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Abstract
Density-based minimum divergence procedures represent popular techniques in par-
ametric statistical inference. They combine strong robustness properties with high 
(sometimes full) asymptotic efficiency. Among density-based minimum distance 
procedures, the methods based on the Brègman divergence have the attractive prop-
erty that the empirical formulation of the divergence does not require the use of any 
nonparametric smoothing technique such as kernel density estimation. The methods 
based on the density power divergence (DPD) represent the current standard in this 
area of research. In this paper, we will present a more generalized divergence which 
subsumes the DPD as a special case, and produces several new options providing 
better compromises between robustness and efficiency.

Keywords Brègman divergence · Density power divergence · M-estimator · 
Robustness

1 Introduction

In parametric statistical inference, the likelihood based methods have several asymp-
totic optimality properties. Under model misspecifications, or under the presence of 
outliers, all classical procedures including maximum likelihood may, however, be 
severely affected and lead to a distorted view of the true state of nature. For the big 
data scenario of the present times, a certain amount of noise is never unexpected, but 
even a small amount of it may be sufficient to severely degrade the performance of 
the classical procedures.
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Another approach to parametric estimation is based on minimizing density-based 
distances between the data density and the proposed model density; this approach gen-
erally combines high efficiency (sometimes full asymptotic efficiency) with strong 
robustness properties. Interestingly, the maximum likelihood estimator (MLE) itself 
also belongs to this class of density-based minimum distance estimators, being the min-
imizer of a version of the Kullback–Leibler divergence [10]. Another such divergence 
is the Hellinger distance and the estimator generated by minimizing this divergence is 
both highly robust (compared to the MLE) and is also first-order efficient [4]. However, 
the minimum Hellinger distance estimation method (and similar estimation methods 
based on �-divergences) is burdened by the fact that a nonparametric smoothing tech-
nique is inevitably necessary for the construction of an estimate of the data density for 
this procedure under continuous models. Apart from computational difficulties and the 
tricky bandwidth selection issue, the slow convergence of the nonparametric density 
estimate to the true density in high dimensions poses a major theoretical difficulty.

An alternative density-based minimum distance procedure is presented by the 
class of Brègman divergences [5]. This divergence class is characterized by a strictly 
convex function, and does not need any nonparametric smoothing for its empirical 
construction; see Jana and Basu [9]. Although the estimators obtained by the mini-
mization of Brègman divergences are generally not fully efficient, they often com-
bine high asymptotic efficiency with a strong degree of robustness and outlier sta-
bility. Most minimum Brègman divergence estimators also have bounded influence 
function, a property which is not shared by the minimum �-divergence estimators. 
See Basu et al. [3] and Pardo [15] for more details on robust parametric inference 
based on �-divergences (or disparities).

The DPD family [2] is a prominent subclass of Brègman divergences, and has 
had a significant impact on density-based minimum distance inference in recent 
times. This divergence family is defined by a class of convex functions indexed by a 
nonnegative tuning parameter � . Larger values of � lead to divergences which endow 
the corresponding minimum-divergence estimator with greater outlier stability. In 
the following we will refer to the minimum density power divergence estimator as 
the MDPDE, and tag on the � symbol wherever necessary. Our aim is to improve 
upon the MDPDE(� ) in terms of robustness and efficiency. It is useful to note that 
the minimum Brègman divergence estimator (and hence the MDPDE) belongs to the 
class of M-estimators as defined in, for example, Hampel et al. [8] or Maronna et al. 
[12]. As a consequence, the asymptotic properties of the estimators based on the 
newly defined divergences may be obtained from the well established M-estimation 
literature. The minimum density power divergence estimation method for independ-
ent and identically distributed (IID) data have been discussed in Basu et al. [2, 3] 
and that for independent non-homogeneous (INH) data in Ghosh and Basu [6]. We 
will perform similar exercises for our newly defined divergence family, and show 
that the resulting procedures can become useful robust tools for the applied scientist.
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2  The Brègman Divergence and Related Inference

The Brègman divergence was originally proposed as a measure to define a distance 
between two points in ℝd . It is a divergence measure, but not a metric in the true 
sense of the term, as it generally does not satisfy the triangle inequality and may not 
even be symmetric in its arguments. Let B ∶ ℝ

d → ℝ be a twice continuously differ-
entiable, strictly convex function defined on a closed convex set in ℝd . The Brègman 
divergence associated with the strictly convex function B for p, q ∈ ℝ

d is defined as

where B′ represents the derivative of B with respect to its argument. For two given 
density functions g and f, the Brègman divergence between them is defined as

