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Abstract
Nonlinear mixed effects models have received a great deal of attention in the sta-
tistical literature in recent years because of their flexibility in handling longitudi-
nal studies, including human immunodeficiency virus viral dynamics, pharmacoki-
netic analyses, and studies of growth and decay. A standard assumption in nonlinear 
mixed effects models for continuous responses is that the random effects and the 
within-subject errors are normally distributed, making the model sensitive to outli-
ers. We present a novel class of asymmetric nonlinear mixed effects models that 
provides efficient parameters estimation in the analysis of longitudinal data. We 
assume that, marginally, the random effects follow a multivariate scale mixtures of 
skew-normal distribution and that the random errors follow a symmetric scale mix-
tures of normal distribution, providing an appealing robust alternative to the usual 
normal distribution. We propose an approximate method for maximum likelihood 
estimation based on an EM-type algorithm that produces approximate maximum 
likelihood estimates and significantly reduces the numerical difficulties associated 
with the exact maximum likelihood estimation. Techniques for prediction of future 
responses under this class of distributions are also briefly discussed. The methodol-
ogy is illustrated through an application to Theophylline kinetics data and through 
some simulating studies.
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1  Introduction

This is the birth centenary year of the living legend and giant in the world of 
statistics, Prof. C.R. Rao. This article is a partial reflection of Dr. Rao’s contribu-
tions to statistical theory and methodology, including sufficiency, efficiency of 
estimation, as well as the application of matrix theory in linear statistical infer-
ence and beyond. In this paper, we extend many results from linear models to 
nonlinear mixed effects (NLME) models which have been receiving notable 
attention in recent statistical literature, mainly due to their flexibility for dealing 
with longitudinal data and repeated measures data. In a NLME framework it is 
routinely assumed that the random effects and the within-subject measurement 
errors follow a normal distribution. While this assumption makes the model easy 
to apply in widely used software (such as R and SAS), its accuracy is difficult to 
check and the routine use of normality has been questioned by many authors. For 
example, Hartford and Davidian [8] showed through simulations that inference 
based on the normal distribution can be sensitive to underlying distributional and 
model misspecification. Litière et al. [16] showed the impact of misspecifying the 
random effects distribution on the estimation and hypothesis testing in general-
ized linear mixed models. Specifically, they showed that the maximum likelihood 
estimators are inconsistent in the presence of misspecification and that the esti-
mates of the variance components are severely biased. More recently, Hui et al. 
[10] showed through theory and simulation that under misspecification, stand-
ard likelihood ratio tests of truly nonzero variance components can suffer from 
severely inflated type I errors, and confidence intervals for the variance compo-
nents can exhibit considerable under coverage. Thus it is of practical interest to 
explore frameworks with considerable flexibility in the distributional assumptions 
of the random effects as well as the error terms, which can produce more reliable 
inferences.

There has been considerable work in mixed effects models in this direc-
tion. Verbeke and Lesaffre [32] introduced a heterogeneous linear mixed model 
(LMM) where the random effects distribution is relaxed using normal mixtures. 
Pinheiro et al. [24] and Lin and Wang [14] proposed a multivariate Student-t lin-
ear and nonlinear (T-LMM/NLMM) mixed model, respectively, and showed that 
it performs well in the presence of outliers. Zhang and Davidian [35] proposed 
a LMM in which the random effects follow a so-called semi-nonparametric dis-
tribution. Rosa et  al. [27] adopted a Bayesian framework to carry out posterior 
analysis in LMM with the thick-tailed class of normal/independent distributions. 
Moreover, Lachos et  al. [13] proposed a skew-normal independent (SNI) linear 
mixed model based on the scale mixtures of skew-normal (SMSN) family intro-
duced by Branco and Dey [4], developing a general EM-type algorithm for maxi-
mum likelihood estimation (MLE). To avoid confusion, in this paper, we use the 
acronym SMSN instead of SNI to refer to the scale mixtures of skew-normal fam-
ily of distributions.

In the nonlinear context, Lachos et  al. [12] considered the Bayesian estima-
tion of NLME models with scale mixtures of normal (SMN) distributions for the 
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error term and random effects, Lachos et  al. [11] developed a Bayesian frame-
work for censored linear and nonlinear mixed effects models replacing the Gauss-
ian assumptions for the random terms with SMN distributions, and De la Cruz 
[5] also considered a Bayesian framework to estimate NLME models under 
heavy-tailed distributions, allowing the mixture variables associated with errors 
and random effects to be different. From a frequentist perspective, Meza et  al. 
[20] proposed an estimation procedure to obtain the maximum likelihood esti-
mates for NLME models with NI distributions, and Galarza et al. [7] developed 
a likelihood-based approach for estimating quantile regression models with cor-
related continuous longitudinal data using the asymmetric Laplace distribution, 
both using a stochastic approximation of the EM algorithm. Furthermore, Russo 
et  al. [28] and Pereira and Russo [21] considered a NLME model with skewed 
and heavy-tailed distributions, with the limitation that the nonlinearity is incor-
porated only in the fixed effects.

Extending the work of Lachos et al. [13], in this paper we propose a parametric 
robust modeling of NLME models based on SMSN distributions. In particular, we 
assume a mean-zero SMSN distribution for the random effects, and a SMN distribu-
tion for the within-subject errors. Together, the observed responses follow condi-
tionally an approximate SMSN distribution and define what we call a scale mixtures 
of skew-normal nonlinear mixed effects (SMSN-NLME) model. In particular, the 
SMSN distributions provide a class of skew-thick-tailed distributions that are use-
ful for robust inference and that contains as proper elements the skew-normal (SN), 
skew-t (ST), skew-slash (SSL), and the skew-contaminated normal (SCN) distribu-
tions. The marginal density of the response variable can be obtained by approxi-
mations, leading to a computationally efficient approximate (marginal) likelihood 
function that can be implemented directly by using existing statistical software. The 
hierarchical representation of the proposed model makes the implementation of an 
efficient EM-type algorithm possible, which results in “closed form” expressions for 
the E and M-steps.

The rest of the article is organized as follows. The SMSN-NLME model is pre-
sented in Sect. 2, including a brief introduction to the class of SMSN distributions 
and the approximate likelihood-based methodology for inference in our proposed 
model. In Sect.  3 we propose an EM-type algorithm for approximate likelihood 
inferences in SMSN-NLME models, which maintains the simplicity and stability of 
the EM-type algorithm proposed by Lachos et al. [13]. In Sect. 4, simulation stud-
ies are conducted to evaluate the empirical performance of the proposed model. 
The advantage of the proposed methodology is illustrated through the Theophylline 
kinetics data in Sect. 5. Finally, some concluding remarks are presented in Sect. 6.

