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Abstract
Parametric modelling of physical phenomena has received a great deal of attention 
in the signal processing literature. Different models like ARMA models, sinusoi-
dal models, harmonic models, models with amplitude modulation, models with fre-
quency modulation and their different versions and combinations have been used to 
describe natural and synthetic signals in a wide range of applications. Two of the 
classical models that were considered by Professor C. R. Rao were one-dimensional 
superimposed exponential model and two-dimensional superimposed exponential 
model. In this paper, we consider parameter estimation of a newly introduced but 
related model, called a chirp-like model. This model was devised as an alternative to 
the more popular chirp model. A chirp-like model overcomes the problem of com-
putational difficulty involved in fitting a chirp model to data to a large extent and at 
the same time provides visually indistinguishable results. We search the peaks of a 
periodogram-type function to estimate the frequencies and chirp rates of a chirp-
like model. The obtained estimators are called approximate least squares estimators 
(ALSEs). We also put forward a sequential algorithm for the parameter estimation 
problem which reduces the computational load of finding the ALSEs significantly. 
Large-sample properties of the proposed estimators are investigated and the results 
indicate strong consistency and asymptotic normality of the ALSEs as well as the 
sequential ALSEs. The performance of the estimators is analysed in an extensive 
manner both on synthetic as well as real world signals and the results indicate that 
the proposed methods of estimation provide reasonably accurate estimates of fre-
quencies and frequency rates.
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1 Introduction

The most conventional way of modelling a periodic signal is using a sinusoidal 
model. A generic form of this model is expressed mathematically as follows:

Here, y(t) represents the observed signal at discrete time points 1,… ,N , p is the 
number of sinusoids present in the model, A0

j
 s and B0

j
 s are the amplitudes and �0

j
 s 

are the frequencies of the signal. The non-sinusoidal part of the signal X(t) accounts 
for the noise present in the signal. An entire body of scientific literature has been 
developed to describe signals exhibiting periodic behaviour in different areas of sci-
ence and engineering such as audio and speech processing, seismology, electrocardi-
ography, astronomy to mention a few.

Professor C. R. Rao and his collaborators mainly worked on the sinusoidal signal 
models in their analytic form which is complex valued. These are also known as 
complex exponential models and can be mathematically expressed as follows:

Here, A0
j
 s are complex-valued amplitudes, �0

j
∈ (0,�) are frequencies and i =

√
−1 . 

Although the signals observed are real-valued, sometimes it can be useful to con-
sider their complex counterpart for ease in analytical derivations. Professor Rao 
along with his collaborators treated the problem of estimation of the above model as 
a non-linear regression problem. He considered the LSEs for the estimation of the 
unknown parameters of model (2) and established their asymptotic properties in an 
unconventional manner. This was motivated by the fact that the underlying model 
did not satisfy common sufficient conditions of Jennrich [1] or Wu [2], and there-
fore, the asymptotic properties were not immediate to follow. Their work led to an 
elegant way of deriving these statistical properties. Their approach of dealing with 
this problem has been adapted in this paper as well. For a detailed review on his 
work in this area, we invoke the interested reader to the recent article on Professor 
C. R. Rao’s contributions to Statistical Signal Processing by the first author [3].

In many practical scenarios, the signals are not exactly periodic and a sinusoidal 
model may not be the “best” to model such signals. A popular alternative is the 
more flexible chirp model, where the frequencies are linear functions of time. Fol-
lowing is the mathematical expression of a chirp model:

Here, as before, A0
j
 s, B0

j
 s are the amplitudes and �0

j
 s are the frequencies of the 

observed signal y(t)s, however, the frequencies are not constant anymore and �0
j
 s are 

(1)y(t) =

p∑
j=1

{A0
j
cos(�0

j
t) + B0

j
sin(�0

j
t)} + X(t); t = 1,… ,N.

(2)y(t) =

p∑
j=1

A0
j
e
i�0

j
t
+ X(t); t = 1,… ,N.

(3)y(t) =

p∑
j=1

{A0
j
cos(�0

j
t + �0

j
t2) + B0

j
sin(�0

j
t + �0

j
t2)} + X(t); t = 1,… ,N.
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the frequency rates. This model has been applied to natural as well as man-made 
signals such as bird songs, music, ultrasonic sounds made by bats, whales, biomedi-
cal signals like electrencephalography (EEG), electromyography (EMG) and in 
quantum optics. The reader is referred to Flandrin [4] and the references cited 
therein for more applications of the model. Taking off from the initial works of Bello 
[5], Kelly [6] and Abatzoglou [7], quite a lot of estimation methods have been pro-
posed for the parameter estimation of this model such as rank reduction method [8], 
phase unwrapping technique [9], FFT based method [10], quadratic phase transform 
[11], non-linear least squares [12] and Monte Carlo importance sampling [13] to 
name a few. However, they suffer from a high computational cost.

In this paper, we consider a practical alternative to a chirp model called a 
chirp-like model. It has been observed that the two models have almost identi-
cal performance. Despite their similar behaviour, there is a huge difference in the 
computational load that is involved in the fitting of these two models to real world 
signals. Therefore, it is advantageous from a computational and algorithmic point 
of view to use a chirp-like model rather than a chirp model in practice. Math-
ematically, a generic form of a chirp-like model is given by:

Here, y(t) is the data observed at discrete time points 1 through N. It is decomposed 
as the sum of a deterministic component and an additive noise component X(t). p 
and q are the number of sinusoids and the number of chirp components present in 
the signal respectively. A0

j
 s, B0

j
 s, C0

k
 s, D0

k
 s, �0

j
 s and �0

j
 s are the unknown parameters 

that characterise the deterministic part of the signal. Note that the signal is a linear 
function of the amplitudes A0

j
 s, B0

j
 s, C0

k
 s and D0

k
 s but a non-linear function of the 

frequencies �0
j
 s and the chirp rates �0

j
s.