The function B, in the above case, is clearly not uniquely defined due to the lin-
earity property of the integral, as both B(y) and B(y) + ay + b give rise to the exact 
same divergence for any real constants a and b. Here, we explore the general esti-
mation procedure to find the minimum Brègman divergence estimator for any con-
vex B function. Assume that an IID random sample X1,X2,… ,Xn is available from 
the true distribution G, and we try to model this distribution by a parametric family 
F = {F𝜃 ∶ 𝜃 ∈ Θ ⊂ ℝ

p} where � is unknown but the functional form of F� is known 
to us. In such a scenario, the estimation of the parameter � consists in choosing 
the model density f� which is closest to the data density in the minimum Brègman 
divergence sense. Let g and f� be the probability densities of G and F� , respectively. 
Then the Brègman divergence between g and f� will be as given in Eq. (1) with f 
replaced by f�.

We wish to use the minimum Brègman divergence approach for the estimation of 
the unknown parameter � . Notice that we cannot directly obtain the Brègman diver-
gence between g and f� for the purpose of this minimization, as the density g is 
unknown. So we need an empirical estimate of this divergence, which can then be 
minimized over � ∈ Θ . After discarding the terms of the above divergence (objec-
tive function) that are independent of � , the only term that needs to be empirically 
estimated is ∫ B�(f�(x))g(x)dx , which can be estimated by the corresponding sample 
mean 1

n

∑n

i=1
B�(f�(Xi)) , so the empirical objective function for the minimization of 

DB(g, f�) is now given by

Let u�(x) = ∇� log(f�(x)) be the likelihood score function of the model being consid-
ered where ∇� represents the gradient with respect to � . Under appropriate differenti-
ability conditions, the minimizer of this empirical divergence over � ∈ Θ is obtained 
as a solution to the estimating equation

DB(p, q) = B(p) − B(q) − ⟨B�(q), p − q⟩,

(1)DB(g, f ) = ∫x

{
B(g(x)) − B(f (x)) − (g(x) − f (x))B�(f (x))

}
dx.

(2)∫x

{
B�(f�(x))f�(x) − B(f�(x))

}
dx −

1

n

n∑

i=1

B�(f�(Xi)).
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This may be viewed as being in the general weighted likelihood equation form given 
by

where the relation between the Brègman function B and the weight function w� is 
given as

The nonnegativity of the above weight function is secured by the convexity of the B 
function with the nonnegativity of the density function. Some of the major density-
based divergences that can be obtained from the Brègman divergence using different 
B functions are the following. 

1. B(y) = y log(y) − y : This generates the Kullback–Leibler divergence given by 

 Under our parametric setup, its estimating equation and weight function are, 
respectively, 

2. B(y) = y2 : This leads to the squared L2 distance 

 generating, respectively, estimating equation and weight function as 

3. B(y) = (y1+� − 1)∕� : This generates the DPD(� ) family given by 

 In this case its estimating equation and weight function are given by 

1

n

n∑

i=1

u�(Xi)B
��(f�(Xi))f�(Xi) − ∫x

u�(x)B
��(f�(x))f

2
�
(x)dx = 0.

(3)
1

n

n∑

i=1

u�(Xi)w�(Xi) − ∫x

u�(x)w�(x)f�(x)dx = 0,

(4)w�(x) = w(f�(x)) = B��(f�(x))f�(x).

DKL(g, f�) = ∫x

g(x) log

(
g(x)

f�(x)

)
dx.

(5)
1

n

n∑

i=1

u�(Xi) − ∫x

u�(x)f�(x)dx = 0, w�(x) = w(f�(x)) = 1.

L2(g, f�) = ∫x

[
g(x) − f�(x)

]2
dx,

(6)
1

n

n∑

i=1

u�(Xi)f�(Xi) = ∫x

u�(x)f
2
�
(x)dx, w�(x) = w(f�(x)) = f�(x).