2 � The Model and Approximate Likelihood

2.1 � SMSN Distributions and Main Notation

The idea of the SMSN distributions originated from an early work by Branco and 
Dey [4], which included the skew-normal (SN) distribution as a special case. We 
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say that a p × 1 random vector � follows a SN distribution with p × 1 location 
vector � , p × p positive definite dispersion matrix � and p × 1 skewness param-
eter vector �, and write � ∼ SNp(�,�,�), if its probability density function (pdf) 
is given by

where �0 = �−1∕2(� − �) , �p(⋅;�,�) stands for the pdf of the p-variate normal dis-
tribution with mean vector � and dispersion matrix � , Np(�,�) say, and �(⋅) is the 
cumulative distribution function (cdf) of the standard univariate normal. Letting 
� = � − � and noting that a� ∼ SNp(�, a

2�,�) for all scalar a > 0 , we can define a 
SMSN distribution as that of a p-dimensional random vector

where U is a positive random variable with the cdf H(u;�) and pdf h(u;�) , and inde-
pendent of the SNp(�,�,�) random vector � , with � being a scalar or vector param-
eter indexing the distribution of the mixing scale factor U. Given U = u , � follows a 
multivariate skew-normal distribution with location vector � , scale matrix u−1� and 
skewness parameter vector � . Thus, by (1), the marginal pdf of � is

The notation � ∼ SMSNp(�,�,�;H) will be used when � has pdf (3).
The class of SMSN distributions includes the skew-t, skew-slash, and skew-

contaminated normal, which will be briefly introduced subsequently. All these 
distributions have heavier tails than the skew-normal and can be used for robust 
inferences. When � = � , the SMSN distributions reduces to the SMN class, i.e., 
the class of scale-mixtures of the normal distribution, which is represented by the 
pdf f0(�) = ∫ ∞

0
�p(�;�, u

−1�)dH(u;�) and will be denoted by SMNp(�,�,H) . We 
refer to Lachos et al. [13] for details and additional properties related to this class 
of distributions.

•	 Multivariate skew-t distribution
	   The multivariate skew-t distribution with � degrees of freedom, denoted 

by STp(�,�,�;�) , can be derived from the mixture model (3), by taking U ∼ 
Gamma(�∕2, �∕2), 𝜈 > 0. The pdf of � is 

 where tp(⋅;�,�, �) and T(⋅;�) denote, respectively, the pdf of the p-variate 
Student-t distribution, namely tp(�,�, �) , and the cdf of the standard univari-
ate t-distribution, � = �⊤�−1∕2(� − �) and d = (� − �)⊤�−1(� − �) is the 
Mahalanobis distance.

(1)f (�) = 2𝜙p(�;�,�)𝛷(�⊤�0),

(2)� = � + U−1∕2�,

(3)f (�) = 2∫
∞

0

𝜙p(�;�, u
−1�)𝛷(u1∕2�⊤�0)dH(u;�).

(4)f (�) = 2tp(�;�,�, �)T

(√
� + p

� + d
�;� + p

)
, � ∈ ℝ

p,
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•	 Multivariate skew-slash distribution
	   Another SMSN distribution, termed as the multivariate skew-slash distri-

bution and denoted by SSLp(�,�,�;�) , arises when the distribution of U is 
Beta(�, 1) , 𝜈 > 0 . Its pdf is given by 

 The skew-slash distribution reduces to the skew-normal distribution as � ↑ ∞.
•	 Multivariate skew-contaminated normal distribution
	   The multivariate skew-contaminated normal distribution, denoted by 

SCNp(�,�,�;�1, �2), arises when the mixing scale factor U is a discrete ran-
dom variable taking one of two values. The pdf of U, given a parameter vector 
� = (𝜈1, 𝜈2)

⊤ , is 

 It follows that 

2.2 � The SMSN‑NLME Model

In this section, we present the general NLME model proposed in this work, in 
which the random terms are assumed to follow a SMSN distribution within the class 
defined in (2). The model, denoted by SMSN-NLME, can be defined as follows:

with the assumption that

where the subscript i is the subject index, �i = (yi1,… , yini )
⊤ is an ni × 1 vector of 

observed continuous responses for subject i, � represents a nonlinear vector-valued 
differentiable function of the individual mixed effects parameters �i , �i is an ni × q 
matrix of covariates, � is a p × 1 vector of fixed effects, �i is a q-dimensional ran-
dom effects vector associated with the ith subject, �i is a q × p design matrix that 
possibly depends on elements of �i , �i is the ni × 1 vector of random errors, 
c = c(�) = −

√
2

�
k1 , with k1 = E{U−1∕2} , and � = �1∕2� , with � = �∕

√
1 + �⊤� . 

The dispersion matrix � = �(�) depends on unknown and reduced parameter vector 
� . Finally, as was indicated in the previous section, H = H(⋅|�) is the cdf-generator 
that determines the specific SMSN model that is considered.

(5)f (�) = 2� ∫
1

0

u�−1�p(�;�, u
−1�)�(u1∕2�)du, � ∈ ℝ

p.

(6)h(u;�) = 𝜈1�(u=𝜈2) + (1 − 𝜈1)�(u=1), 0 < 𝜈1 < 1, 0 < 𝜈2 < 1.

f (�) = 2
{
�1�p(�;�, �

−1
2
�)�(�

1∕2

2
�)

+ (1 − �1)�p(�;�,�)�(�)
}
.

(7)�i = �(�i,�i) + �i, �i = �i� + �i,

(8)
(
�i
�i

)
ind.
∼ SMSNq+ni

((
c�

�

)
,

(
� �

� �2
e
�ni

)
,

(
�

�

)
;H

)
, i = 1,… , n,
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Remark 

1.	 The model defined in (7) can be viewed as a slight modification of the general 
NLME model proposed by Pinheiro and Bates [22, 23], with the restriction that 
our new model does not allow to incorporate, for instance, “time-varing”  covari-
ates in the random effects. This assumption is made for simplicity of theoretical 
derivations. However, the methodology proposed here can be extended without 
any difficulty.

2.	 An attractive and convenient way to specify (8) is the following: 

 which are independent, where Ui

iid.
∼H . Since for each i = 1,… , n, �i and �i are 

indexed by the same scale mixing factor Ui, they are not independent in gen-
eral. Independence corresponds to the case when Ui = 1 (i = 1,… , n), so 
that the SMSN-NLME model reduces to the SMN-NLME model as defined 
in Lachos et  al. [12]. However, conditional on Ui, �i and �i are independ-
ent for each i = 1,… , n, which implies that �i and �i are uncorrelated, since 
Cov(�i, �i) = E{�i�

⊤
i
} = E{E{�i�

⊤
i
|Ui}} = � . Thus, it follows from (8)–(9) that 

marginally 

 Moreover, as long as k1 < ∞ the chosen location parameter ensures that 
E{�i} = E{�i} = � . Thus, this model considers that the within-subject random 
errors are symmetrically distributed, while the distribution of random effects is 
assumed to be asymmetric and to have mean zero.

3.	 Our model can be seen as an extension of the elliptical NLME model proposed 
by Russo et al. [28], where the nonlinearity is incorporated only in the fixed 
effects. If �(⋅) is a linear function of the individual mixed effects parameters �i , 
then the SMSN-NLME model reduces to a slight modification of the SNI-LME 
model proposed by [13]. However, since in this work we consider a mean-zero 
SMSN distribution for the random effects, the result given in Lachos et al. [13] 
cannot be directly applied. One the other hand, this choice of location parameter 
is important, since E{�i} ≠ 0 might lead to biased estimates of the fixed effects 
[30, 31].

