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Abstract
The estimation of the minimum probability of a multinomial distribution is impor-
tant for a variety of application areas. However, standard estimators such as the 
maximum likelihood estimator and the Laplace smoothing estimator fail to function 
reasonably in many situations as, for small sample sizes, these estimators are fully 
deterministic and completely ignore the data. Inspired by a smooth approximation 
of the minimum used in optimization theory, we introduce a new estimator, which 
takes advantage of the entire data set. We consider both the cases with a known and 
an unknown number of categories. We categorize the asymptotic distributions of the 
proposed estimator and conduct a small-scale simulation study to better understand 
its finite sample performance.

Keywords Minimum probability · Multinomial distribution · Smooth minimum

1 Introduction

Consider the multinomial distribution � = (p1, p2,… , pk) , where k ≥ 2 is the num-
ber of categories and pi > 0 is the probability of seeing an observation from cat-
egory i. We are interested in estimating the minimum probability

in both the cases where k is known and where it is unknown.
Given an independent and identically distributed random sample X1,X2,… ,Xn 

of size n from � , let yi =
∑n

j=1
1(Xj = i) be the number of observations of category 

i. Here and throughout, we write 1(⋅) to denote the indicator function. The maximum 
likelihood estimator (MLE) of pi is p̂i = yi∕n and the MLE of p0 is

p0 = min{pi;i = 1,… , k}
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The MLE has the obvious drawback that p̂0 is zero when we do not have at least 
one observation from each category. To deal with this issue, one generally uses a 
modification of the MLE. Perhaps the most prominent modification is the so-called 
Laplace smoothing estimator (LSE). This estimator was introduced by Pierre-Simon 
Laplace in the late 1700s to estimate the probability that the sun will rise tomorrow, 
see, e.g., [4]. The LSE of p0 is given by

Note that both p̂0 and p̂LS
0

 are based only on the smallest yi . Note further that, in situ-
ations where we have not seen all of the categories in the sample, we always have 
p̂0 = 0 and p̂LS

0
= 1∕(n + k) . This holds, in particular, whenever n < k . Thus, in 

these cases, the estimators are fully deterministic and completely ignore the data.
In this article, we introduce a new estimator for p0 , which is based on a smooth 

approximation of the minimum. It uses information from all of the categories and 
thus avoids becoming deterministic for small sample sizes. We consider both the 
cases when the number of categories is known and when it is unknown. We show 
consistency of this estimator and characterize its asymptotic distributions. We also 
perform a small-scale simulation study to better understand its finite sample perfor-
mance. Our numerical results show that, in certain situations, it outperforms both 
the MLE and the LSE.

The rest of the paper is organized as follows: In Sect.2, we introduce our estima-
tor for the case where the number of categories k is known and derive its asymp-
totic distributions. Then, in Sect. 3 we consider the case where k is unknown, and in 
Sect. 4 we consider the related problem of estimating the maximum probability. In 
Sect. 5 we give our simulation results, and in Sect. 6 we give some conclusions and 
directions for future work. Finally, the proofs are given in “Appendix”. Before pro-
ceeding, we briefly describe a few applications: 

1. One often needs to estimate the probability of a category that is not observed in 
a random sample. This is often estimated using the LSE, which always gives the 
deterministic value of 1∕(n + k) . On the other hand, a data-driven estimate would 
be more reasonable. When the sample size is relatively large, it is reasonable to 
assume that the unobserved category has the smallest probability and our estima-
tor could be used in this case. This situation comes up in a variety of applications 
including language processing, computer vision, and linguistics, see, e.g., [6, 14], 
or [15].

2. In the context of ecology, we may be interested in the probability of finding the 
rarest species in an ecosystem. Aside for the intrinsic interest in this question, 
this probability may be useful as a diversity index. In ecology, diversity indices 
are metrics used to measure and compare the diversity of species in different 
ecosystems, see, e.g., [7, 8], and the references therein. Generally one works with 
several indices at once as they give different information about the ecosystem. 
In particular, the probability of the rarest species may be especially useful when 

p̂0 = min{p̂i;i = 1,… , k}.

p̂LS
0

= min{(yi + 1)∕(n + k);i = 1,⋯ , k}.
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combined with the index of species richness, which is the total number of species 
in the ecosystem.

3. Consider the problem of internet ad placement. There are generally multiple ads 
that are shown on the same webpage, and at most one of these will be clicked. 
Thus, if there are k − 1 ads, then there are k possible outcomes, with the last 
outcome being that no ad is clicked. In this context, the probability of a click on 
a given ad is called the click through rate or CTR. Assume that there are k − 1 
ads that have been displayed together on the same page and that we have data 
on these. Now, the ad company wants to replace one of these with a new ad, for 
which there are no data. In this case, the minimum probability of the original 
k − 1 ads may give a baseline for the CTR of the new ad. This may be useful for 
pricing.

2  The Estimator When k Is Known

We begin with the case where the number of categories k is known. Let 

� = (p1,… , pk−1) , �̂ = (p̂1,… , p̂k−1) , and note that pk = 1 −
k−1∑
i=1

pi and p̂k = 1 −
k−1∑
i=1

p̂i . 