(7)d� (g, f�) = ∫x

{
f
1+�

�
(x) −

(
1 +

1

�

)
g(x)f

�

�
(x) +

1

�
g1+� (x)

}
dx.
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It may be noted that the estimating Eqs. (5), (6) and (8) are all unbiased under the 
model and have the same general structure as given in Eq. (3). The equations differ 
only in the form of the weight function w�(x) . And it is this weight function which 
determines to what extent the estimating equation is able to control the contribution 
of the score to the equation. In Eq. (5) the weight function is identically 1, so that the 
equation has no downweighting effect over the score functions of anomalous observa-
tions. The L2 case in Eq. (6), on the other hand, provides a strong downweighting effect 
by attaching the density function as the weight. The DPD covers a middle ground, by 
generating a weight of f �

�
(x) , which produces a smoother downweighting compared to 

the L2 case for � ∈ (0, 1).

3  The Exponential‑Polynomial Divergence

Here, our aim is to find a suitable convex function so that we can propose a generalized 
class of Brègman divergences that generates the DPD class as a special case. For this 
purpose we consider a sophisticated convex function B having the general form

where � , � and � are the tuning parameters for the system. The function in Eq. (9) 
is considered to be a generalization of the generating function for DPD given in Eq. 
(7). Clearly we recover the DPD with parameter � for � = 0 , but for nonzero � we 
get a combination of the generating function for the Brègman exponential-diver-
gence (BED) [13] and the density power divergence. At � = 1 , we get the BED with 
tuning parameter � . While the value � moderates the level of presence (or absence, 
when � = 0 ) of the BED component, � and � represent the BED and the DPD tuning 
parameters, respectively. Note that when � = 0 and � → 0 , the divergence converges 
to the Kullback–Leibler divergence. We refer to the divergence produced by Eq. (9) 
as the exponential-polynomial divergence (EPD) and we will be using the notation 
DEP(g, f�) to refer to the exponential-polynomial divergence between the densities g 
and f� . The tuning parameters of these families lie in the regions � ∈ ℝ , � ∈ [0, 1] 
and � ≥ 0 . In the spirit of the notation employed so far, the B-function of the EPD 
may be seen to be a convex combination of the BED(� ) and DPD(� ) B-functions.

3.1  Minimum EPD Estimation as M‑Estimation

Consider the parametric setup of Sect. 2 and the empirical objective function of the 
Brègman divergence given in Eq. (2). Note that, in case of the EPD, this objective func-
tion may be written as 1

n

∑n

i=1
V�(Xi) , where

(8)
1

n

n∑

i=1

u�(Xi)f
�

�
(Xi) − ∫x

u�(x)f
1+�

�
(x)dx = 0, w�(x) = w(f�(x)) = f

�

�
(x).

(9)B(x) = �
(exp(�x) − 1 − �x)

�2
+ (1 − �)

(x�+1 − x)

�
,
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As X1,X2,… ,Xn are independent and identically distributed observations, V�(Xi) , 
i = 1, 2,… , n are independent and identically distributed as well. Under differenti-
ability of the model the estimating equation is

Direct calculations show that for the EPD the associated � function has the form

where

In particular, for a location model, the estimating equation reduces to 
∑n

i=1
T�(Xi) = 0

.
The above description shows that the minimum EPD estimator (MEPDE) 

is an M-estimator (which is indeed true for all minimum Brègman diver-
gence estimators). The functional T(�,�,�)(G) , defined through the relation 
T(�,�,�)(G) = argmin �∈ΘDEP(g, f�) , is easily seen to be Fisher consistent, so that, 
T(�,�,�)(F�) = � . If the distribution G is not in the parametric family F  , then T(�,�,�)(G) 
is the solution of the equation

In this case we will refer to this solution as the best fitting parameter and denote it 
by �g.

3.2  Asymptotic Properties

We define the empirical objective function to be

where V�(x) is as defined in Eq. (10). The theoretical analogue of Hn(�) is given by

(10)
V�(x) = −

�

�

(
exp(�f�(x)) − 1

)
−

1 − �

�

(
(� + 1)f

�

�
(x) − 1

)

+ ∫t

[
�

�2
{exp(�f�(t))

(
�f�(t) − 1

)
+ 1} + (1 − �)f

�+1

�
(t)

]
dt.

(11)
n∑

i=1

�(Xi, �) = 0.

�(x, �) = T�(x) − Ef�
(T�(X)),

(12)T�(x) = u�(x)
{
�f�(x) exp(�f�(x)) + (1 − �)(� + 1)f

�

�
(x)

}
.