4.	 The SMSN-NLME model defined in (7)–(8) can be formulated with a hierarchical 
representation, as follows: 

(9)�i|Ui = ui
ind.
∼ SNq(c�, u

−1
i
�,�), �i|Ui = ui

ind.
∼ Nni

(�, �2
e
u−1
i
�ni),

(10)�i
iid.
∼SMSNq(c�,�,�;H) and �i

ind.
∼ SMNni

(�, �2
e
�ni ;H), i = 1,… , n.

(11)�i|�i,Ui = ui
ind.
∼Nni

(�(�i� + �i,�i), u
−1
i
�2
e
�ni ),

(12)�i|Ui = ui
ind.
∼ SNq(c�, u

−1
i
�,�),

(13)Ui

iid.
∼H(⋅;�).
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Let � = (�⊤, 𝜎2
e
,�⊤,�⊤, �⊤)⊤ , then classical inference on the parameter vector 

� is based on the marginal distribution of � = (�⊤
1
,… ,�⊤

n
)⊤ [22]. Thus, from the 

hierarchical representation in (11)–(13), the integrated likelihood for � based on the 
observed sample � = (�⊤

1
,… , �⊤

n
)⊤ in this case is given by

which generally does not have a closed form expression because the model function 
is nonlinear in the random effect. In the normal case, in order to make the numerical 
optimization of the likelihood function a tractable problem, different approximations 
to (14) have been proposed, usually based on first-order Taylor series expansion of 
the model function around the conditional mode of the random effects [15]. Follow-
ing this idea, we describe next two important results based on Taylor series approxi-
mation method for approximating the likelihood function of a SMSN-NLME model. 
The first uses a point in a neighborhood of �i as the expansion point. The second 
uses simultaneously a neighborhood of � and � as expansions points, with the 
advantage that this approximation is completely linear (in � and � ). These approxi-
mations can be considered as extensions of the result given in [14, 15, 18, 22].

Theorem 1  Let �̃i be an expansion point in a neighborhood of �i , for i = 1,… , n . 
Then, under the SMSN-NLME model as given in (7)–(8), the marginal distribution 
of �i can be approximated as follows:

where �� i =
��i�

��⊤
i
+ 𝜎2

e
�ni , 

��i =
𝜕𝜂(�i� + �i,�i)

𝜕�⊤
i

|
�i=

��i
, �̄�i =

��
−1∕2

i
��i��

√
1 + �⊤��i�

, with 

� = �−1∕2�, ��i =
(
�−1 + 𝜎−2

e
��⊤
i
��i

)−1

 , and “ .∼ ” denotes approximated in 
distribution.

Proof  For simplicity we omit the sub-index i. Thus, for � fixed and based on first-
order Taylor expansion of the function � around �̃ , we have from (7) that

Then from (7) and (10)

and the approximate conditional distribution of � is

(14)

L(� ∣ �) = 2

n∏

i=1
∫

∞

0 ∫
ℝq

𝜙ni
(�i;𝜂(�i� + �i,�i), u

−1
i
𝜎2
e
�ni)𝜙q(�i;c�, u

−1
i
�)

× 𝛷(u
1∕2

i
�⊤�−1∕2(�i − c�))d�idH(ui;�),

(15)�i

.
∼SMSNni

(
𝜂(�i� +��i,�i) −

��i(
��i − c�), �� i,

�̄�;H
)
,

� = � − �(�� + �,�) ≈ � −
[
�(�� + �̃,�) + �̃(� − �̃)

]
.

� −
[
�(�� + �̃,�) + �̃� − �̃̃�

]
| � .

∼SMNn(�, �
2
e
�,H),
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or equivalently

The rest of the proof follows by noting that

which can be easily solved by using successively Lemmas 1 and 2 given in [1]. 	�  ◻

Theorem 2  Let �̃i and �̃ be expansion points in a neighborhood of �i and � , respec-
tively, for i = 1,… , n, . Then, under the SMSN-NLME model as given in (7)–(8), the 
marginal distribution of �i, can be approximated as

w h e r e 

�̃(�̃, �̃i) = �(�i�̃ + �̃i,�i) − �̃ĩ�i − �̃i�̃ ,  �� i =
��i�

��⊤
i
+ 𝜎2

e
�ni ,  

�̄�i =
��
−1∕2

i
��i��

√
1 + �⊤��i�

, 

��i =
𝜕𝜂(�i

�� + �i,�i)

𝜕�⊤
i

|
�i=

��i
, ��i =

𝜕𝜂(�i� +��i,�i)

𝜕�⊤
|
�=�� , with 

� = �−1∕2�, ��i =
(
�−1 + 𝜎−2

e
��⊤
i
��i

)−1

.

Proof  As in Theorem 1, and based on first-order Taylor expansion of the function � 
around �̃ and �̃ , we have that

Hence,

and the proof follows by integrating out (�, u). 	�  ◻

The estimates obtained by maximizing the approximate log-likelihood func-
tion �(�, �̃) =

∑n

i=1
log f (�i;�, �̃i)   (or �(�, �̃, �̃) =

∑n

i=1
log f (�i;�, �̃i, �̃) ) are thus 

approximate maximum likelihood estimates (MLEs), which can be computed 

� | � .
∼SMNn(�(�� + �̃,�) − �̃̃� + �̃�, �2

e
�,H),

� | �, u .
∼Nn(�(�� + �̃,�) − �̃̃� + �̃�, u−1�2

e
�).

f (�) ≈2∫
∞

0 ∫
ℝq

𝜙n(�i;𝜂(�� +��,�) − ���� + ���, u−1𝜎2
e
�)𝜙q(�;c�, u

−1�)

×𝛷(u1∕2�⊤�−1∕2(� − c�))d�dH(u;�),

(16)�i

.
∼SMSNni

(
�𝜂(��,��i) + ��i� + c��i�,

�� i,
�̄�;H

)
,

� = � − �(�� + �,�) ≈ � −
[
�(��̃ + �̃,�) + �̃(� − �̃) + �̃(� − �̃)

]
.

(17)

� | �,U = u
.
∼SMNn(�(��̃ + �̃,�) − �̃̃� − �̃�̃ + �̃� + �̃�, u−1�2

e
�,H),

�|U = u
ind.
∼ SNq(c�, u

−1�,�),

U
iid.
∼H(⋅;�),

Journal of Statistical Theory and Practice (2021) 15:60 60 Page 8 of 26



1 3

	  

directly through optimization procedures, such as fmincon() and optim() in Matlab 
and R, respectively. However, since numerical procedures for direct maximization of 
the approximate log-likelihood function often present numerical instability and may 
not converge unless good starting values are used, in this paper we use the EM algo-
rithm [6] for obtaining approximate ML estimates via two modifications: the ECM 
algorithm [19] and the ECME algorithm [17].

Before discussing the EM implementation to obtain ML estimates of a SMSN-
NLME model, we present the empirical Bayesian estimate of the random effects 
�̃(k) , which will be used in the estimation procedure and is given in the following 
result. The notation used is that of Theorem 2 and the conditional expectations �̃−1i 
can be easily derived from the result of Section 2 in Lachos et al. [13].