Given the data, the problem of describing it using the above model reduces to 
the estimation of its unknown parameters. The intent of this paper is three-fold:

• to motivate the chirp-like model as a proxy to the well-established chirp 
model in the context of different applications,

• to introduce a computationally efficient and theoretically optimal method of 
estimation of the parameters of a chirp-like model, and

• to demonstrate the effectiveness of the proposed methodology in practice.

The paper is organised as follows. The motivation behind the model is presented 
in the next section. Section 3 outlines the methodology to obtain periodogram-
type estimators of the unknown parameters of a chirp-like model and a theoretical 
analysis of their properties. A computationally efficient sequential method for the 
underlying parameter estimation problem is suggested in Sect. 4. In this section, 

y(t) =

p∑
j=1

{A0
j
cos(�0

j
t) + B0

j
sin(�0

j
t)}

+

q∑
k=1

{C0
k
cos(�0

k
t2) + D0

k
sin(�0

k
t2)} + X(t); t = 1,… ,N.
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we also state large-sample properties of the sequential estimators. We assess the 
accuracy of the proposed estimators through extensive simulation and the results 
are reported in Sect. 5. The performance of the model and the proposed estima-
tors is evaluated on real world signals in Sect.  6 and the paper is concluded in 
Sect. 7. The lemmas required to prove the theoretical results are in “Appendix A” 
and the proofs of these results are in the rest of the appendices.

2  Motivation Behind the Chirp‑Like Model

The main motivation behind using a chirp-like model as a surrogate for a chirp 
model is its ability to envelop a chirp signal completely. We illustrate this on two 
different chirp signals. These signals are synthesised with one and multiple com-
ponents present in the chirp model.

The data for the one component chirp model are generated using the following 
model equation:

Here, we consider only the true model without any contamination. To the generated 
data set we fit a chirp-like model using the sequential method we propose later in 
this paper. The fitted chirp-like signal is plotted overlapping the synthesised chirp 
signal in Fig. 1.

Clearly, the above graphical representation of two signals running together reveals 
that a chirp-like signal is able to clone a chirp signal quite effectively. We consider 
a more general case as well, where we generate data from a chirp model with more 
than one component. We sample data from a chirp model with three components for 
illustration. The mathematical descriptions of this models is given below.

(4)y(t) = 4 cos(0.05t + 0.005t2) + 4 sin(0.05t + 0.005t2); t = 1,… , 50.

Fig. 1  Synthesised chirp signal using model equation (4) and fitted chirp-like signal
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As before, we generate data from this model without any noise and a chirp-like 
model is fitted to the simulated data. The estimated fitting along with the synthe-
sised signal simulated from model (5) are plotted in Fig. 2. It is evident from these 
figures that a chirp-like model can replace a chirp model accurately. In the later sec-
tions, we will also see that using a chirp-like model is computationally more effi-
cient than fitting a chirp model to an observed set of data. This icentivizes the use of 
chirp-like model instead of a chirp model in practice.

3  Periodogram Type‑Estimators and Their Properties

Periodogram is one conventional approach to estimate the frequencies of a sinusoi-
dal model. A periodogram function is mathematically expressed as follows:

The estimators of the frequencies can be obtained by maximising this periodogram 
function. It has been observed that asymptotically the periodogram function has 
local maximums at the true frequencies (see Nandi and Kundu [14]). Therefore, the 
periodogram estimators of frequencies of a p component sinusoidal model are sim-
ply the p largest peaks of this periodogram function. To illustrate this, we consider a 
two-component chirp-like model defined as follows:

(5)

y(t) = 4 cos(0.05t + 0.005t2) + 4 sin(0.05t + 0.005t2) + 3 cos(0.01t + 0.001t2)

+ 3 sin(0.01t + 0.001t2) + 2 cos(0.15t + 0.0045t2)

+ 2 sin(0.15t + 0.0045t2); t = 1,… , 50.

(6)I1(�) =
1

N

||||
N∑
t=1

y(t)e−i�t
||||
2

.

Fig. 2  Synthesised chirp signal using model equation (5) and fitted chirp-like signal
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Here X(t)s are i.i.d. normal random variables with mean 0 and variance 0.1. In 
Fig. 3, the periodogram function of the simulated signal y(t) is shown. In this case, 
the frequency estimates are the locations of the two prominent peaks of the peri-
odogram function, that clearly are the argument maximisers of I1(�).

In this paper, we consider the approximate least squares estimators (ALSEs) of 
the unknown parameters of the underlying model. The ALSEs of the frequencies 
are obtained by maximising the usual periodogram function as defined in (6) con-
tinuously over the interval [0,�] . To find the ALSEs of the chirp rates, we define a 
periodogram-type function as follows:

The Fig. 4 shows the plot of a periodogram-type function of the simulated signal 
(7). Although one can see sharp peaks around the true values of the chirp rates of 
the synthesised signal, it is important to note that there are several local maxima 
present in this plot. And this problems gets even worse for large number of compo-
nents in the model.

Once the non-linear parameter estimates are found, the linear parameters esti-
mates can be worked out using simple linear regression techniques. Unfortunately 
the periodogram-type surface is not smooth and has several local maxima. There-
fore, numerical methods have to be employed to find the proposed estimators and 
the performance of these methods depends heavily on the choice of initial values. 
To find the initial values, traditionally a fine grid search is carried out. For the 
frequencies, the usual way is to search the periodogram function over the Fourier 

(7)
y(t) =4 cos(2.5t) + 4 sin(2.5t) + 2 cos(1.5t) + 2 sin(1.5t) + 4 cos(0.001t2)

+ 4 sin(0.001t2) + 2 cos(0.005t2) + 2 sin(0.005t2) + X(t).