Eg(T�(X)) = Ef�
(T�(X)).

Hn(�) = n−1
n∑

i=1

V�(Xi),
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We define the information function of the model as i�(x) = −∇u�(x) , and further 
define the quantities K(�) , �(�) and J(�) as

Theorem 1 Under the conditions (A1)–(A5) given in “Appendix A” 

(a) The MEPDE estimating equation given by (11) has a consistent sequence of roots 
of �̂�n.

(b) 
√
n(�̂�n − 𝜃g) has an asymptotic multivariate normal distribution with mean (vec-

tor) zero and covariance matrix J−1KJ−1 where J and K are defined in Eq. (13), 
and evaluated at � = �g.

The proof is a relatively straightforward extension of Theorem 6.4.1 of Lehmann 
[11], and is omitted. The result can also be obtained, as indicated, from the M-estima-
tion approach, but the conditions of this proof are slightly weaker.

3.3  Influence Function, Gross Error Sensitivity and Asymptotic Efficiency

A useful advantage of the representation of the minimum Brègman divergence esti-
mator as an M-estimator is the straightforward computation of its influence function. 
Another important measure of robustness, available from the influence function is the 
gross error sensitivity (GES). Based on the nature of its influence function or GES, we 
can comment on the robustness properties of the associated MEPDE. Simple calcula-
tions show that the influence function of the MEPD functional T(�,�,�)(⋅) has the form

H(�) = −∫x

[
�

�

(
exp(�f�(x)) − 1

)
dx +

1 − �

�

(
(� + 1)f

�

�
(x) − 1

)]
g(x)dx

+ ∫x

[
�

�2

{
exp(�f�(x))

(
�f�(x) − 1

)
+ 1

}
+ (1 − �)f

�+1

�
(x)

]
dx.

(13)

K(�) = ∫x

u�(x)u
T
�
(x)

{
�f�(x) exp(�f�(x)) + (1 − �)(� + 1)f

�

�
(x)

}2

g(x)dx − �(�)�T (�),

�(�) = ∫x

u�(x)
{
�f�(x) exp(�f�(x)) + (1 − �)(� + 1)f

�

�
(x)

}
g(x)dx,

J(�) = � ∫x

f 2
�
(x) exp(�f�(x))u�(x)u

T
�
(x)dx + (1 − �)(� + 1)∫x

f
�+1

�
(x)u�(x)u

T
�
(x)dx

+ (1 − �)(� + 1)∫x

(
g(x) − f�(x)

){
i�(x) − �u�(x)u

T
�
(x)

}
f
�

�
(x)dx

+ � ∫x

(g(x) − f�(x))
{
i�(x) − u�(x)u

T
�
(x)

}
f�(x) exp(�f�(x))dx

− �� ∫x

(
g(x) − f�(x)

)
f 2
�
(x) exp(�f�(x))u�(x)u

T
�
(x)dx.
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where � and J, as in Eq. (13), are evaluated at � = �g . Under the assump-
tion that J and � are finite, this influence function is bounded only if the quantity {
u�(y)

(
�f�(y) exp(�f�(y)) + (1 − �)(� + 1)f

�

�
(y)

)}
 is bounded in y. This is indeed 

true for all standard models for � ∈ [0, 1] , � ∈ ℝ and 𝛾 > 0 . The GES of the func-
tional T(�,�,�)(G) is

The influence function of the MDPDE is bounded for 𝛾 > 0 , and that for the MEPDE 
is bounded for 𝛾 > 0 and any finite � and � ∈ [0, 1] , so that our functional has finite 
GES for the indicated set of tuning parameters. It should be noted that the influence 
function and the GES for the MLE are unbounded.

As an example, we consider a particular case for our illustration with the influ-
ence function. In Fig. 1 we present the influence function of the MEPDE functional 
for the mean of a normal random variable under the N(�, 1) model, where N(0, 1) is 
the true distribution. The value of � is fixed to be 0.1 in this example, and while the 
choice � = 0 (irrespective of the value of � ) refers to MDPDE(0.1), the figure shows 
that at different choices of � and nonzero � at the same value of � ( = 0.1 ), substan-
tially lower peaks for the influence function (and hence smaller GES values) may 
be attained for the corresponding MEPDE. While there is no doubt that substantial 
further investigation will be necessary to get an overall feeling of the stability of the 
estimator for different choices of the triplet ( � , � , � ), it is clear that other parameter 
combinations can increase the strength of downweighting, without altering the value 

IF(y,T(�,�,�),G) = J−1
[
u�(y)

(
�f�(y) exp(�f�(y)) + (1 − �)(� + 1)f

�

�
(y)

)
− �

]
,

�∗(T(�,�,�)(G), �) = argmax y{IF(y,T(�,�,�),G)}.