Theorem  3  Let �̃i = �i − �̃(�̃, �̃i) , for i = 1,… , n . Then the approximated mini-
mum mean-squared error (MSE) estimator (or empirical Bayes estimator) of �i 
obtained by the conditional mean of �i given �̃i = �̃i is

where ��bi = c� + ���⊤
i
��
−1∕2

i
��0i and �̃−1i = E

{
U−1∕2W�(U

1∕2�̃i)|�̃
}

 , with 
W�(x) = �1(x)∕�(x), x ∈ ℝ,  �̃0i = �̃

−1∕2

i
(�̃i − �̃i� − c�̃i�) and ��i =

�̄�
⊤

i
��0i.

Proof  From (17), it can be shown that the conditional distribution of the �i given 
(�̃i,Ui) = (�̃i, ui) belongs to the extended skew-normal (EST) family of distributions 
[2], and its pdf is

Thus, from Lemma 2 in Lachos et al. [13], we have that

and the MSE estimator of �i , given by E{�i|�̃i,�} , follows by the law of iterative 
expectations. 	�  ◻

(18)
��i(�) ≈E{�i|��i = ��i,�} = ��bi +

�𝜏−1i√
1 + �⊤��i�

��i� ,

f (�i|��i, ui,�) =
1

𝛷(u
1∕2

i
��i)

𝜙q(�i;��bi, u
−1
i
��i)𝛷(u

1∕2

i
�⊤(�i − c�)).

E{�i|��i, ui,�} = ��bi +
u
−1∕2

i
W𝛷(u

1∕2

i
��i)

√
1 + �⊤��i�

��i� ,
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3 � Approximates ML Estimates Via the EM Algorithm

Let the current estimate of (�, �i) be denote by (�̃, �̃i) and for simplicity hereafter 
we omit the symbol “ ∼ ” in �i and �i . As in Theorem 2, the linearization proce-
dure adopted in this section consists of taking the first-order Taylor expansion of 
the nonlinear function around the current parameter estimate �̃ and random effect 
estimate �̃i at each iteration [33, 34], which is equivalent to iteratively solving the 
LME model

where �̃i = �i − �̃(�̃, �̃i), �i
ind
∼ SMSNq(c�,�,�,H) and �i

ind.
∼  SMNni

(�, �2
e
�ni ,H) . A 

key feature of this model is that it can be formulated in a flexible hierarchical repre-
sentation that is useful for analytical derivations. The model described in (19) can be 
written as follows:

for i = 1,… , n, where � = �1∕2� , � = � − ��⊤ with � = �∕(1 + �⊤�)1∕2 and �1∕2 
being the square root of � containing q(q + 1)∕2 distinct elements. TN(�, �;(a, b)) 
denotes the univariate normal distribution (N(�, �)) truncated on the interval (a, b).

Let ��c = (��⊤, �⊤, �⊤, �⊤)⊤ , with �� = (��⊤
1
,… ,��⊤

n
)⊤ , � = (�⊤

1
,… , �⊤

n
)⊤ , 

� = (u1,… , un)
⊤ , � = (t1,… , tn)

⊤ . It follows from (20) that the complete-data log-
likelihood function is of the form

where C is a constant that is independent of the parameter vector � and K(�) is a 
function that depends on � only through � . Now, from (20) and by using succes-
sively Lemma 2 in [1] (see also Lachos et al. [13]), it is straightforward to show that

where Mi = [1 + �⊤�⊤
i
�−1

i
�i�]

−1∕2 , 𝜇i = M2
i
�⊤�⊤

i
�−1

i
(��i −�i� − c�i�) , 

�i = [� −1 + 𝜎−2
e
�⊤

i
�i]

−1 , �i = (�q − 𝜎−2
e
�i�

⊤
i
�i)� , �i = 𝜎2

e
�ni +�i��⊤

i
 , and 

�i = 𝜎−2
e
�i�

⊤
i
(��i −�i�) , for i = 1,… , n.

(19)�̃i = �i� +�i�i + �i, i = 1,… , n,

(20)

�̃i|�i,Ui = ui
ind.
∼Nni

(�i� +�i�i, u
−1
i
�2
e
�ni);

�i|Ti = ti,Ui = ui
ind.
∼Nq(�ti, u

−1
i
� );

Ti|Ui = ui
ind.
∼ TN(c, u−1

i
;(c,∞)); Ui

iid.
∼H(⋅;�),

�c(� ∣ ��c) =

n∑

i=1

[
−
ni

2
log 𝜎2

e
−

ui

2𝜎2
e

(��i −�i� −�i�i)
⊤(��i −�i� −�i�i)

−
1

2
log |� | −

ui

2
(�i − �ti)

⊤� −1(�i − �ti)
]
+ K(�) + C,

(21)

�i|ti, ui,��i,� ∼Nq(�iti + �i, u
−1
i
�i),

Ti|ui,��i,� ∼TN(c + 𝜇i, u
−1
i
M2

i
;(c,∞)),

��i|� ∼SMSNni
(�i� + c�i�,

�� i,
�̄�;H),
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For the current value � = �̂
(k) , after some algebra the E-step of the EM algorithm 

can be written as

where �1 = (�⊤, 𝜎2
e
)⊤ , �2 = (�⊤,�⊤)⊤,

with tr{�} and |�| indicating the trace and determinant of matrix � , respectively. 
The calculation of these functions require expressions for û(k)

i
= E{Ui|�̂

(k)
, �̃i} , 

(̂u�)
(k)

i
= E{Ui�i|�̂

(k)
, �̂i} , �(u��⊤)

(k)

i
= E{Ui�i�

⊤
i
|��

(k)
,��i} , (̂ut)

(k)

i
= E{UiTi|�̂

(k)
, �̃i} , 

(̂ut2)
(k)

i
= E{UT2

i
|�̂

(k)
, �̃i} and (̂ut�)

(k)

i
= E{UiTi�i|�̂

(k)
, �̃i}. From (21), these can be 

readily evaluated as

where ĉ = c(�̂) , and the expressions for û
(k)

i
 and 

�̂1i = E{U
1∕2

i
W�(U

1∕2

i
�̂(k)

i
∕M̂

(k)

i
)|�̂

(k)
, �̃i} can be found in Section  2 from Lachos 

et al. [13], which can be easily implemented for the skew-t and skew-contaminated 
normal distributions, but involve numerical integration for the skew-slash case.