(8)I2(�) =
1

N

||||
N∑
t=1

y(t)e−i�t
2 ||||
2

Fig. 3  Periodogram plot of the signal generated using model (7)
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frequencies 
�j

N
 , j = 1,… ,N − 1 . Analogous to the Fourier grid, the periodogram-

type function is evaluated at �k
N2

 , k = 1,… ,N2 − 1.
The problem of estimating the non-linear parameters is more complex for large 

number of components in the model. We propose a sequential algorithm for this 
estimation problem in the next section. The proposed method is computationally 
modest and has optimal statistical properties. We derive large-sample properties of 
these estimators as well as perform numerical studies to examine their performance 
in the subsequent sections.

4  Sequential Algorithm to Find Periodogram‑Type Estimators

In this section, we put forward a sequential method to estimate the parameters of a 
chirp-like model assuming we know the number of components, p and q. We will 
come back to the matter of choosing p and q later. It is important to note that the 
proposed algorithm is justified by the fact that different sinusoids are asymptotically 
orthogonal for any set of distinct frequencies and the same result hold for different 
chirp components for distinct chirp rates. The orthogonality of these components is 
a direct result of Lemma 1 and Lemma 2 in “Appendix A”. Also, from Lemma 3, it 
can be seen that the sinusoids and chirplets are orthogonal to each other. Exploiting 
this special structure of the regressors present in the model, we lower the compu-
tational load involved in calculating the least squares estimators (LSEs) to a great 
extent, but get the same efficiency as that of LSEs.

In the proposed algorithm, assuming that we have p sinusoids and q chirp compo-
nents, we first estimate the first sinusoid component from the observed or simulated 
data. At the next step, we eliminate the effect of the estimated sinusoid, and obtain a 

Fig. 4  A magnified view of the plot of periodogram-type function (8) of the signal generated using 
model (7)
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new data: y(t) − Â1 cos(�̂�1t) − B̂1 sin(�̂�1t) . Using this new data, we estimate the first 
chirplet. We alternately fit a sinusoid component and a chirp component to the data 
and continue to do so until all the p sinusoids and q chirp components are estimated. 
The sequential algorithm is presented in detail below. All the three cases: p = q , 
p < q and p > q are considered, while explaining the method. We also investigate 
the properties of the sequential estimators in this section and examine their numeri-
cal performance in the subsequent sections. These properties are derived under the 
following assumptions:

Assumption 1 Let Z be the set of integers. {X(t)} is a stationary linear process of the 
form:

where {e(t);t ∈ Z} is a sequence of independently and identically distributed (i.i.d.) 
random variables with E(e(t)) = 0 , V(e(t)) = �2 , and a(j)s are real constants such 
that

Assumption 2 The true parameters 0 < 𝛼0
1
,… , 𝛼0

p
, 𝛽0

1
,… , 𝛽0

q
< 𝜋 . The frequencies 

�0
j
s are distinct for j = 1,… p and so are the frequency rates �0

k
s for k = 1,⋯ q.

Assumption 3 The amplitudes, A0
j
 s and B0

j
 s satisfy the following relationship:

Similarly, C0
k
 s and D0

k
 s satisfy the following relationship:

The following theorems provide the statistical properties of the proposed sequen-
tial ALSEs. We observe that under the assumption of stationary errors these estima-
tors are strongly consistent as well as asymptotically normally distributed. Addition-
ally, the derived asymptotic distribution of the sequential ALSEs coincides with that 
of the LSEs. Thus, with Algorithm  1 we obtain computational efficiency without 
any compromise on the statistical properties as they remain optimal.

(9)X(t) =

∞∑
j=−∞

a(j)e(t − j),

(10)
∞∑

j=−∞

|a(j)| < ∞.

∞ > A0
1

2
+ B0

1

2
> A0

2

2
+ B0

2

2
> ⋯ > A0

p

2
+ B0

p

2
> 0.

∞ > C0
1

2
+ D0

1

2
> C0

2

2
+ D0

2

2
> ⋯ > C0

q

2
+ D0

q

2
> 0.
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Theorem 1 If Assumptions 1, 2 and 3 are satisfied, the following are true: 

(a) 

(b) 

Proof See “Appendix  B”.   ◻

Theorem 2 If Assumptions 1, 2 and 3 are true, then the following are true: 

(a) 

(b) 

(Âj, B̂j, �̂�j)
a.s.
������������→ (A0

j
,B0

j
, 𝛼0

j
) as N → ∞, for all j = 1,⋯ , p,

(Ĉk, D̂k, 𝛽k)
a.s.
������������→ (C0

k
,D0

k
, 𝛽0

k
) as N → ∞, for all k = 1,⋯ , q.

Âp+k

a.s.
������������→ 0, B̂p+k

a.s.
������������→ 0 for k = 1, 2,… , as N → ∞,

Ĉq+k

a.s.
������������→ 0, D̂q+k

a.s.
������������→ 0 for k = 1, 2,… , as N → ∞.
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Proof See “Appendix  B”.   ◻

Theorem  3 If Assumptions  1,  2 and 3 are satisfied and presuming Conjecture  1 
holds true, then for all j = 1,… , p and k = 1,… , q : 

(a) 

(b) 
 

with �(1)

j
=

⎛
⎜⎜⎜⎜⎝

1

2
0

B0
j

4

0
1

2

−A0
j

4
B0
j

4

−A0
j

4

A0
j

2
+B0

j

2

6

⎞
⎟⎟⎟⎟⎠
, j = 1,… , p and �(2)

k
=

⎛⎜⎜⎜⎜⎝

1

2
0

D0

k

6

0
1

2

−C0

k

6

D0

k

6

−C0

k

6

C0

k

2
+D0

k

2

10

⎞⎟⎟⎟⎟⎠
, k = 1,… , q. 

Also, �1 = diag(
1√
N
,

1√
N
,

1

N
√
N
) , �2 = diag(

1√
N
,

1√
N
,

1

N2
√
N
) and c =

∞∑
j=−∞

a(j)2.