Since p0 = g(�) , where g(�) = min{p1, p2,… , pk} , a natural estimator of p0 is given 
by

which is the MLE. However, this estimator takes the value of zero whenever there is 
a category that has not been observed. To deal with this issue, we propose approxi-
mating g with a smoother function. Such approximations, which are sometimes 
called smooth minimums, are often used in optimization theory, see, e.g., [1, 9, 10], 
or [11]. Specifically, we introduce the function

where w = w(�) =
k∑

j=1

e−n
�pj and 𝛼 > 0 is a tuning parameter. Note that

This leads to the estimator

where ŵ = w(�̂) =
k∑

j=1

e−n
𝛼 p̂j.

We now study the asymptotic distributions of p̂∗
0
 . Let 

∇gn(�) =
(

�gn(�)

�p1
,… ,

�gn(�)

�pk−1

)T

. It is straightforward to check that, for 1 ≤ i ≤ k − 1,

p̂0 = g(�̂) = min{p̂1, p̂2,… , p̂k},

(1)gn(�) = w−1

k∑
i=1

pie
−n�pi ,

(2)lim
n→∞

gn(�) = g(�) = p0.

(3)p̂∗
0
= gn(�̂) = ŵ−1

k∑
i=1

p̂ie
−n𝛼 p̂i ,
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Let r be the cardinality of the set {j ∶ pj = p0, j = 1,… , k} , i.e., r is the number of 
categories that attain the minimum probability. Note that r ≥ 1 and that we have a 
uniform distribution if and only if r = k . With this notation, we give the following 
result.

Theorem  2.1 Assume that 0 < 𝛼 < 1∕2 and let �̂�n = {∇gn(�̂)
T Σ̂∇gn(�̂)}

1∕2 , where 
Σ̂ = diag (�̂) − �̂�̂T . 

 (i) If r ≠ k , then 

 (ii) If r = k , then 

Clearly, Theorem  2.1 both proves consistency and characterizes the asymp-
totic distributions. Further, it allows us to construct asymptotic confidence inter-
vals for p0 . If r ≠ k , then an approximate 100(1 − �)% confidence interval is

where z1−�∕2 is the 100(1 − �∕2) th percentile of the standard normal distribution. If 
r = k , then the corresponding confidence interval is

where �2
k−1,1−�

 is the 100(1 − �) th percentile of a Chi-squared distribution with k − 1 
degrees of freedom.

As far as we know, these are the first confidence interval for the minimum to 
appear in the literature. In fact, to the best of our knowledge, the asymptotic dis-
tributions of the MLE and the LSE have not been established. One might think 
that a version of Theorem  2.1 for the MLE could be proved using the asymp-
totic normality of �̂ and the delta method. However, the delta method cannot be 
applied since the minimum function g is not differentiable. Even in the case of 
the proposed estimator p̂∗

0
 , where we use a smooth minimum, the delta method 

cannot be applied directly since the function gn depends on the sample size n. 
Instead, a subtler approach is needed. The detailed proof is given in “Appendix”.

(4)
�gn(�)

�pi
= e−n

�piw−1[1 + n�
(
gn(�) − pi

)
] − e−n

�pkw−1[1 + n�
(
gn(�) − pk

)
].

√
n�̂�−1

n
{p̂∗

0
− p0}

D
�������→ N(0, 1).

k2n1−𝛼{p0 − p̂∗
0
}

D
�������→ χ2

(k−1)
.

p̂∗
0
± n−1∕2�̂�nz1−𝛾∕2,

[p̂∗
0
, p̂∗

0
+ k−2n𝛼−1𝜒2

k−1,1−𝛾
],
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3  The Estimator When k Is Unknown

In this section, we consider the situation where the number of categories k is 
unknown. In this case, one cannot evaluate the estimator p̂∗

0
 . The difficulty lies in 

the need to evaluate ŵ . Let � =
∑k

j=1
1
�
yj = 0

�
 be the number of categories that 

are not observed in the sample and note that

If we have an estimator �̂  of � , then we can take

and define the estimator

Note that p̂♯
0
 can be evaluated without knowledge of k since p̂i = 0 for any category i 

that does not appear in the sample.
Now, assume that we have observed k♯ categories in our sample and note that 

k♯ ≤ k . Without loss of generality, assume that these are categories 1, 2,… , k♯ . 
Assume that k♯ ≥ 2 , let �̂♯ = (p̂1, p̂2,… , p̂k♯−1) , and note that p̂k♯ = 1 −

∑k♯−1

i=1
p̂i . 

For i = 1, 2,… , (k♯ − 1) let

and let � = (h1, h2,… , hk♯−1) . Note that we can evaluate � without knowing k.

Theorem  3.1 Assume that �̂  is such that, with probability 1, we eventually have 
�̂ = 0 . When k♯ ≥ 2 , let �̂�♯

n
= {�T Σ̂♯�}1∕2 , where Σ♯ = diag(�̂♯) − �̂♯

(
�̂♯
)T . When 

k♯ = 1 , let �̂�♯
n
= 1 . If the assumptions of Theorem 2.1 hold, then the results of Theo-

rem 2.1 hold with p̂♯
0
 in place of p̂∗

0
 and �̂�♯

n
 in place of �̂�n.