The CM-step then conditionally maximize Q
(
� ∣ �̂

(k)
)
 with respect to � , obtain-

ing a new estimate �̂
(k+1) , as follows:

CM-step 1 Fix �̂2(k)
e

 and update �̂
(k)

 as

Q
(
�|�̂

(k)
)
= E

{
�c(�|�̃c);�̂

(k)
, �̃
}

=

n∑

i=1

Q1i

(
�1|�̂

(k)
)
+

n∑

i=1

Q2i

(
�2|�̂

(k)
)
+

n∑

i=1

Q3i

(
�|�̂

(k)
)
,

Q1i

(
�1|��

(k)
)
= −

ni

2
log �𝜎2(k)

e
−

1

2�𝜎2(k)
e

�u(k)
i

(
��i −�i

��
(k)
)⊤(

��i −�i
��
(k)
)

+
1

�𝜎2(k)
e

(
��i −�i

��
(k)
)⊤

�i
�(u�)

(k)

i
−

1

2�𝜎2(k)
e

tr

{
�i

�(u��⊤)
(k)

i
�⊤

i

}
,

Q2i

(
�2|��

(k)
)
= −

1

2
log |��

(k)
| − 1

2
tr

{
��
−1(k)

(
�(u��⊤)

(k)

i
− �(ut�)

(k)

i
��
⊤(k)

− ��
(k)�(ut�)

⊤(k)

i
+ �(ut2)

(k)

i
��
(k)
��
⊤(k)

)}
,

(22)

�(ut)
(k)

i
= �u(k)

i
(�𝜇(k)

i
+�c) + �M(k)

i
�𝜏(k)
1i
,

�(ut2)
(k)

i
= �u(k)

i
[�𝜇(k)

i
+�c]2 + [�M(k)

i
]2 + �M(k)

i
(�𝜇(k)

i
+ 2�c)�𝜏(k)

1i
,

�(u�)
(k)

i
= �u(k)

i
��(k)
i

+��(k)
i

�(ut)
(k)

i
, �(ut�)

(k)

i
= ��(k)

i
�(ut)

(k)

i
+��(k)

i
�(ut2)

(k)

i
,

�(u��⊤)
(k)

i
= ��(k)

i
+ �u(k)

i
��(k)
i
��⊤(k)
i

+ ��(k)
i
��⊤(k)
i

�(ut)
(k)

i

+��(k)
i
��(k)⊤
i

�(ut)i +��(k)
i
��⊤(k)
i

�(ut2)
(k)

i
,

(23)��
(k+1)

=

(
n∑

i=1

�u(k)
i
�⊤

i
�i

)−1 n∑

i=1

�⊤
i

(
�u(k)
i
��i −�i

�(u�)
(k)

i

)
.
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CM-step 2 Fix �̂(k+1) and update �̂2(k)
e

 as

where N =
∑n

i=1
ni.

CM-step 3 Update �̂
(k) as �̂

(k+1)
=

∑n

i=1
(̂ut�)

(k)

i

∑n

i=1
(̂ut2)

(k)

i

.

CM-step 4 Fix �̂
(k+1) and update �̂

(k) as

CM-step 5 (for ECME) Update �̂(k) by optimizing the constrained approximate log-
likelihood function (obtained from Theorem 2):

where �∗ = �⧵�.
It is worth noting that the proposed algorithm is computationally simple to 

implement and it guarantees definite positive scale matrix estimate, once at the 
kth iteration ��(k) = ��

(k)
+ ��

(k)
��
⊤(k)

 and ��
(k)

= ��−1∕2(k)��
(k)
∕(1 − ��

⊤(k)��−1(k)��
(k)
)1∕2 . 

The iterations are repeated until a suitable convergence rule is satisfied, e.g., if 
||�̂

(k+1)
∕�̂

(k)
− 1|| is sufficiently small, or until some distance involving two suc-

cessive evaluations of the approximate log-likelihood (derived from Theorem 1), 
like |�(�̂

(k+1)
, �̃(k+1))∕�(�̂

(k)
, �̃(k)) − 1| , is small enough. Furthermore, �̃i , �i and 

�i , for i = 1,… , n , are updated in each step of the EM-type algorithm, with �̃i 
being computed at each iteration using (18).

In addition, standard errors for �̂
∗
 are estimated using the inverse of the 

observed information matrix obtained from the score vector following the results 
in [31] (see also [30]) and considering the linear approximation from Theorem 2.

3.1 � Starting Values

It is well known that maximum likelihood estimation in nonlinear mixed mod-
els may face some computational hurdles, in the sense that the method may not 
give maximum global solutions if the starting values are far from the real param-
eter values. Thus, the choice of starting values for an EM-type algorithm in the 

�𝜎2(k+1)
e

=
1

N

n∑

i=1

[
�u(k)
i

(
��i −�i

��
(k+1)

)⊤(
��i −�i

��
(k+1)

)

− 2
(
��i −�i

��
(k+1)

)⊤

�i
�(u�)

(k)

i
+ tr

{
�i

�(u��⊤)
(k)

i
�⊤

i

}]
,

��
(k+1)

=
1

n

n∑

i=1

(
�(u��⊤)

(k)

i
− �(ut�)

(k)

i
��
⊤(k+1)

− ��
(k+1)�(ut�)

⊤(k)

i

+ �(ut2)
(k)

i
��
(k+1)

��
⊤(k+1)

)
.

�̂
(k+1)

= argmax
�

{�(�̂
∗(k+1)

, �, �̃i ∣ �)},
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nonlinear context plays a big role in parameter estimation. In this work we con-
sider the following procedure for obtaining initial values for a SN-NLME model:

•	 Compute �̂
(0)

 and �̂2(0)
e

 and �̃(0) using the classical N-NLME model through 
the library nlme() in R software, for instance.

•	 The initial value for the skewness parameter � is obtained in the following 
way: Let 𝜌̂l be the sample skewness coefficient of the lth column of �̂(0) , 
obtained under normality. Then, we let �𝜆(0)

l
= 3 × sign(𝜌̂l) , l = 1,… , q.

Moreover, for ST-NLME, SCN-NLME or the SSL-NLME model we adopt the 
following strategy:

•	 Obtain initial values via method described above for the SN-NLME model;
•	 Perform MLEs of the parameters of the SN-NLME via EM algorithm;
•	 Use the EM estimates from the SN-NLME model as initial values for the cor-

responding ST-NLME, SSL-NLME and SCN-NLME models.
•	 The initial values for � are considered as follows: 10 for the ST distribution, 5 

for the SSL distribution, and (0.05, 0.8) for the SCN distribution.

Even though these procedures look reasonable for computing the starting val-
ues, the tradition in practice is to try several initial values for the EM algorithm, 
in order to get the highest likelihood value. It is important to note that the high-
est maximized likelihood is an essential information for some model selection 
criteria, such as Akaike information criterion (AIC,−2�(��,��L) + 2ℵ) , where ℵ is 
the number of free parameters, which can be used in practice to select between 
various SMSN-NLME models. In this work we use the result from Theorem 1 to 
calculate AIC values.

3.2 � Futures Observations

Suppose now that we are interested in the prediction of �+
i
 , a � × 1 vector of future 

measurements of �i , given the observed measurement � = (�⊤
(i)
,�⊤

i
)⊤ , where 

�(i) = (�⊤
1
,… ,�⊤

i−1
,�⊤

i+1
,… ,�⊤

n
)⊤ . The minimum MSE predictor of �+

i
 , which is 

the conditional expectation �+
i
 given �i and � , is given in the following Theorem. 

The notation used is the one from Theorem 1.