Proof See “Appendix C”.   ◻

In order to compare the theoretical results with those obtained for the chirp 
model parameter estimates, we consider a one-component chirp model and a 
chirp-like model with the following mathematical expresssions:

respectively. Note that the amplitude parameters of the chirp model and those of the 
sinusoidal and chirp component of the chirp-like model are set to be equal to make 
the asymptotic variances of the non-linear parameters comparable. Now from Theo-
rem  3, it can be seen that the asymptotic variance of estimator of the frequency 
parameter is 24c�2

N3(A02 + B02)
 and that of the estimator of the frequency rate parameter 

is 45c�2

2N5(A02 + B02)
 . On the other hand, for the above chirp model, the asymptotic 

variance of estimator of the frequency parameter is 384c�2

N3(A02 + B02)
 and that of the 

estimator of the frequency rate parameter is 360c�2

2N5(A02 + B02)
 . For these results, one 

may refer to Lahiri [15]. From here, we can conclude that the the estimators of fre-
quencies of both the models have the same rate of convergence to the true value. The 
same result holds true for the frequency rate parameter. Moreover, the asymptotic 
variances of the estimators of both the non-linear parameters of a chirp-like model 
are much lower than those of the chirp model.

((Âj − A0
j
), (B̂j − B0

j
), (�̂�j − 𝛼0

j
))�−1

1

d
�����→ N3(0, c𝜎

2
�

(1)

j

−1
) as N → ∞,

((Ĉk − C0
k
), (D̂k − D0

k
), (𝛽k − 𝛽0

k
))�−1

2

d
�����→ N3(0, c𝜎

2
�

(2)

k

−1
) as N → ∞.

A0 cos(�0t + �0t2) + B0 sin(�0t + �0t2) + X(t), and

A0 cos(�0t) + B0 sin(�0t) + A0 cos(�0t2) + B0 sin(�0t2) + X(t),



1 3

Journal of Statistical Theory and Practice (2021) 15:37 Page 11 of 26 37

5  Performance Assessment of the Proposed Estimators

In this section, several numerical experiments for various choices of sample size N 
and standard deviation � are performed. The accuracy of the sequential ALSEs is 
evaluated for a multiple component chirp model with two sinusoids and twp chirp 
components. We generate the data using the following model equation:

Here, X(t) is from an MA(1) process with � = 0.5 , that is,

where

To evaluate the accuracy of the proposed estimators, we simulate the data from the 
above model for varying sample sizes, that is, N = 100, 500 and 1000 and for vary-
ing error standard deviation, � = 0.5 and 1. For every N and � , 1000 realisations 
are generated and estimates are obtained. For optimisation of the periodogram-type 
function at each stage of the sequential algorithm as described in Section, Nelder-
Mead method is used. The initial values of the frequency and chirp rate are set to 
the true values for use in the optimisation method. Based on these simulations, we 
calculate average value of the estimates, their average bias and mean squares error 
(MSE). In the tables to follow, we summarise these results. The theoretical asymp-
totic variances (Avar) are also reported as a benchmark for the MSEs.

Some noteworthy deductions from the table are enumerated below: 

1. The biases of the estimates are small and therefore the average estimates are close 
to the true values.

2. The MSEs of the estimates are well-matched with the theoretically computed 
asymptotic variances.

3. The performance of the sequential ALSEs becomes better as N is increased.
4. Another interesting observation is that the second component parameter esti-

mates have lower biases and MSEs than those of the first component parameter 
estimates.

It is clear from the results, that the sequential ALSEs are quite accurate. When the 
sample size is increased, the biases and the MSEs get smaller, thereby validating 
the consistency property of the proposed estimators. The MSEs match well with the 

(11)

y(t) =6 cos(1.5t) + 6 sin(1.5t) + 6 cos(0.1t2) + 6 sin(0.1t2)

+ 4 cos(t) + 4 sin(t) + 4 cos(0.05t2) + 4 sin(0.05t2) + X(t); t = 1,… ,N.

(12)X(t) = e(t) + 0.5e(t − 1),

e(t) ∼ N(0, �2).
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theoretical asymptotic variances and the difference is minimal when N is large. In 
conclusion as exemplified in Tables 1 and 2 , the simulations indicate that the pro-
posed method yields satisfactory results.

Table 1  Average (Avg), Bias 
and MSE of the sequential 
ALSEs of frequency and chirp 
rate parameters of model (11) 
for error standard deviation 
� = 0.50 and for different 
choices of sample size N 

� N �1 �1 �2 �2

100

0.50 Average 1.4947 0.1000 0.9944 0.0500

Bias − 5.31e−03 − 4.72e−05 − 5.56e−03 1.21e−05

MSE 2.86e−05 2.25e−09 3.24e−05 2.17e−10

Avar 1.04e−07 9.77e−12 2.34e−07 2.20e−11

500

Average 1.5001 0.1000 1.0001 0.0500

Bias 5.86e−05 − 6.21e−07 1.23e−04 1.35e−07

MSE 6.98e−09 3.99e−13 2.74e−08 4.42e−14

Avar 8.33e−10 3.13e−15 1.87e−09 7.03e−15

1000

Average 1.5000 0.1000 1.0000 0.0500

Bias − 4.85e−05 − 1.57e−07 1.65e−05 9.17e−08

MSE 2.78e−09 2.52e−14 1.87e−09 9.28e−15

Avar 1.04e−10 9.77e−17 2.34e−10 2.20e−16

Table 2  Average (Avg), Bias 
and MSE of the sequential 
ALSEs of frequency and chirp 
rate parameters of model (11) 
for error standard deviation 
� = 1.00 and for different 
choices of sample size N 