Proof Since k is finite and we eventually have �̂ = 0 , there exists an almost surely 
finite random variable N such that if the sample size n ≥ N , then �̂ = 0 , and we have 
observed each category at least once. For such n, we have k♯ = k , ŵ♯ = ŵ , �̂♯ = �̂ , 
and ∇gn(�̂) = � . If follows that, for such n, �̂�♯

n
= �̂�n and p̂♯

0
= p̂0 . Hence �̂�♯

n
∕�̂�n

p
−→1 

and 
√
n�̂�−1

n
{p̂∗

0
− p̂

♯

0
}

p
−→0 . From here the case r ≠ k follows by Theorem 2.1 and two 

applications of Slutsky’s theorem. The case r = k is similar and is thus omitted.   ◻

ŵ =

k∑
j=1

e−n
𝛼 p̂j =

k∑
j=1

e−n
𝛼 p̂j1

(
yj > 0

)
+ �.

ŵ♯ =

k∑
j=1

e−n
𝛼 p̂j1

(
yj > 0

)
+ �̂

(5)p̂
♯

0
=

1

ŵ♯

k∑
i=1

p̂ie
−n𝛼 p̂i .

hi = e−n
𝛼 p̂i

1

ŵ♯

[
1 − n𝛼{p̂i − p̂

♯

0
}
]
− e−n

𝛼 p̂
k♯
1

ŵ♯
[1 − n𝛼{p̂k♯ − p̂

♯

0
}]
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There are a number of estimators for � available in the literature, see, e.g., [2, 
3, 5], or [16] and the references therein. One of the most popular is the so-called 
Chao2 estimator [3, 5], which is given by

where fi =
∑k

j=1
1
�
yj = i

�
 is the number of categories that were observed exactly i 

times in the sample. Since k is finite, we will, with probability 1, eventually observe 
each category at least three times. Thus, we will eventually have f1 = f2 = 0 and 
�̂ = 0 . Thus, this estimator satisfies the assumptions of Theorem 3.1. In the rest of 
the paper, when we use the notation p̂♯

0
 we will mean the estimator where �̂  is given 

by (6).

4  Estimation of the Maximum

The problem of estimating the maximum probability is generally easier than that 
of estimating the minimum. Nevertheless, it may be interesting to note that our 
methodology can be modified to estimate the maximum. Let

We begin with the case where the number of categories k is known. We can approxi-
mate the maximum function with a smooth maximum given by

where w∨ = w∨(�) =
k∑

i=1

en
�pi . Note that

where gn is given by (1). It is not difficult to verify that g∨
n
(�) → p∨ as n → ∞ . This 

suggests that we can estimate p∨ by

where ŵ∨ = w∨(�̂) =
k∑

i=1

en
𝛼 p̂i .

Let r∨ be the cardinality of the set {j ∶ pj = p∨, j = 1,… , k} and let 
∇g∨

n
(�) =

(
�g∨

n
(�)

�p1
,… ,

�g∨
n
(�)

�pk−1

)T

 . It is easily verified that, for 1 ≤ i ≤ k − 1,

(6)�̂ =

⎧
⎪⎨⎪⎩

n−1

n

f 2
1

2f2
if f2 > 0

n−1

n

f1(f1−1)

2
if f2 = 0,

p∨ = max{pi ∶ i = 1,⋯ , k}.

(7)g∨
n
(�) = w−1

∨

k∑
i=1

pie
n�pi ,

g∨
n
(�) = −gn(−�),

(8)p̂∗
∨
= g∨

n
(�̂) = ŵ−1

∨

k∑
i=1

p̂ie
n𝛼 p̂i ,
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We now characterize the asymptotic distributions of p̂∨.

Theorem 4.1 Assume that 0 < 𝛼 < 1∕2 and let �̂�∨
n
= {∇g∨

n
(�̂)T Σ̂∇g∨

n
(�̂)}1∕2 , where 

Σ̂ = diag (�̂) − �̂�̂T . 

 (i) If r∨ ≠ k , then 

 (ii) If r∨ = k , then 

As with the minimum, we can consider the case where the number of categories k 
is unknown. In this case, we replace ŵ∨ with

for some estimator �̂  of � . Under the assumptions of Theorem 3.1 on �̂  , a version of 
that theorem for the maximum can be verified.

5  Simulations

In this section, we perform a small-scale simulation study to better understand the 
finite sample performance of the proposed estimator. We consider both the cases 
where the number of categories is known and where it is unknown. When the num-
ber of categories is known, we will compare the finite sample performance of our 
estimator p∗

0
 with that of the MLE p̂0 and the LSE p̂LS

0
 . When the number of catego-

ries is unknown, we will compare the performance of p̂♯
0
 with modifications of the 

MLE and the LSE that do not require knowledge of k. Specifically, we will compare 
with

where y♯
0
= min{yi ∶ yi > 0, i = 1, 2,… , k} and k♯ =

∑k

i=1
1(yi > 0) . Clearly, both 

p̂0,u and p̂LS
0,u

 can be evaluated without knowledge of k. Throughout this section, 

(9)

�g∨
n
(�)

�pi
=

�gn(−�)

�pi
= en

�piw−1
∨
[1 + n�{pi − g∨

n
(�)}]

− en
�pkw−1

∨
[1 + n�{pk − g∨

n
(�)}].