Theorem 4  Let �̃i be an expansion point in a neighborhood of �i , �+
i
 be an � × 1 

vector of future measurement of �i (or possibly missing) and �+
i
 be an � × r matrix 

of known prediction regression variables. Then, under the SMSN-NLME model as 
(7)–(8), the predictor (or minimum MSE predictor) of �+

i
 can be approximated as
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where

�̃ i22.1 = �̃
∗

i22
− �̃

∗

i21
�̃

∗−1

i11
�̃

∗

i12
, ��

∗

i11
= �� i =

��i�
��⊤
i
+ 𝜎2

e
�ni , 

��
∗

i12
= ��

∗⊤

i21
= ��i�

��+⊤
i

 , ��
∗

i22
= ��+

i
���+⊤

i
+ 𝜎2

e
�𝜐,  ��

∗−1∕2

i
�̄�
∗

i
= (�

(1)⊤
i

, �
(2)⊤
i

)⊤ , and

with ��
∗

i
=

(
��
∗

i11
��
∗

i12

��
∗

i21
��
∗

i22

)
= 𝜎2

e
�ni+𝜐 +

��∗
i
���∗⊤

i
,   �̄�

∗

i
=

��
∗−1∕2

i
��∗
i
��

√
1 + �⊤��

∗

i
�

,   

��
∗

i
= (�−1 + 𝜎−2

e
��∗⊤
i

��∗
i
)−1 , ��∗

i
= (��⊤

i
, ��+⊤

i
)⊤,   ��+

i
=

𝜕𝜂(�i� + �i,�
+
i
)

𝜕�⊤
i

|
�i=

��i
, and 

��i =
�
(1)

i
+ ��

∗−1

i11
��
∗

i12
�
(2)

i√
1 + �

(2)⊤
i

��
∗

i22.1
�
(2)

i

.

Proof  Under the notation and result given in Theorem 1, we have that

where 𝜂(��i,�∗
i
) =

(
𝜂⊤(�i� +��i,�i), 𝜂

⊤(�i� +��i,�
+
i
)
)⊤

 , �∗
i
= (�⊤

i
,�+⊤

i
)⊤ . The 

rest of the proof follows by noting that 
�∗

i
|ui ∼ SNni+𝜐

(𝜂
(
��i,�

∗
i
) − ��∗

i
(��i − c�), u−1

i
��
∗

i
, �̄�

∗)
 and applying the law of itera-

tive expectations. 	�  ◻

It can be shown that marginally 
�i

.
∼SMSN

(
�(�i� + �̃i,�i) − �̃i(̃�i − c�), �̃ i, �̃

−1∕2

i
�̃i;H

)
 , and thence the condi-

tional expectations �−1i can be easily derived from the result of Section  2 from 
Lachos et al. [13]. In practice, the prediction of �+

i
 can be obtained by substituting 

the ML estimate �̂ and �̃L
i
 into (24), that is �̂+

i
= �̂+

i
(�̂, �̃L

i
) , where �̃L

i
 is the random 

effect estimate in the last iteration of the EM algorithm.

(24)��+
i
(�) = E{�+

i
|�i,�} ≈ ��2.1 +

�� i22.1�
(2)

i√
1 + �

(2)⊤
i

�� i22.1�
(2)

i

𝜏−1i,

�̃2.1 = �(�i� + �̃i,�
+
i
) − �̃+

i
(̃�i − c�) + �̃

∗

i21
�̃

∗−1

i11

(
�i − �(�i� + �̃i,�i) + �̃i(̃�i − c�)

)
,

𝜏−1i = E
{
U

−1∕2

i
W𝛷

(
U

1∕2

i
��⊤
i
(�i − 𝜂(�i� +��i,�i) +

��i(
��i − c�))

)
|�i

}
,

�∗
i
=

[
�i

�+
i

]
.
∼SMSNni+𝜐

(
𝜂(��i,�

∗
i
) − ��∗

i
(��i − c�), ��

∗

i
, �̄�

∗

;H
)
,
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4 � Simulation Studies

In order to examine the performance of the proposed method, in this section we pre-
sent the results of some simulation studies. For simplicity, in the simulation studies 
we fix � at its true value. The first simulation study shows that the proposed approxi-
mate ML estimates based on the EM algorithm provide good asymptotic proper-
ties. The second study investigates the consequences in population inferences of an 
inappropriate normality assumption, and additionally it evaluates the efficacy of the 
measurement used for model selection (AIC) when the result given in Theorem 1 is 
used.

4.1 � First Study

To evaluate the asymptotic behaviour of the proposed estimation method, we per-
formed a simulation study considering the following nonlinear growth-curve logistic 
model [22]:

where tj = 100, 267, 433, 600, 767, 933, 1100, 1267, 1433, 1600 . The random effects 
bi and the error �i = (𝜖i1 … , 𝜖i10)

⊤ are non-correlated with

We set � = (𝛽1, 𝛽2, 𝛽3)
⊤ = (200, 700, 350)⊤ , �2

e
= 25 , �2

b
= 100 , � = 4 , imply-

ing in � = 40∕
√
17 = 9.7014 , and c = −

√
2∕� k1 , where k1 depends on the spe-

cific SMSN distribution considered. Additionally, the samples sizes are fixed at 
n = 25, 50, 100, 200, 300 and 500. For each sample size, 500 Monte Carlo samples 
from the SMSN-NLME model in (26) are generated under four scenarios: under the 
skew-normal model (SN-NLME), under the skew-t with � = 4 (ST-NLME), under 
the skew-slash with � = 2 (SSL-NLME), and under the skew-contaminated normal 
model with � = (0.3, 0.3) (SCN-NLME). The values of � were chosen in order to 
yield a highly skewed and heavy-tailed distribution for the random effects.

For each Monte Carlo sample, model (26) was fit under the same distributional 
assumption that the data set was generated. Then we computed the empirical bias 
and empirical mean square error (MSE) over all samples. For �1 , for instance, they 
are defined as

(25)yij =
�1 + bi

1 + exp {−(tj − �2)∕�3}
+ �ij, i = 1,… , n, j = 1,… , 10,

(26)
(
bi
�i

)
ind.
∼ SMSN11

((
c�

�

)
,

(
�2
b

�

� �2
e
�10

)
,

(
�
�

)
;H

)
, i = 1,… , n.

Bias(�1) =
1

500

500∑

k=1

�̂(k)
1

− �1 and MSE(�1) =
1

500

500∑

k=1

(�̂(k)
1

− �1)
2,
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respectively, where �̂(k)
1

 is the approximate ML estimate of �1 obtained through ECM 
algorithm using the kth Monte Carlo sample. Definitions for the other parameters 
are obtained by analogy.

Figures 1 and 2 show a graphical representation of the obtained results for bias 
and MSE, respectively. Regarding to the bias, we can see in general patterns of 
convergence to zero as n increases. The worst case scenario seems to happen while 
estimating the scale and skewness parameters of the random effect, which could be 
caused by the well known inferential problems related to the skewness parameter in 
skew-normal models, or maybe it would require a sample size greater than 500 to 
obtain a reasonably pattern of convergence. On the other hand, satisfactory values 
of MSE seem to occur when n is greater than 400. As a general rule, we can say that 
both the bias and the MSE tend to approach to zero when the sample size is increas-
ing, indicating that the approximate ML estimates based on the proposed EM-type 
algorithm provide good asymptotic properties.

