, the (H,�)-form of this 

same quantity is �����{�
�
H

�
H⊤

�
�
⊤

�
} = �����{H

�
H⊤

�
�
⊤

�
�
�
} , where both HcH

⊤

c
 

and �⊤

0
�0 are (M − 1) × (M − 1) matrices. In this way, the (H,�)—representation 

enables us to avoid calculating C × C objects.

5 � Algorithms

Let us now assemble ideas #1, #2, and #3 into working algorithms. For clarity, 
we define algorithm  1, which uses ideas #1 and #2, then add in idea #3 to form 
algorithm 2.

For a criterion, we use that of I-optimality, which works to minimize �����{V} . 
In principle, one could apply instead G-optimality, which minimizes ���(����{V}) . 
However, G-optimality has performed too poorly empirically to include in this 
investigation. Further, for our applications, the boundaries of protein, molecule, and 
alloy space are not well defined, and G-optimality is a poor match conceptually.

The algorithms we present are greedy algorithms. This is because of the rather 
large number C of candidates we screen. In principle, one could implement exchange 
algorithms instead, alternately adding and deleting candidates, but we have not 
explored such an implementation yet.

Algorithm 1 assumes we can calculate and hold in memory the C × C matrix V in 
memory based on the half-sample C × (M − 1) matrix � . It then proceeds to include 
one-by-one candidates (“greedily”) until the batch quota is filled.

Algorithm  2 incorporates idea #3, so maintains the C × (M − 1) matrix � and 
(M − 1) × (M − 1) matrix H.
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Algorithm 2 makes use of an (M − 1) × (M − 1) matrix H :    Note that one can 
form from new candidates another �-matrix, �(1) , say, and re-enter algorithm 2 by 
initializing C ← C , H ← H , and �0 ← �

(1)H∕(M − 1)1∕2 . This enables the construc-
tion of a series of supplemental batches, each of which presents its own list of candi-
dates. Matrix H therefore records the variance-reducing effect of including the pre-
viously selected candidates C.

6 � Example

For DNNs, it may be fairly said that the ideas#1 and #2 that underlie algorithms 1 
and 2 are mere heuristics, extrapolated from a linear context to a nonlinear one. In 
this section, we work out an example using a particular neural network, and see what 
can be achieved in practice.

For an example, we consider the CIFAR-10 dataset [24], which consists of 
32 × 32 pixel color images. Our model follows the vignette of Chollet, et al [9] for 
convolutional neural networks and this data: four 2-dimensional convolutional lay-
ers and two subsequent layers. The ground truths for the image labels are repre-
sented by 10-tuples of mutually exclusive booleans coded in alphabetic order: The 
category airplane is represented by (1, 0, 0, 0, 0, 0, 0, 0, 0, 0), the category truck by 
(0, 0, 0, 0, 0, 0, 0, 0, 0, 1), and so on.

For training, we use the first 12, 288(= 96 × 128) images, and for candidates the 
second 12,288 images of the 50,000-image training set. For a test set, we use the 
standard 10, 000 CIFAR-10 test set.

By the considerations of appendix A, we use the orthogonal arrays OA(128), 
OA(64), OA(32), and OA(16), corresponding to b = 3, 2.5, 2 , and 1.5 bits relative 
precision, respectively. Following Chollet (2017), we fit an initial keras model 
using 64 iterations (“UpdateEpochs=64”) using all 128 shards; this model 
f (⋅|S) defines the warm start for all subsequent half-sample models f (⋅|Sj+) and 
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f (⋅|Sj−), j = 1, 2, ..., 127 . Each half-sample model is fit with an 24 additional itera-
tions ((“UpdateEpochs=24”)). The result is for each of the 12,288 candidates, 
the 127 contrasts for each of the 10 categories, that is, 10 � matrices. Using algo-
rithm 2, we identify C = 768 without-replacement samples, maintaining records for 
each of the 10 � and H matrices, one pair for each of the CIFAR-10 classes.

For OA(16), OA(32),  and OA(64), algorithm 2 takes, respectively, 9, 19, and 48 
seconds, respectively, per sample. For OA(128),   algorithm  2 takes 7 minutes per 
sample.

For comparison, we compute two reference models, updating with no new 
data and with all C = 12, 288 candidates, both using 24 iterations (“Update 
Epochs=24”). In addition, we take 512 random without-replacement samples of 
sizes 768, 2 × 768 = 1536, and 3 × 768 = 2304 , additional cases, respectively. These 
latter are essentially simulations of 512 different random case selections. Each ran-
dom 2× sample extends a 1× sample, likewise each 3× sample extends a 2× sample.

We evaluate average prediction variance on the 10, 000 images in the CIFAR-10 
test data. Of course, random selection of candidates imposes random distributions 
on any resulting prediction variance on the test data. Figure 3 presents the cumu-
lative distribution functions (and averages) of the prediction variances for random 
selections of n = 768, n = 1536, and n = 2304, 1×, 2×, and 3×, , respectively. 87 per-
cent of the time, algorithm 2 using OA(64) outperforms a similar amount of random 
data (labeled “random 1 × (n = 768)”).