� N �1 �1 �2 �2

100
1.00 Average 1.4947 0.1000 0.9945 0.0500

Bias − 5.33e−03 − 4.71e−05 − 5.52e−03 1.30e−05
MSE 2.89e−05 2.25e−09 3.20e−05 2.52e−10
Avar 4.17e−07 3.91e−11 9.38e−07 8.79e−11

500
Average 1.5001 0.1000 1.0001 0.0500
Bias 5.48e−05 − 6.22e−07 1.29e−04 1.36e−07
MSE 6.91e−09 3.99e−13 2.91e−08 4.34e−14
Avar 3.33e−09 1.25e−14 7.50e−09 2.81e−14

1000
Average 1.5000 0.1000 1.0000 0.0500
Bias − 4.74e−05 − 1.56e−07 1.57e−05 9.07e−08
MSE 2.67e−09 2.47e−14 1.86e−09 9.13e−15
Avar 4.17e−10 3.91e−16 9.37e−10 8.79e−16
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6  Analyses of Real World Signals

In this section, we demonstrate the applicability of chirp-like model to describe 
some real world signals. We consider segments of observations originating from an 
EEG signal and a bat signal. The original signals are shown in the Figs. 5 and 6 .

We first consider the EEG signal segment which has 256 data points. We fit a 
chirp-like model to this data using the proposed sequential algorithm. For estimating 
the model order, we use the following form of Bayesian information criterion (BIC):

Here, SSres[p, q] is the residuals sum of squares when p number of sinusoidal com-
ponents and q number of chirp components are fitted to the data. This is based on the 
assumption that the maximum number of sinusoids is P and the maximum number 
of chirp components present in the model can be Q. Here, we choose P = Q = 100 . 
Also, here armaa,b denotes the ARMA model fitted to the residuals with a number 
of AR parameters and b number of MA parameters. We select p = 61 and q = 3 cor-
responding to the minimum value of BIC as the estimate of p and q. In Fig. 7, the 
plot of fitted values using the selected model along with the original observations is 
shown. It is evident that the observed signal can be reconstructed using the chirp-
like model quite satisfactorily.

Next using the same algorithm, we fit a chirp-like model to the bat data. An 
important observation here is that unlike in the previous instance, the BIC does not 
work well for this data set. However, the fit provided by this model for various p and 
q, suggests that a chirp-like model can explain the underlying bat signal very well. 
To illustrate this, in Fig. 8, a chirp-like model fitting using only 2 sinusoidal compo-
nents, but 100 chirp components is shown. Although the fit looks good for various 
choices of p and q that we considered, for q = 100 , the model is able to capture the 
non-periodic parts of the signal quite effectively.

BIC[p, q] = Nloge(SSRes[p, q]) +
1

2
(5p + 7q + armaa,b + 1)loge(N)

Fig. 5  EEG data: reference and details



 Journal of Statistical Theory and Practice (2021) 15:37

1 3

37 Page 14 of 26

We can conclude from here that the chirp-like model is able to represent the two 
data sets reasonably well and the proposed sequential algorithm works well in pro-
viding the model fits. However, since the BIC does not always work and can be data 
driven, a major challenge is to find an appropriate model selection criterion. We 
believe more work is needed in this area.

We also perform residuals analyses for both the data sets, to test for stationar-
ity assumptions that we make in this paper. We use the traditional tests, namely 
Augmented Dickey Fuller (ADF) test (Fuller [16] and Kwiatkowski–Phil-
lips–Schmidt–Shin (KPSS) test (Kwiatkowski et al. [17]) for this purpose. The ADF 
test tests the null hypothesis H0 ∶ a unit root is present in the time series against the 
alternative H1 ∶ that the series is stationary. And the KPSS test tests the null hypoth-
esis H0 ∶ the series is stationary against the alternative H1 ∶ a unit root is present in the 
series. We use in-built functions “adf.test” and “kpss.test” in “tseries” package in R 
software. For both the data sets, the ADF test rejects the null hypothesis and the KPSS 
test does not reject the null hypothesis. Hence, we may conclude that the residuals 
are stationary. The residual plots are shown in Figs. 9 and 10 . We also use the inbuilt 
function “auto.arima” in the “forecast” package in R to find the order of the ARMA 
process of the residuals. This function selects ARMA(2,2) process for the residuals of 
the EEG data and ARMA(0,0) process for the residuals of the bat data.

7  Conclusion

We have proposed periodogram-type estimators for the parameter estimation of a chirp-
like model. These are also called ALSEs as it can be shown that for large sample sizes, 
the least squares function is equivalent to the periodogram-type function. Theoretically, 
we derive the large-sample properties of these estimators and we show that they are 
strongly consistent and asymptotically normally distributed under the assumption of sta-
tionary errors. If the noise is white and has normal distribution, the proposed estimators 
achieve the corresponding CRLBs. Extensive simulation results corroborate our theory 

Fig. 6  Bat data: reference and details



1 3

Journal of Statistical Theory and Practice (2021) 15:37 Page 15 of 26 37

and also indicate accuracy of the ALSEs in terms of biases and MSEs. Another main 
contribution of the paper has been the data analyses of real world signals from different 
application domains. The analyses of these signals is not only to assess the performance 
of the proposed estimators but also to gain a new and deeper insight into the behavior of 
a chirp-like model and how it can be a practical alternative over a chirp model.

Fig. 7  Estimated chirp-like signal along with the observed EEG data

Fig. 8  Estimated chirp-like signal along with the observed bat data
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Appendices

Preliminary Results

In this section, we provide some number theory results and conjectures. These are 
necessary preliminary for the development of the analytical properties of the pro-
posed sequential estimators.

Lemma 1 If � ∈ (0,�) , then the following hold true: 

(a) lim
N→∞

1

N

N∑
t=1

cos(�t) = lim
N→∞

1

N

N∑
t=1

sin(�t) = 0.