Fig. 1   Bias of the approximate ML estimates of �, �2

e
, �2

b
 and � , based on 500 Monte Carlo data sets for 

each SMSN distribution

Journal of Statistical Theory and Practice (2021) 15:60 60 Page 16 of 26



1 3

	  

4.2 � Second Study

The goal of this simulation study is to asses the robustness or bias incurred when 
one assumes a normal distribution for random effects and the actual distribution is 
ST. The design of this simulation study is similar to the one in Sect. 4.1, but now 
500 Monte Carlo samples were generate considering only a ST model (26) with 
� = 4 and n = 25 . Additional simulations were created by using the same values of 
(�, �2

e
, �) in (26) and multiplying the scale parameter �2

b
 by 0.25 and 6.25, obtaining 

�2
b
= 25 (small) and �2

b
= 625 (large). This aims to verify if the proposed approxi-

mate methods are reliable in different settings of the scale parameter �2
b
 . Therefore, 

three different scenarios are considered and for each scenario we fit model (25) 
assuming the distributions normal and skew-t with 4 degree of freedom, to each 
Monte Carlo data set.

For evaluating the capability of the proposed selection criteria in selecting the 
appropriate distribution, the model preferred by the AIC criterion was also recorded 
for each sample. Figure 3 shows example profiles for each of the three sizes of scale 
components considered. The adjectives “small,” “medium” and “large” are referring 

Fig. 2   MSE of the approximate ML estimates of �, �2

e
, �2

b
 and � , based on 500 Monte Carlo data sets for 

each SMSN distribution
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to the values assumed for �2
b
 . Note that for this particular model the variability 

increases with the mean as well as with the scale parameter.
Table  1 presents summary measures for the fixed effects parameter estimates 

assuming normal and ST distributions for different values of the scale parameter �2
b
 , 

where the true parameters are indicated in parenthesis, Mean denotes the arithmetic 
average of the 500 estimates, Bias is the empirical mean bias, MSE is the empirical 
mean squared error, and finally, 95% Cov denotes the observed coverage of the 95% 
confidence interval computed using the model-based standard error and the critical 
value = 1.96.

The results in Table 1 suggest that irrespective of the fitted NLME model, the 
bias and MSE of the fixed effects increase as the scale component becomes larger. 
Moreover, we notice from this table that the bias and MSE from the ST fit are gen-
erally smaller than the ones from the normal fit, indicating that models with skew-
ness and longer-than-normal tails may produce more accurate approximate MLEs. 
In Fig. 4 we present the empirical MSE for different values of n = 25, 50, 100, 200 , 
and 500 and for medium-�2

b
 , illustrating clearly the slower convergence to zero when 

the normal distribution is inappropriately used.

Fig. 3   Simulated logistic curves under skew-t distribution for different values of the scale parameter of 
the random effects
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Therefore, the results indicate that the efficiency in estimating fixed effects in 
NLME models can be severely degraded when normality is assumed, in comparison 
to considering a more flexible approach via the ST distribution, corroborating with 
results from other authors, such as Hartford and Davidian [8] and Litière et al. [16]. 
Since the main focus of such analysis is usually the evaluation of the fixed effects, 
this suggests that adopting normality assumptions routinely may lead to inefficient 
inferences on fixed effects when the true distribution is not normal. The inferences 
for the variance components are not comparable for the two fitted models since they 
are in different scales.

Additionally, from Table 1 we can see that the AIC measure was able to classify 
the correct model well, indicating that the ST-NLME model presents a better fit than 
the N-NLME model, and the criteria for both models is illustrated in Fig. 5, where 
we show the AIC values for each sample and fitted model. Thence we conclude that 
the result given in Theorem 1 provides a good approximation for the marginal likeli-
hood function. In fact, this approximation is needed in order to make the calculation 
of the AIC computationally feasible (and easy).

Table 1   Monte Carlo results for fixed effects parameter estimates based on 500 Monte Carlo data gener-
ated from a ST model (26) considering different values of the scale parameter �2

b
 and n = 25

True values of parameters are in parentheses and pref. AIC indicates the number of samples that each 
model was preferred by the AIC

Scenario Measure Normal model ST model

�
1

�
2

�
3

�1 �
2

�
3

(200) (700) (350) (200) (700) (350)

Small-�2

b
Mean 199.8313 698.6879 348.9097 199.8135 699.2931 349.2883
Bias − 0.1687 − 1.3121 − 1.0903 − 0.1865 − 0.7069 − 0.7117
MSE 6.0073 124.3313 72.4067 3.1148 67.0638 39.8902
95% Cov 95.2 95.0 95.2 96.4 94.6 95.2
pref. AIC 14 486

Medium-�2

b
Mean 199.6450 698.1040 348.6829 199.7767 698.8985 349.0874
Bias − 0.3550 − 1.8960 − 1.3171 − 0.2233 − 1.1015 − 0.9126
MSE 8.6303 125.4999 71.8013 5.2957 73.9529 41.6302
95% Cov 95.4 94.4 94.6 95.0 95.6 94.2
pref. AIC 11 489

Large-�2

b
Mean 198.6449 696.4654 347.7706 199.3812 698.0883 348.7006
Bias − 1.3551 − 3.5346 − 2.2294 − 0.6188 − 1.9117 − 1.2994
MSE 12.2231 121.7152 75.0350 6.0414 64.6235 36.6364
95% Cov 90.4 94.4 94.4 94.2 94.8 94.4
pref. AIC 26 474
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5 � Theophylline Kinetics Data‑Theoph

The Theophylline kinetics data set was first reported by [3], and it was previ-
ously analysed in [22, 23] by fitting a N-NLME model. In this section, we revisit 
the Theoph data with the aim of providing additional inferences by considering 
SMSN distributions. In the experiment, the anti-asthmatic drug Theophylline was 
administered orally to 12 subjects whose serum concentration were measured 11 
times over the following 25  h. This is an example of a laboratory pharmacoki-
netic study characterized by many observations on a moderate number of sub-
jects. Figure  6a displays the profiles of the Theophylline concentrations for the 
twelve patients.

We fit a NLME model to the data considering the same nonlinear function as in 
[23], which can be written as

(27)
Cij =

Di exp{−(�1 + bi1) + (�2 + bi2) + �3}

exp(�2 + bi2) − exp(�3)

×
(
exp{− exp(�3)tij} − exp{− exp(�2 + bi2)tij}

)
+ �ij,

Fig. 4   MSE of the approximate ML estimates of �
1
, �

2
 and �

3
 , based on 500 Monte Carlo data generated 

from a ST model with �2

b
= 100 and for different sample size n, when fitting a ST-NLME model (green 

line) and a N-NLME model (blue line)

Journal of Statistical Theory and Practice (2021) 15:60 60 Page 20 of 26



1 3

	  

for i = 1,… , 12 , j = 1,… , 11 , where Cij represents the jth observed concentration 
(mg/L) on the ith patient. Di represents the dose (mg/kg) administered orally to the 
ith patient, and tij is the time in hours. To verify the existence of skewness in the ran-
dom effects, we start by fitting a traditional N-NLME model as in [23]. Figure 6b, 
c depicts the Q–Q plots of the empirical Bayes estimates of �i and shows that there 

Fig. 5   AIC values for fitting a ST-NLME model (green line) and a N-NLME model (blue line), based on 
500 Monte Carlo data generated from a ST model with �2

b
= 100 and n = 25

Fig. 6   Theoph data set. a Theophylline concentration (in mg/L) versus time since oral administration of 
the drug in twelve patients, and normal Q–Q plots of empirical Bayes estimates of b

1i
 (b) and b

2i
 (c)
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are some non-normal patterns on the random effects, including outliers and possibly 
skewness, and therefore supporting the use of thick-tailed distributions.