√
n

�̂�∨
n

{p̂∗
∨
− p∨}

D
�������→ N(0, 1).

k2n1−𝛼{p̂∗
∨
− p∨}

D
�������→ χ2

(k−1)
.

ŵ
♯
∨ =

k∑
i=1

en
𝛼 p̂i1

(
yi > 0

)
+ �̂,

(10)p̂0,u =
y
♯

0

n
and p̂LS

0,u
=

y
♯

0
+ 1

n + k♯
,
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when evaluating p∗
0
 and p♯

0
 , we set the tuning parameter to be � = 0.49 . We chose 

this value because it tends to work well in practice and it is neither too large nor 
too small. If we take � to be large, then (2) implies that the estimator will be almost 
indistinguishable from the MLE. On the other hand, if we take � to be small, then 
the estimator will not work well because it will be too far from convergence.

In our simulations, we consider two distributions. These are the uniform distribu-
tion on k categories, denoted by U(k), and the so-called square-root distribution on k 
categories, denoted by S(k). The S(k) distribution has a probability mass function (pmf) 
given by

where C is a normalizing constant. For each distribution, we will consider the case 
where k = 10 and k = 20 . The true minimums for these distributions are given in 
Table 1.

The simulations were performed as follows. For each of the four distributions and 
each sample size n ranging from 1 to 200, we simulated R = 10000 random samples of 
size n. For each of these random samples, we evaluated our estimator. This gave us the 
values p̂∗

0,1
, p̂∗

0,2
,… , p̂∗

0,R
 . We used these to estimate the relative root-mean-square error 

(relative RMSE) as follows:

where p0 is the true minimum. We repeated this procedure with each of the estima-
tors. Plots of the resulting relative RMSEs for the various distributions and estima-
tors are given in Fig. 1 for the case where the number of categories k is known and 
in Fig. 2 for the case where k is unknown. We can see that the proposed estimator 
works very well for the uniform distributions in all cases. For the square-root distri-
bution, it also beats the other estimators for a wide range of sample sizes.

It may be interesting to note that, in the case where k is known, the relative RMSE 
of the MLE p̂0 is exactly 1 for smaller sample sizes. This is because, when we have not 
seen all of the categories in our sample, the MLE is exactly 0. In particular, this holds 
for any sample size n < k . When the MLE is 0, then the LSE p̂LS

0
 is exactly 1∕(n + k) . 

Thus, when k is known and n < k , both p̂0 and p̂LS
0

 are fully deterministic functions that 
ignore the data entirely. This is not the case with p̂∗

0
 , which is always based on the data.

When k is unknown, we notice an interesting pattern in the errors of the MLE and 
the LSE. There is a dip at the beginning, where the errors decrease quickly before 
increasing just as quickly. After this, they level off and eventually begin to decrease 

p(i) = C
1√
i
, i = 1, 2,… , k,

Relative RMSE =
1

p0

√√√√ 1

R

R∑
i=1

(
p̂∗
0,i
− p0

)2

=

√√√√√ 1

R

R∑
i=1

(
p̂∗
0,i

p0
− 1

)2

,

Table 1  True minimums for the 
distributions considered Distribution U(10) U(20) S(10) S(20)

Minimum 0.100 0.050 0.063 0.029
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slowly. While it is not clear what causes this, an explanation may be as follows. From 
(10), we can see that, for relatively small sample sizes, the numerators of both estima-
tors are likely to be small as we would have only seen very few observations from the 
rarest category. As n begins to increase, the numerators should stay small, while the 
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Fig. 1  Plots for the relative RMSE in the case where the sample size k is known. The solid line is for the 
proposed estimator p̂∗
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 , the dashed line is for the MLE p̂0 , and dotted line is for the LSE p̂LS
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the proposed estimator p̂♯
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denominators increase. This would make the estimators decrease and thus get closer to 
the value of p0 . However, once n becomes relatively large, the numerators should begin 
to increase, and thus, the errors would increase as well. It would not be until n gets even 
larger that it would be large enough for the errors to begin to come down due to the 
statistical properties of the estimators. If this is correct, then the dip is just an artifact of 
the deterministic nature of these estimators. For comparison, in most cases the error of 
p∗
0
 just decreases as the sample size increases. The one exception is under the square-

root distribution, when the number of categories is known. It is not clear what causes 
the dip in this case, but it may be a similar issue.