(b) lim
N→∞

1

Nk+1

N∑
t=1

tk cos2(�t) = lim
N→∞

1

Nk+1

N∑
t=1

tk sin2(�t) =
1

2(k+1)
; k = 0, 1, 2,⋯ .

(c) lim
N→∞

1

Nk+1

N∑
t=1

tk sin(�t) cos(�t) = 0; k = 0, 1, 2,⋯ .

Proof Refer to Kundu and Nandi [14].   ◻

Lemma 2 If � ∈ (0,�) , then except for a countable number of points, the following 
hold true: 

(a) lim
N→∞

1

N

N∑
t=1

cos(�t2) = lim
N→∞

1

N

N∑
t=1

sin(�t2) = 0.

(b) lim
N→∞

1

Nk+1

N∑
t=1

tk cos2(�t2) = lim
N→∞

1

Nk+1

N∑
t=1

tk sin2(�t2) =
1

2(k+1)
; k = 0, 1, 2,⋯ .

(c) lim
N→∞

1

Nk+1

N∑
t=1

tk sin(�t2) cos(�t2) = 0; k = 0, 1, 2,… .

Proof Refer to Lahiri [15].   ◻

Lemma 3 If (�1,�2) ∈ (0,�) × (0,�) , then except for a countable number of points, 
the following hold true: 

(a) lim
N→∞

1

Nk+1

N∑
t=1

tk cos(�1t) cos(�2t
2) = lim

N→∞

1

Nk+1

N∑
t=1

tk cos(�1t) sin(�2t
2) = 0

(b) lim
N→∞

1

Nk+1

N∑
t=1

tk sin(�1t) cos(�2t
2) = lim

N→∞

1

Nk+1

N∑
t=1

tk sin(�1t) sin(�2t
2) = 0

k = 0, 1, 2,⋯

Proof This proof follows from the number theoretic result proved by Lahiri [15] (see 
Lemma 2.2.1 of the reference).   ◻
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Lemma 4 If X(t) satisfies Assumptions 1, 2 and3, then for k ⩾ 0:

(a) sup
�

����
1

Nk+1

N∑
t=1

tkX(t)ei(�t)
����

a.s.
������������→ 0            (b) sup

�

����
1

Nk+1

N∑
t=1

tkX(t)ei(�t
2)
����

a.s.
������������→ 0

Proof These can be obtained as particular cases of Lemma 2.2.2 of Lahiri [15].   ◻

The following conjecture is derivative of the famous number theory conjecture 
of Montgomery [18]. One may refer to Lahiri [15] for details. Although these 
conjectures have not been proved theoretically, extensive numerical simulations 
indicate their validity.

Conjecture 1 If (�1,�2) ∈ (0,�) × (0,�) , then except for a countable number of 
points, the following hold true: 

(a) lim
N→∞

1

Nk
√
N

N∑
t=1

tk cos(�1t
2) = lim

N→∞

1

Nk
√
N

N∑
t=1

tk sin(�1t
2) = 0

(b) lim
N→∞

1

Nk
√
N

N∑
t=1

tk cos(�1t) cos(�2t) = lim
N→∞

1

Nk
√
N

N∑
t=1

tk cos(�1t) sin(�2t) = 0

(c) lim
N→∞

1

Nk
√
N

N∑
t=1

tk sin(�1t) sin(�2t) = lim
N→∞

1

Nk
√
N

N∑
t=1

tk cos(�1t) cos(�2t
2) = 0

(d) lim
N→∞

1

Nk
√
N

N∑
t=1

tk cos(�1t) sin(�2t
2) = lim

N→∞

1

Nk
√
N

N∑
t=1

tk sin(�1t) cos(�2t
2) = 0

(e) lim
N→∞

1

Nk
√
N

N∑
t=1

tk sin(�1t) sin(�2t
2) = 0 k = 0, 1, 2,…

.

Fig. 9  Residuals plot of the EEG signal
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Consistency of the Sequential ALSEs

To prove the consistency of the sequential ALSEs of the non-linear parameters, we 
need the following two lemmas:

Lemma 5 Consider the set S(j)c1 = {𝛼j ∶ |𝛼j − 𝛼0
j
| > c1} ; j = 1,… , p . If for any 

c1 > 0 , the following holds true:

then �̂�j
a.s.
������������→ 𝛼0

j
 as N → ∞ . Note that I2j−1(�j) can be obtained by replacing y(t) by 

y2j−1(t) and � by �j in Eq. (6).

Proof This proof follows along the same lines as the proof of Lemma 2A.2 in Grover 
[19].   ◻

Lemma 6 Consider the set S(k)
c2

= {𝛽k ∶ |𝛽k − 𝛽0
k
| > c2} ; k = 1,… , q . If for any 

c2 > 0 , the following holds true:

then 𝛽k
a.s.
������������→ 𝛽0

k
 as N → ∞ . Note that I2k(�k) can be obtained by replacing y(t) by 

y2k(t) and � by �k in Eq. (8).

(13)lim sup sup
S
(1)
c1

1

N
(I2j−1(𝛼j) − I2j−1(𝛼

0
j
)) < 0 a.s.,

lim sup sup
S
(1)
c2

1

N
(I2k(𝛽k) − I2k(𝛽

0
k
)) < 0 a.s.,

Fig. 10  Residuals plot of the bat signal
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Proof This proof follows along the same lines as the proof of Lemma 2A.2 in Grover 
[19].   ◻

Proof of Theorem 1 Here again, for convenience of notation, we assume p = 2 and 
q = 2 . Now we first prove the consistency of the non-linear parameter �̂�1 . For that 
we consider the following difference:

where y1(t) = y(t) = �(t,�)1 +X(t) , the original data.
Using lemmas 1, 2, 3 and 4 , we get:

From Lemma 5, it follows that:

Let us recall that the linear parameter estimators of the first sinusoid are given by:

To prove the consistency of the estimators of the linear parameters, A0
1
 and B0

1
 , we 

need the following lemma:

Lemma 7 If �̂�1 is the sequential ALSE of �̂�0
1
 then

Proof Let us denote I�
1
(�1) and I��

1
(�1) as the first and second derivatives of the peri-

odogram function I1(�1) . Consider the Taylor series expansion of the function I�
1
(�̂�1) 

around the point �0
1
 as follows:

1

N
[I1(�1) − I1(�

0
1
)]

=
1

N2

{ N∑
t=1

y1(t) cos(�1t)

}2

+
1

N2

{ N∑
t=1

y1(t) sin(�1t)

}2

−
1

N2

{ N∑
t=1

y1(t) cos(�
0
1
t)

}2

−
1

N2

{ N∑
t=1

y1(t) sin(�
0
1
t)

}2

lim sup sup
S
(1)
c1

1

N
[I1(𝛼1) − I1(𝛼

0
1
)] = lim sup sup

|𝛼1−𝛼01 |>c
1

N
[I1(𝛼1) − I1(𝛼

0
1
)]

= −
A0
1

2

4
−

B0
1

2

4

�̂�1
a.s.
������������→ 𝛼0

1
as N → ∞.

Â1 =
2

N

N∑
t=1

y(t) cos(𝛼1t) B̂1 =
2

N

N∑
t=1

y(t) sin(𝛼1t)

(14)N(�̂�1 − 𝛼0
1
)

a.s.
������������→ 0 as N → ∞.

1 �(t,�) =
∑2

j=1
A0

j
cos(�0

j
t) + B0

j
sin(�0

j
t) +

∑2

k=1
C0

k
cos(�0

k
t2) + D0

k
sin(�0

k
t2), and 

� = (A0

1
,B0

1
, �0

1
,C0

1
,D0

1
, �0

1
,A0

2
,B0

2
, �0

2
,C0

2
,D0

2
, �0

2
)
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where �̄�1 is a point between �̂�1 and �0
1
 . Since �̂�1 is the argument maximiser of the 

function I1(�1) , it implies that I�
1
(�̂�1) = 0 . Therefore, (15) can be rewritten as 

follows:

Now using simple calculations and number theory results 1, 2 and 3 , one can show 
that:

Combining the above three equations, we have the desired result.   ◻

Now, let us consider ALSE Â1 of A0
1
 . Using Taylor series expansion, we expand 

cos(�̂�1t) around the point �0
1
 and get:

The convergence in the last step follows on using the results from the preliminary 
number theory results (see lemmas 1, 2, 3 and 4 ) and Lemma 7.

One can show the consistency of B̂1 in the same manner as we proved for Â1 . Next, 
we show the strong consistency of the estimator 𝛽1 . For that we consider the difference:

(15)I�
1
(�̂�1) − I�

1
(𝛼0

1
) = (�̂�1 − 𝛼0

1
)I��
1
(�̄�1)

− I�
1
(𝛼0

1
) = (�̂�1 − 𝛼0

1
)I��
1
(�̄�1)

⇒ (�̂�1 − 𝛼0
1
) = −I�

1
(𝛼0

1
)[I��

1
(�̄�1)]

−1

⇒ N(�̂�1 − 𝛼0
1
) = −

1

N2
I�
1
(𝛼0

1
)[

1

N3
I��
1
(�̄�1)]

−1

1

N2
I�
1
(𝛼0

1
)

a.s.
������������→ 0 as N → ∞, and

lim
N→∞

1

N3
I��
1
(�̄�1) = lim

N→∞

1

N3
I��
1
(𝛼0

1
) =

−(A0
1

2
+ B0

1

2
)

24
as N → ∞.

Â1 =
2

N

N∑
t=1

y(t) cos(�̂�1t)

=
2

N

N∑
t=1

{
𝜇(t,�) + X(t)

}

×

{
cos(𝛼0

1
t) − t(�̂�1 − 𝛼0

1
) sin(�̄�1t)

}
a.s.
������������→ A0

1
as N → ∞.

1

N
[I2(�1) − I2(�

0
1
)]

=
1

N2

{ N∑
t=1

y2(t) cos(�1t
2)

}2

+
1

N2

{ N∑
t=1

y2(t) sin(�1t
2)

}2

−
1

N2

{ N∑
t=1

y2(t) cos(�
0
1
t2)

}2

−
1

N2

{ N∑
t=1

y2(t) sin(�
0
1
t)

}2
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where y2(t) = y1(t) − Â1 cos(�̂�1t) − B̂1 sin(�̂�1t) . On using lemmas 1, 2, 3 and 4 , we 
have:

Therefore, 𝛽1
a.s.
������������→ 𝛽0

1
 as N → ∞ . This follows from Lemma 6.

To prove the consistency of linear parameter estimators of the first chirp compo-
nent, that is, Ĉ1 and D̂1 , we need the following lemma

Lemma 8 If 𝛽1 is the sequential ALSE of �0
1
 , then

Proof The proof of this lemma follows along the same lines as that of Lemma 7.   ◻

The consistency of linear parameter estimators Ĉ1 and D̂1 can now be shown 
along the same lines as that of Â1 above.

Following the above proof, one can easily show the strong consistency of the sec-
ond sinusoid component and chirp component parameter estimates. Moreover, the 
results can be extended for any p and q in general.   ◻

Proof of Theorem 2 Let us first consider the ALSE Âp+1 of the linear parameter A0
p+1

:

Now yp+q+1(t) is the data obtained by eliminating the effect of first p sinusoids and 
first q chirp components from the original data. It means that

Using the above equation, we get:

lim sup sup
|𝛽1−𝛽01 |>c

1

N
[I2(𝛽1) − I2(𝛽

0
1
)]

= −
C0
1

2

4
−

B0
1

2

4
< 0 a.s.