We also measure how far from “no new” data to “all C candidates.” Presented in 
Table 1 as the rightmost column, it is the percentage as quantified by the “ave var” 
column (and x-axis in Fig. 3). Algorithm 2 moves the average prediction variance 
for OA(32) and OA(64) 38.8 and 42.4 percent of the way toward using 12,288 can-
didates, respectively, while 1× random sampling moves only 30 percent, 2× random 
sampling 36 percent, OA(16) 35 percent, and 3× random sampling 42 percent.

These results indicate that on average, algorithm 2 using OA(64) performs equiva-
lent to three times as much data selected at random (labeled “random 3 × (n = 2304)

”). The relative efficiency of half-sampling with OA(32) is between 2 and 3× . So 
larger ensembles buy some efficiency, but with decreasing marginal rates of return. 
Based on Table 1, it becomes quite difficult to recommend OA(128) over OA(64).

Note that the model employed by this example, a convolutional neural network, 
is quite non-linear, yet we achieve substantial gain from algorithm 2. This should be 
reassuring: Idea#1 in algorithms 1 and 2, which is motivated by linear model theory, 
seems to work effectively in this nonlinear context.

7 � Summary

The problem we consider is that of supplementing training data for a machine learn-
ing model.

For our purposes, there is a pre-existing model, of a modern ML type, a deep neu-
ral network, say, fit using a current dataset, so there is some ability to make model 
predictions. For candidate c drawn from C potential candidates, we have available 
the associated feature vector xc but not the associated label/response yc . Consistent 
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Fig. 3   Simulations indicating half-sampling’s relative efficiency. X-axis is the smaller-is-better average 
variance in predicting the test set. Plotted are three CDFs and six scalar values. The CDFs consist of 512 
without-replacement random case selections. Scalar values: variance achieved by (left to right) including 
all n = 12, 288 available candidates; for half-sampling using OA(128), OA(64), OA(32), and OA(16), all 
with n = 768 , respectively. And by including no additional data ( n = 0 ). CDFs (left to right): dark red, 
from including n = 2304 additional random candidates (without replacement); red, n = 1536 additional 
random candidates; orange, n = 768 additional random candidates. Vertical dashed lines denote the aver-
age values of the respective CDFs

Table 1   Comparisons of average 
prediction variances (“ave 
var”) of 9 sampling schemes. 
The number of candidates 
C = 12, 288 . The sizes of 
the samples is n,  varying 
from 768 to 3 × 768 = 2304. 
The rightmost column, 
100 × (0.0498 − ave var)

∕(0.0498 − 0.0393) , is the 
percentage movement toward 
using all C candidates that each 
sampling scheme achieves

sampling n n/C ave var % reduction

no new 0 0 0.0498 0.0
random 1× 768 0.0625 0.0467 29.8
half-sampling OA(  16) 768 0.0625 0.0462 34.6
random 2× 1536 0.1250 0.0460 36.1
half-sampling OA(  32) 768 0.0625 0.0457 38.8
random 3× 2304 0.1875 0.0454 41.7
half-sampling OA(  64) 768 0.0625 0.0454 42.4
half-sampling OA(128) 768 0.0625 0.0452 44.2
all C candidates 12,288 1.0000 0.0393 100.0
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with many big data applications, any data supplement likely needs to consist of a 
batch of substantial size, drawn from an even larger set of potential candidates.

Common also with many ML models, we balance statistical considerations with 
those of computational feasibility, both in terms of computing complexity and data 
object size.

In general, we pursue a paradigm of multivariate model uncertainty, recognizing 
early that merely adding error bars to our model predictions is insufficient. This is 
because of the near-duplicates problem: Two cases close together in feature space 
may share about the same prediction and the same, larger error bars. If we observe 
only one of them, we may gain enough information about the other that observing 
both becomes wasteful. This redundancy can be detected, for instance, were we to 
have available the prediction covariance matrix; this would signal near-duplicates by 
the high correlation between the two candidates’ predictions.

Our approach is built on three ideas. The first consists in recognizing the theoreti-
cal centrality of the C × C prediction covariance matrix V . V is a precision matrix, 
and quite suitable for this batch supplement problem, even for, especially for, mod-
ern ML models such as deep neural networks, for four reasons: (1) I-optimality: 
Consistent with such semi-parametric models, V is defined in the prediction domain. 
(2) Update before label: V does not require observing the label/response yc in order 
to be updated by the prospect of including candidate c, with features xc , in the sup-
plement. (3) Training case influence: When constructed from a training set, V can 
be used to quantify for each observation the impact on overall model fit. (4) Theory 
generalization: The underlying theory for V is comfortably compatible with linear 
model theory and classical experimental design ideas.