6  Conclusions

In this paper, we have introduced a new method for estimating the minimum prob-
ability in a multinomial distribution. The proposed approach is based on a smooth 
approximation of the minimum function. We have considered the cases where the 
number of categories is known and where it is unknown. The approach is justified 
by our theoretical results, which verify consistency and categorize the asymptotic 
distributions. Further, a small-scale simulation study has shown that the method 
performs better than several baseline estimators for a wide range of sample sizes, 
although not for all sample sizes. A potential extension would be to prove asymp-
totic results in the situation where the number of categories increases with the sam-
ple size. This would be useful for studying the problem when there are a very large 
number of categories. Other directions for future research include obtaining theo-
retical results about the finite sample performance of the estimator and proposing 
modifications of the estimator with the aim of reducing the bias using, for instance, 
a jackknife approach.
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Appendix: Proofs

Throughout the section, let Σ = diag(�) − ��T , �n =
√
∇gn(�)

TΣ∇gn(�) , 
Λ = lim

n→∞
∇gn(�) , and � =

√
ΛTΣΛ . It is well known that Σ is a positive definite 

matrix, see, e.g., [12]. For simplicity, we use the standard notation O(⋅) , o(⋅) , Op(⋅) , 
and op(⋅) , see, e.g., [13] for the definitions. In the case of matrices and vectors, this 
notation should be interpreted as component wise.
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It may, at first, appear that Theorem 2.1 can be proved using the delta method. 
However, the difficulty lies in the fact that the function gn(⋅) depends on n. For this 
reason, the proof requires a more subtle approach. We begin with several lemmas.

Lemma A.1 

1 There is a constant 𝜖 > 0 such that p0 ≤ gn(�) ≤ p0 + (k − r)e−n
�� . When r ≠ k , 

we can take 𝜖 = min
j∶pj>p0

(pj − p0)

2. For any constant � ∈ ℝ

3 For any 1 ≤ j ≤ k and any constant � ∈ ℝ

Proof We begin with the first part. First, assume that r = k . In this case, it is imme-
diate that gn(�) = k−1 = p0 and the result holds with any 𝜖 > 0 . Now assume r ≠ k . 
In this case,

To show the other inequality, note that

and that, for any pi > p0 , we have

Setting 𝜖 = min
j∶pj>p0

(pj − p0) > 0 , it follows that, for pi > p0,

We thus get

The second part follows immediately from the first. We now turn to the third part. 
When pj = p0 Eq. (11) and Part 1 imply that e−n�pjw−1 ≤ r−1 and that there is an 
𝜖 > 0 such that

n�{gn(�) − p0} �→ 0 as n → ∞.

n�e−n
�pjw−1{gn(�) − pj} �→ 0 as n → ∞.

p0 = p0

k∑
i=1

e−n
�piw−1 ≤

k∑
i=1

pie
−n�piw−1 = gn(�).

(11)e−n
�p0w−1 =

{
k∑
i=1

e−n
� (pi−p0)

}−1

≤ (re0)−1 = r−1

en
𝛼piw =

k∑
j=1

e−n
𝛼 (pj−pi) ≥ e−n

𝛼 (p0−pi) = en
𝛼 (pi−p0) ≥ exp

{
n𝛼 min

j∶pj>p0
(pj − p0)

}
.

(12)e−n
�piw−1 ≤ e−n

�� .

gn(�) =
∑

i∶pi=p0

pie
−n𝛼piw−1 +

∑
i∶pi>p0

pie
−n𝛼piw−1 ≤ rp0(r)

−1 + (k − r)e−n
𝛼𝜖 .
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It follows that when pj = p0

On the other hand, when pj > p0 , by Part 1 there is an 𝜖 > 0 such that

Using this and Eq. (12) gives

as n → ∞ .   ◻

We now consider the case when the probabilities are estimated.

Lemma A.2 Let �∗
n
= �∗ = (p∗

1
,… , p∗

k−1
) be a sequence of random vectors with 

p∗
i
≥ 0 and 

∑k−1

i=1
p∗
i
≤ 1 . Let pk = 1 −

∑k−1

i=1
p∗
i
 , w∗ =

k∑
i=1

e−n
�p∗

i  , and assume that 

�∗
n
�→ � a.s. and n�(�∗

n
− �)

p
�����→ 0 . For every j = 1, 2,… , k , we have

and

Proof First note that, from the definition of w∗ , we have

Assume that pj = p0 . In this case, the first equation follows from (13) and the fact 
that n�

(
p∗
j
− p0

)
= n�

(
p∗
j
− pj

)
p
−→0 . In particular, this completes the proof of the 

first equation in the case where k = r.
Now assume that k ≠ r . Let p∗

0
= min{p∗

i
∶ i = 1, 2,… , k} , � = min

i∶pi≠p0
{pi − p0} , 

and �∗
n
= min

i∶pi≠p0
{p∗

i
− p∗

0
} . Since �∗

n
→ � a.s., it follows that �∗

n
→ � a.s. Further, by 

arguments similar to the proof of Eq. (12), we can show that, if pj ≠ p0 then there is 
a random variable N, which is finite a.s., such that for n ≥ N

It follows that for such j and n ≥ N

0 ≤ gn(�) − pj ≤ (k − r)e−n
�� .