Hence, we now consider a SMSN distribution for �i and SMN distribution for �i , 
as in (8). Specifically, we consider the Normal, SN, ST, SCN and SSL distributions 
from the SMSN class for comparative purposes, and the results are presented next.

Table  2 contains the ML estimates of the parameters from the five models, 
together with their corresponding standard errors calculated via the observed infor-
mation matrix. The AIC measure indicates that heavy-tailed distributions present 
better fit that the Normal and SN-NLME models. Particularly, the model with ST 

Table 2   ML estimation results for fitting various NLME models on the Theoph data

Bold value corresponds to the best model according to the AIC criterion
SE denotes the estimated asymptotic standard errors based on the observed information matrix. 
( d

11
, d

12
, d

22
 ), are the distinct elements of the matrix �1∕2

Parameter N-NLME SN-NLME ST-NLME SSL-NLME SCN-NLME

MLE SE MLE SE MLE SE MLE SE MLE SE

�
1

− 3.228 0.066 − 3.232 0.239 − 3.200 0.163 − 3.214 0.180 − 3.195 0.137
�
2

0.470 0.280 0.481 0.845 0.520 0.317 0.498 0.376 0.379 0.239
�
3

− 2.455 0.101 − 2.455 0.117 − 2.424 0.078 − 2.422 0.072 − 2.424 0.068
�2

e
0.503 0.049 0.502 0.057 0.297 0.114 0.165 0.059 0.208 0.056

d
11

0.167 0.072 0.212 0.222 0.226 0.192 0.164 0.140 0.182 0.126
d
12

0.000 0.046 − 0.066 0.113 − 0.013 0.226 − 0.018 0.185 0.017 0.161
d
22

0.644 0.239 0.784 0.447 0.714 0.440 0.525 0.280 0.522 0.290
�
1

− 2.740 − 28.605 − 27.143 − 26.482
�
2

2.677 7.997 9.415 3.152
� ( �

1
) 4.528 1.182 0.483

�
2

0.264
AIC 368.044 369.676 358.755 360.657 359.748

Fig. 7   Theoph data set. Comparison of forecast accuracy in terms of MARD when the last 1, 2, 3, 4 and 
5 observations of each response vector are deleted sequentially
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distribution has the smaller AIC, being therefore the selected model. The standard 
errors of � are not reported since they are often not reliable (see [31], for example), 
and it is important to notice that the estimates for the variance components are not 
comparable since they are on different scales.

To asses the predictive performance of the N-NLME and SMSN-NLME models, 
we remove sequentially the last few points of each response vector, then we compute 
the ML estimates using the remaining data. The deleted observations are considered 
as the true values to be predicted. As a measure of precision we use the mean of 
absolute relative deviation |(yip − ŷ+

ip
)∕yip| (MARD), where p is the time point under 

forecast. For instance, if we drop out the last five measurements, then the prediction 
of �i = (yi7, yi8, yi9, yi10, yi11)

⊤, denoted by ��+
i
= (�y+

i7
,�y+

i8
,�y+

i9
,�y+

i10
,�y+

i11
)⊤ , is made 

using (24), for i = 1,… , 12 . Figure 7 presents the average of MARD in percentage 
(%) when the last 1,  2,  3,  4 and 5 observations are deleted sequentially in each 
response vector and shows that the heavy-tailed SMSN models provide in general 
more accurate predictors than the normal model. Particularly, when the last 5 obser-
vations are deleted for each subject, the difference between MARD from the ST and 
normal model is of almost 6% . Thus, the SMSN-NLME model with heavy-tailed 
distributions not only provides better model fitting, it also yield smaller prediction 
errors for the Theophylline kinetics data.

Furthermore, to assess the goodness of fit of the selected model, we construct 
a Healy-type plot [9], by plotting the nominal probability values 1∕n, 2∕n,… , n∕n 
against the theoretical cumulative probabilities of the ordered observed Mahalano-
bis distances, which is calculated using the result Theorem  1. The Mahalanobis 
distances is a convenient measure for evaluating the distributional assumption of 
the response variable, once if the fitted model is appropriate the distribution of the 
Mahalanobis distance is known and given, for example, in [31]. If the fitted model 
is appropriate, the plot should resemble a straight line through the origin with unit 
slope. We also construct a Healy’s plot for the Normal model for comparison, and 
the results are presented in Fig. 8. It is clear that the observed Mahalanobis distances 

Fig. 8   Theoph data set. Healy-type plots for assessing the goodness of fit of some SMSN-NLME models
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are closer to the expected ones in ST-NLME model than in the N-NMLE model, 
corroborating with the previous results.

6 � Discussion and Future Works

Nonlinear mixed effects models are a research area with several challenging aspects. 
In this paper, we proposed the application of a new class of asymmetric distribu-
tions, called the SMSN class of distributions, to NLME models. This enables the fit 
of a NLME model even when the data distribution deviates from the traditional nor-
mal distribution. Approximate closed-form expressions were obtained for the likeli-
hood function of the observed data that can be maximized by using existing statisti-
cal software. An EM-type algorithm to obtain approximate MLEs was presented, 
by exploring some important statistical properties of the SMSN class. According to 
Wu [33], in complicated models, approximate methods are computationally more 
efficient and may be preferable to the exact method, specially when it exhibits con-
vergence problems, such as slow convergence or non-convergence.

Furthermore, two simulation studies are presented, showing the potential effi-
ciency gain in fitting a more flexible model when the normality assumption is vio-
lated. Moreover, in the analysis of the Theophylline data set the use of ST-NLME 
models offered better fitting as well as better prediction performance than the 
usual normal counterpart. Finally, we note that it may be worthwhile comparing 
our results with other methods such as the classical Monte Carlo EM algorithm or 
the stochastic version of the EM algorithm (SAEM), which is beyond the scope of 
this paper. These issues will be considered in a separate future work. Another use-
ful extension would be to consider a more general structure for the within-subject 
covariance matrix, such as an AR(p) dependency structure as considered in [29].

The Royal Statistical Society (RSS) in a recent tribute to CR Rao on his 100th 
birthday wrote “Calyampudi Radhakrishna Rao is a formidable name in modern sta-
tistics. He has made pioneering contributions to statistical inference, multivariate 
analysis, design of experiments and combinatorics, robust inference and differential 
geometric methods and many other areas. Several of his results have become parts 
of standard textbooks on statistical methodology”. The connection of this paper with 
Dr. Rao’s research appears on his interest on the theoretical aspects of non-Gaussi-
anity. For a interesting and stimulating reference, we refer to [26].

Finally, the method proposed in this paper is implemented in the software R [25], 
and the codes are available for download from GitHub (https://​github.​com/​ferna​
ndals​chuma​cher/​skewn​lmm). We conjecture that the methodology presented in this 
paper should yield satisfactory results in other areas where multivariate data appears 
frequently, for instance: dynamic linear models, nonlinear dynamic models, stochas-
tic volatility models, etc., at the expense of moderate complexity of implementation.
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