The statistically efficient estimation of V defines the second idea for our approach, 
called here half-sampling. Half-sampling strongly resembles a fifty-percent jack-
knife. This work focuses on deep neural networks; contemporary DNNs approach 
interpolators/memorizers to such an extent that without-replacement sampling 
seems preferable to with-replacement bootstrap resampling. As presented here, half-
sampling depends on defining mutually exclusive, equally sized data shards, and the 
careful balancing properties of a two-level orthogonal array. (Note that when shards 
correspond to physical computer files, half-sampling reduces file reads by half.) 
The use of the orthogonal array buys something substantial: relative efficiencies 
approaching 2× when the ratio of parameter count to sample size becomes large—
exactly the case inhabited by many applications of deep neural networks. Also, note 
that half-sampling admits highly parallel model fitting. Thus, half-sampling adapts 
to ML-type models four ways: without-replacement sampling, file sharding, orthog-
onal-array-based sample balancing, and parallel computing.

Our third idea recognizes that the C × C matrix V is, for C even moderately sized, 
awkwardly large. We therefore reformulate our algorithm 1 into algorithm 2, which 
operates on the linear-in-C matrix �.

The resulting matrix of prediction contrasts � inherits the well-known statistical 
efficiency properties of two-level orthogonal arrays: (1) For every candidate, each 
half-sample contrast uses all the training data. (2) The (signed) weights on each 
shard are equal in absolute value. (3) Between any two half-samples, the weights are 
uncorrelated. In this sense, the construction of � has high statistical efficiency and 
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estimates V = ��
⊤
∕(M − 1) with M − 1 degrees of freedom. Balancing between 

computational burden and efficiency gain, we recommend around M = 64, that is, 
OA(64),  which gives 63 degrees of freedom for estimating prediction covariances.

Our main result is that statistically efficient estimates of error buy something: for 
the problem of supplementing training data, half-sampling and algorithm 2 combine 
to give three times “(3× )” the statistical efficiency of random without-replacement 
case selection. So for each case proposed by half-sampling and algorithm  2, the 
reduction in average prediction variance is on average about the same as selecting 3 
random cases, 50 percent beyond the 2× rule of thumb associated with active learn-
ing performance. To our knowledge, this is the first of the use of the concept of rela-
tive statistical efficiency for assessing active learning algorithms.

We give due diligence to computational issues: (1) Fitting by half-sampling can 
be accelerated by warm starts, reduced file reads, and parallel computation. (2) By 
using algorithm 2, we can avoid direct calculation of the C × C prediction covari-
ance matrix V . Instead, we maintain a C × (M − 1) matrix, essentially a data table 
with M − 1 features for C candidates. (3) We quantify the precision-computation 
trade-offs in the appendix A and Sect. 6.

The present work is limited in several directions: (a) Our framework is developed 
by analogy with linear models and continuous responses (continuous labels, a.k.a. 
“regression”). In contrast, much of ML involves categorical labels. (b) Further, our 
efficiency claim is worked out only for one dataset, CIFAR-10. This places this work 
in substantial tension with much of ML literature, which favor extensive empiri-
cal exercises over common task frameworks [14]. (c) Our proposed algorithms are 
“greedy”, and the benefit of non-greedy, exchange-type algorithms has not yet been 
explored. (d) Finally, each of our particular claims, orthogonal arrays to implement 
half-sampling, the efficiency gains from Sherman-Morrison batch construction, even 
the number of shards M to implement half-sampling, although theoretically moti-
vated, each is fundamentally an empirical or simulation result. For these reasons, we 
find it appropriate to invite further study, empirical and theoretical, in other experi-
mental settings, for other model families, and with additional datasets.

A Sample Sizes for Variances

For histograms, one rule of thumb for recommended sample size is n = 30 . The 
detailed rationale for this is as follows: (a) The proxy for the precision of a histo-
gram is the precision of its spread, e.g., its standard deviation. (b) Based on Gauss-
ian theory, the delta method, and the chi-square distribution with � degrees of free-
dom, an approximate 1 − � percent confidence interval for a standard deviation s 
is s(1 + z�∕2∕

√
2�)±1 . Since the standard Gaussian deviate z�∕2 = 1.96 ≈ 2 for 95 

percent confidence intervals, this expression can be usefully approximated by 
s(1 + 2∕

√
2�)±1 , Note that the second term, t = 2∕

√
2� , gives the relative precision. 

Suppose we replace t with 2b and � with 2h . b now denotes the relative precision and 
h gives the degrees of freedom/sample size, both in bits. It follows that we achieve b 
bits relative precision when ���2(�) = h = 2b + 1.

Examples: 
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(b = 2)	� When b = 2 , relative precision of two bits, (1 + 1∕4)±1 , one needs h = 5, 
hence a sample size of n ≈ � = 25 = 32.

(b = 3)	� When b = 3 , three bits, h = 7 and the associated sample size is 
n ≈ � = 27 = 128.

(b = 4)	� b = 4 gives 512.

 Each incremental bit of relative precision increases sample size requirements by 4×, 
a manifestation of the familiar square root rule for confidence intervals.

In Sect. 6, the recommended OA(64) gives 2.5 bits relative precision, about one 
part in six.
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