0 ≤ n�e−n
�pjw−1{gn(�) − pj} ≤ (k − r)r−1n�e−n

��
�→ 0 as n �→ ∞.

0 ≤ |gn(�) − pj| ≤ pj − p0 + (k − r)e−n
�� .

0 ≤ |n�e−n�pjw−1(gn(�) − pj)| ≤ (pj − p0)n
�e−n

�� + (k − r)n�e−n
� (2�)

�→ 0,

n�
(
p∗
j
− p0

)
e
−n�p∗

j
1

w∗

p
−→0

n�e
−n�p∗

j
1

w∗
{gn(�

∗
n
) − p∗

j
}

p
−→0 as n → ∞.

(13)0 ≤ e
−n�p∗

j
1

w∗
≤ 1.

e
−n�p∗

j
1

w∗
≤ e−n

��∗
n ≤ e−n

��∕2.
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This completes the proof of the first limit.
Now assume either k = r or k ≠ r . For the second limit, note that

From here the result follows by the first limit and (13).   ◻

Lemma A.3 1. If r = k , then for each i = 1, 2,… , k

2. If r ≠ k , then for each i = 1, 2,… , k

Proof When r = k , the result is immediate from (4). Now assume that r ≠ k . We can 
rearrange equation (4) as

where rn = n�e−n
�piw−1{gn(�) − pi} − n�e−n

�pkw−1{gn(�) − pk} . Note that Lemma 
A.1 implies that rn → 0 as n → ∞ . It follows that

Consider the case where pk ≠ p0 and pi = p0 . In this case, the first part has r 
component(s) in the denominator that are equal to one ( e0 ) and the remaining k − r 
terms go to zero individually. However, since pk ≠ p0 , the denominator of the sec-
ond fraction has r terms of the form e−n� (p0−pk) , which go to +∞ , while the other 
terms go to 0, 1, or +∞ . Thus, in this case, the limit is r−1 − 0 = r−1 . The arguments 
in the other cases are similar and are thus omitted.   ◻

n�
|||p

∗
j
− p0

|||e
−n�p∗

j
1

w∗
≤ 2n�e−n

��∕2
→ 0.

n�e
−n�p∗

j
1

w∗
(gn(�

∗
n
) − p∗

j
)

= n�e
−n�p∗

j
1

w∗
(gn(�

∗) − p0) + n�e
−n�p∗

j
1

w∗
(p0 − p∗

j
)

= n�e
−n�p∗

j
1

w∗

k∑
i=1

(p∗
i
− p0)e

−n�p∗
i
1

w∗
+ n�e

−n�p∗
j
1

w∗
(p0 − p∗

j
).

�gn(�)

�pi
= 0.

(14)lim
n→∞

�gn(�)

�pi
=

⎧⎪⎨⎪⎩

r−1, if pk ≠ p0 and pi = p0
−r−1, if pk = p0 and pi ≠ p0
0, otherwise.

(15)
�gn(�)

�pi
= w−1

(
e−n

�pi − e−n
�pk

)
+ rn,

lim
n→∞

�gn(�)

�pi
= lim

n→∞
e−n

�piw−1 − lim
n→∞

e−n
�pkw−1

= lim
n→∞

{
k∑

j=1

e−n
� (pj−pi)

}−1

− lim
n→∞

{
k∑

j=1

e−n
� (pj−pk)

}−1

.
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Lemma A.4 Assume that r ≠ k and let �∗
n
 be as in Lemma A.2. In this case, 

�(gn(�))

�pi
= O(1) , �(gn(�

∗
�
))

�pi
= Op(1) , 

�2(gn(�))

�pi�pj
= O(n�) , �2(gn(�

∗
�
))

�pi�pj
= Op(n

�) , 
�3(gn(�))

�p
�
�pi�pj

= O(n2�) , and �
3(gn(�

∗
�
))

�p
�
�pi�pj

= Op(n
2�).

Proof The results for the first derivatives follow immediately from (4), (13), Lemma 
A.2, and Lemma A.3. Now let �ij be 1 if i = j and zero otherwise. It is straightfor-
ward to verify that

that for � ≠ i and � ≠ j we have

and that for i = j = � we have

Combining this with Lemma  A.2 and the fact that 0 ≤ w−1e−n
�ps ≤ 1 for any 

1 ≤ s ≤ k gives the result.   ◻

Lemma A.5 Assume r ≠ k and 0 < 𝛼 < 0.5 , then ∇gn(�̂) − ∇gn(�) = Op(n
𝛼− 1

2 ).