(16)N2(𝛽1 − 𝛽0
1
)

a.s.
������������→ 0 as N → ∞.

(17)Âp+1 =
2

N

N∑
t=1

yp+q+1(t) cos(�̂�p+1t)

(18)

yp+q+1(t) = y1(t) −

p∑
j=1

{Âj cos(�̂�jt) + B̂j sin(�̂�jt)}

−

q∑
k=1

{Ĉk cos(𝛽kt
2) + D̂k sin(𝛽kt

2)}

= X(t) + o(1), using the results derived in the proof of Theorem 1 .

(19)
Âp+1 =

2

N

N∑
t=1

(X(t) + o(1)) cos(�̂�p+1t) =
2

N

n∑
t=1

X(t) cos(�̂�p+1t) + o(1)

a.s.
������������→ 0 as N → ∞.
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This follows from Lemma 4. Similarly, we have the following result:

Analogously one can show that in case of overestimation the sequential ALSEs of 
the amplitudes of the chirp component converge to 0 as well, that is,

Hence, the result.   ◻

Asymptotic Distribution of the Sequential ALSEs

Proof of Theorem  3 To prove this, theorem we will show asymptotic equivalence 
between the proposed sequential ALSEs and the sequential LSEs (see Grover [19]). 
For ease of notation, we assume p = q = 2 here, however the result can be extended 
for any p and q. First consider:

where,

At A1 = Â1 and B1 = B̂1 , one can show that:

(20)

B̂p+1 =
2

N

N∑
t=1

yp+q+1(t) sin(�̂�p+1t) =
2

N

N∑
t=1

(X(t) + o(1)) sin(�̂�p+1t)

=
2

N

n∑
t=1

X(t) sin(�̂�p+1t) + o(1)
a.s.
������������→ 0 as N → ∞.

Ĉq+1

a.s.
������������→ 0 as N → ∞ and D̂q+1

a.s.
������������→ 0 as N → ∞.

1

N
Q1(�1) =

1

N

N∑
t=1

(
y(t) − A1 cos(�1t) − B1 sin(�1t)

)2

=
1

N

N∑
t=1

y2(t) −
2

N
y(t)

{
A1 cos(�1t) + B1 sin(�1t)

}

+
1

N

N∑
t=1

{
A1 cos(�1t) + B1 sin(�1t)

}2

=
1

N

N∑
t=1

y2(t) −
1

N
J1(A1,B1, �1) + o(1)

1

N
J1(A1,B1, �1) =

2

N

N∑
t=1

y(t)

{
A1 cos(�1t) + B1 sin(�1t)

}
−

A1
2 + B1

2

2

J1(Â1, B̂1, 𝛼1) = I1(𝛼1)
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Therefore, the estimator of (A0
1
,B0

1
, �0

1
) that maximises J1(A1,B1, �1) is equivalent to 

the sequential ALSE of (Â1, B̂1, �̂�1) . Now expanding ��
1
(Â1, B̂1, �̂�1) around the point 

(A0
1
,B0

1
, �0

1
) , we have:

Now we compute the elements of first derivative vector ��
1
(A0

1
,B0

1
, �0

1
) and using the 

preliminary lemmas 1, 2 and 3 and the Conjecture 1, we obtain:

Also,

From the above three equations, it is easy to see that:

Therefore,

Similarly, on computing the elements of the second derivative matrix, it can be 
shown that

On combining these results, we get the asymptotic equivalence between the sequen-
tial ALSE (Â1, B̂1, �̂�1) and (Â1LSE, B̂1LSE, �̂�1LSE) . It has been proved in Grover [19] 
that the sequential LSEs have the same asymptotic distribution as the LSEs of the 
parameters of a chirp-like model. This implies that 
((Â1 − A0

1
), (B̂1 − B0

1
), (�̂�1 − 𝛼0

1
))�−1

1

d
�����→ N3(0, c𝜎

2
�

(1)

j

−1
) as N → ∞.

Next to derive the asymptotic distribution of the sequential ALSEs of first chirp 
component parameters, that is, (Ĉ1, D̂1, 𝛽1) , we proceed as before.

��
1
(Â1, B̂1, �̂�1) − ��

1
(A0

1
,B0

1
, 𝛼0

1
) = (Â1, B̂1, �̂�1) − (A0

1
,B0

1
, 𝛼0

1
)[��

1
(Â1, B̂1, �̂�1)]

−1

⇒ −��
1
(A0

1
,B0

1
, 𝛼0

1
)[���

1
(Ā1, B̄1, �̄�1)]

−1 = (Â1, B̂1, �̂�1) − (A0
1
,B0

1
, 𝛼0

1
)

�J1(A
0
1
,B0

1
, �0

1
)

�A1

=
2

N

N�
t=1

y(t) cos(�0
1
t) − A0

1
=

2

N

N�
t=1

X(t) cos(�0
1
t) + o(

1√
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Here,

Now expanding the right hand side of (21), we get:

where

We compute 1
N
��
2
(C0

1
,D0

1
, �0

1
 and using Conjecture 1 and lemmas 1, 2 and 3 , we get:

A similar equivalence can now be established between the ��
2
(C0

1
,D0

1
, �0

1
) and 

��
2
(C0

1
,D0

1
, �0

1
) and ���

2
(C0

1
,D0

1
, �0

1
) and ���

2
(C0

1
,D0

1
, �0

1
) . Procceding exactly the same 

way as for the first sinusoid estimators, it can be shown that the sequential ALSE 
(Ĉ1, D̂1, 𝛽1) and the sequential LSE (Ĉ1LSE, D̂1LSE, 𝛽1LSE) have the same asymptotic 
distribution. The asymptotic distribution of the sequential LSE has been derived 
explicitly by Grover [19] in her thesis. Thus, we have:

the desired result. The result can now be extended for any p and q.   ◻
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