Proof By the mean value theorem, we have

(16)

�2gn(�)

�pj�pi
=n�w−1

(
e−n

�pi − e−n
�pk

)�gn(�)
�pj

+ n�w−1
(
e−n

�pj − e−n
�pk

)�gn(�)
�pi

− n�e−n
�pkw−1

[
n�
(
gn(�) − pk

)
+ 2

]

− �ijn
�e−n

�piw−1
[
n�
(
gn(�) − pi

)
+ 2

]
,

(17)

�3gn(�)

�p
�
�pj�pi

=n�w−1
(
e−n

�p
� − e−n

�pk
)�2gn(�)
�pj�pi

+ n�w−1
(
e−n

�pi − e−n
�pk

)�2gn(�)
�p

�
�pj

+ n�w−1
(
e−n

�pj − e−n
�pk

)�2gn(�)
�p

�
�pi

− n2�e−n
�pkw−1

(
gn(�)

�p
�

+
�gn(�)

�pj
+

�gn(�)

�pi
+ 1

)

− n2�e−n
�pkw−1

[
n�
(
gn(�) − pk

)
+ 2

]

− �ijn
2�e−n

�piw−1
�gn(�)

�p
�

,

(18)

�3gn(�)

�p3
i

=n�w−1
(
e−n

�pi − e−n
�pk

)(
3
�2gn(�)

�p2
i

+ 2n�

)

+ n2�
�gn(�)

�pi

[
1 − 3w−1

(
e−n

�pi + e−n
�pk

)]
.
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where �∗ = � + diag(�)(�̂ − �) for some � ∈ [0, 1]k−1 . Note that by the strong law 
of large numbers �̂ → � a.s., which implies that �∗ − � → 0 a.s. Similarly, by the 
multivariate central limit theorem and Slutsky’s theorem n𝛼(�̂ − �)

p
−→0 implies that 

n�(�∗ − �)
p
−→0 . Thus, the assumptions of Lemma A.4 are satisfied and that lemma 

gives

From here, the result is immediate.   ◻

Lemma A.6 Assume that r ≠ k . In this case, 𝜎 > 0 and lim
n→∞

�−1
n
� = 1 . Further, if 

0 < 𝛼 < 0.5 , then �̂�−1
n
𝜎n

p
�����→ 1.

Proof Since Σ is a positive definite matrix, and by Lemma A.3, Λ ≠ 0 , it follows 
that 𝜎 > 0 . From here, the fact that lim

n→∞
�n = � gives the first result. Now assume 

that 0 < 𝛼 < 0.5 . It is easy to see that p̂ip̂j − pipj = p̂j(p̂i − pi) + pi(p̂j − pj) = Op(n
−1∕2) 

and p̂i(1 − p̂i) − pi(1 − pi) = (p̂i − pi)(1 − pi − p̂i) = Op(n
−1∕2) . Thus, Σ̂ = Σ + Op(n

−1∕2) . 
This together with Lemma A.3 and Lemma A.5 leads to

which completes the proof.   ◻

Lemma A.7 If r ≠ k and 0 < 𝛼 < 0.5 , then 
√
n�̂�−1

n
{gn(�̂) − gn(�)}

D
�������→ N(0, 1).

Proof Taylor’s theorem implies that

where �∗ = � + diag (�)(�̂ − �) for some � ∈ [0, 1]k−1 . Using Lemma A.4 and argu-
ments similar to those used in the proof of Lemma A.5 gives n−�∇2gn(�

∗) = Op(1) , √
n(�̂ − �) = Op(1) , and n𝛼(�̂ − �) = op(1) . It follows that the second term on the 

RHS above is op(1) and hence that

It is well known that 
√
n(�̂ − �)T

D
�������→ N(0,Σ) . Hence

(19)n
1

2
−𝛼∇gn(�̂) = n

1

2
−𝛼∇gn(�) + n−𝛼∇2gn(�

∗)
√
n(�̂ − �),

n−𝛼∇2gn(�
∗)
√
n(�̂ − �) = n−𝛼Op(n

𝛼)Op(1).

�̂�2
n

𝜎2
n

=
∇gn(�̂)

T Σ̂∇gn(�̂)

∇gn(�)
TΣ∇gn(�)

=
(∇gn(�) + Op(n

𝛼− 1

2 ))T (Σ + OP(n
−

1

2 ))(∇gn(�) + Op(n
𝛼− 1

2 ))

∇gn(�)
TΣ∇gn(�)

=1 + Op(n
𝛼− 1

2 ) + Op(n
𝛼−1) + Op(n

2𝛼− 3

2 ) + Op(n
−

1

2 ) + Op(n
2𝛼−1)

p
�����→ 1,

√
n(gn(�̂) − gn(�)) =

√
n(�̂ − �)T∇gn(�)

+ 0.5
√
n(�̂ − �)Tn−𝛼∇2gn(�

∗)n𝛼(�̂ − �),

√
n(gn(�̂) − gn(�)) =

√
n(�̂ − �)T∇gn(�) + op(1).
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and, by Slutsky’s theorem,

By Lemma A.6, �−1
n
� → 1 , and �̂�−1

n
𝜎n

p
�����→ 1 . Hence, the result follows by another 

application of Slutsky’s theorem.   ◻

Lemma A.8 Let � = −n−�∇2gn(�) and let �k−1 be the (k − 1) × (k − 1) identity 
matrix. If r = k , then Σ

1

2�Σ
1

2 = 2k−2�k−1.

Proof Let � be the column vector in ℝk−1 with all entries equal to 1. By Eq. (16), we 
have

Note that Σ = diag(�) − ��T = k−2[k�k−1 − ��T ] . It follows that

Now multiplying both sides by Σ1∕2 on the left and Σ−1∕2 on the right gives the 
result.   ◻

Proof of Theorem 2.1 (i) If r ≠ k , then

The first part approaches a N(0, 1) distribution by Lemma A.7, and the second part 
approaches zero in probability by Lemmas A.6 and A.1. From there, the first part of 
the theorem follows by Slutsky’s theorem.

(ii) Assume that r = k . In this case, gn(�) = p0 = k−1 , and by Lemma  A.3, 
∇gn(�) = 0 . Thus, Taylor’s theorem gives

where rn = −6−1
k−1∑
q=1

k−1∑
r=1

k−1∑
s=1

√
n(p̂q − pq)

√
n(p̂r − pr)n

𝛼(p̂s − ps)n
−2𝛼 𝜕3gn(�

∗)

𝜕pq𝜕pr𝜕ps
 , and 

�∗ = � + diag (�)(�̂ − �) for some � ∈ [0, 1]k−1 . Lemma  A.4 implies that 
n−2�

�3gn(�
∗)

�pq�pr�ps
= Op(1) . Combining this with the facts that 

√
n(p̂q − pq) and √

n(p̂r − pr) are Op(1) and that, for � ∈ (0, 0.5) , n𝛼(p̂s − ps) = op(1) , it follows that 
rn

p
−→0.
Let �n =

√
n(�̂ − �) , �n = Σ−

1

2 �n , and � = −n�∇2gn(�) . Lemma A.8 implies that

√
n(�̂ − �)TΛ

D
�������→ N(0,ΛTΣΛ)

√
n(gn(�̂) − gn(�))

D
�������→ N(0,ΛTΣΛ).

(20)� = −n−�∇2gn(�) = 2k−1[��T + �k−1].

�Σ =2k−1[��T + �k−1]k
−2[k�k−1 − ��T ]

=2k−3[k��T − ��T��T + k�k−1 − ��T ]

=2k−3[k��T − (k − 1)��T + k�k−1 − ��T ] = 2k−2�k−1.

(21)
√
n�̂�−1

n
{p̂∗

0
− p0} =

√
n�̂�−1

n
{gn(�̂) − gn(�)} +

√
n�̂�−1

n
{gn(�) − p0}.

(22)
n1−𝛼{p0 − p̂∗

0
} =n1−𝛼{gn(�) − gn(�̂)}

=0.5
√
n(�̂ − �)T (−n−𝛼)∇2gn(�)

√
n(�̂ − �) + rn,
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Since �n
D
�������→ N(0,Σ) , we have �n

D
�������→ � , where � ∼ N(0, �k−1). Let Ti be the ith com-

ponent of vector � . Applying the continuous mapping theorem, we obtain

Thus, Eq. (22) becomes

The result follows from the fact that the T2
i
 are independent and identically distrib-

uted random variables, each following the Chi-square distribution with 1 degree of 
freedom.   ◻

The proof of Theorem 4.1 is very similar to that of Theorem 2.1 and is thus omit-
ted. However, to help the reader to reconstruct the proof, we note that the partial 
derivatives of g∨

n
 can be calculated using the facts that

Further, we formulate a version of Lemmas A.1 and A.2 for the maximum.

Lemma A.9 

1. There is a constant 𝜖 > 0 such that p∨ − (k − r∨)e
−n�� ≤ g∨

n
(�) ≤ p∨ . When r∨ ≠ k , 

we can take 𝜖 = min
j∶pj<p∨

(p∨ − pj).

2. For any constant � ∈ ℝ

3. For any 1 ≤ j ≤ k and any constant � ∈ ℝ

4. If �∗
n
 is as in Lemma A.2 and w∨∗ =

k∑
i=1

en
�p∗

i  , then for every j = 1, 2,… , k we have 

�T
n
��n =(Σ

−
1

2 �n)
TΣ

1

2�Σ
1

2 (Σ−
1

2 �n)

=�T
n
(2k−2�k−1)�n.

�T
n
��n

D
�������→ �T (2k−2�k−1)� = 2k−2

k−1∑
i=1

T2
i
.

n1−𝛼{p0 − gn(�̂)} = 0.5�T
n
��n + op(1)

D
�������→ k−2

k−1∑
i=1

T2
i
.

�g∨
n
(�)

�pj
=

�gn(−�)

�pj
and

�2g∨
n
(�)

�pi�pj
= −

�2gn(−�)

�pi�pj
.

n�{g∨
n
(�) − p∨} �→ 0 as n → ∞.

n�
en

�pj

w∨
{g∨

n
(�) − pj} �→ 0 as n → ∞.

n�
(
p∗
j
− p∨

)
e
n�p∗

j
1

w∨∗

p
−→0
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 and 

Proof We only prove the first part, as proofs of the rest are similar to those of Lem-
mas A.1 and A.2. If r∨ = k , then g∨

n
(�) = 1∕k = p∨ and the result holds with any 

𝜖 > 0 . Now, assume that k ≠ r∨ and let � be as defined above. First note that

Note further that for pi < p∨

It follows that

From here the result follows.   ◻
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