−4 −2 0 2 4

−2
−1

0
1

2

y

In
flu

en
ce

 F
un

ct
io

n

beta = 0, alpha = 1
beta = 0.5, alpha = 0.5
beta = 0.5, alpha = −0.5
beta = 0.2, alpha = −0.2
beta = 0.1, alpha = 0.1

Fig. 1  Influence functions of different MEPDEs in the N(�, 1) model
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of � . In Fig. 1 we have refrained from adding the plot for the unbounded MLE to 
avoid unnecessary cluttering of the graph.

It may be noted, however, that the above exercise is not intended to suggest that for 
each fixed divergence within the DPD family there is a better choice of a divergence 
within the EPD family (with the same value of � ) which can dominate the former in 
terms of all the possible goodness measures. Indeed, detailed numerical calculations 
show that often there may not be another member of the EPD family which may have 
improved efficiency compared to the corresponding DPD with the same value of � . On 
the other hand, detailed calculations appear to suggest that given a divergence within 
the DPD family, often there may be another divergence within the EPD family, not nec-
essarily with the same value of � , which might provide better metrics than the former.

The asymptotic variance of 
√
n times the MEPDE(�, �, � ) can be estimated 

through the influence function using the asymptotic distribution of M-esti-
mators; see, e.g., Hampel et  al. [8]. Let Ri(�) , i = 1,… , n , be the quantity 
u�(Xi)

{
�f�(Xi) exp(�f�(Xi)) + (1 − �)(� + 1)f

�

�
(Xi)

}
 at the data point Xi for 𝜃 = �̂�(𝛼,𝛽,𝛾) , 

the estimator minimizing the divergence. We can estimate the J matrix by J(Gn) 
obtained by substituting G with Gn , the empirical distribution function, in the expres-
sion of J. Then, a consistent estimate of asymptotic variance of the MEPDE may be 
obtained as J−1(Gn)

�
(n − 1)−1

∑n

i=1
RiR

T
i

�
J−1(Gn).

3.4  The Weight Function

A comparison of Eqs. (4), (9) and (12) show that the weight function of the estimating 
equation in case of the EPD has the form

In Fig. 2 we give a description of some weight functions for different triplet combi-
nations, with particular emphasis on what the variation in the parameters � and � do 
to the estimation procedure when the value of � is kept fixed. From the figure it may 
be noted that between the variety of cases considered, downweighting patterns of 
many different types are observed. In particular, in comparison to the weight func-
tion of the MDPDE (which corresponds to � = 0 , irrespective of the value of � ), all 
different kinds of variations are observed. One set of procedures apply greater down-
weighting for less probable observations while increasing the weights of the others. 
On the other hand, others exhibit a greater smoothing effect leading to more uniform 
weight functions. On the whole, there is a medley of possibilities, from which the 
experimenter can choose the optimal procedure in a given situation.

4  Independent and Identically Distributed (IID) Models

In this section, we will consider the parametric setup of Sect. 2 where an independ-
ent and identically distributed sample X1,X2,… ,Xn is available from the true distribu-
tion G, which is modeled by the parametric family F = {F𝜃 ∶ 𝜃 ∈ Θ ⊂ ℝ

p} . When the 

w�(x) = w(f�(x)) = �f�(x) exp(�f�(x)) + (1 − �)(� + 1)f
�

�
(x).
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true distribution belongs to the model, so that G = F� for some � ∈ Θ , the formulae for 
J, K and � defined in Eq. (13) simplify to

When � = 0 and � ↓ 0 , J(�) and K(�) coincide with I(�) , the Fisher information 
matrix, and the asymptotic variance J−1KJ−1 coincides with I−1(�) , the inverse of the 
Fisher information. The choice � = 0 leads to the variance estimates of MDPDE(� ), 
while the choice � = 1 leads to the variance estimates of MBEDE(� ), the minimum 
BED estimator for tuning parameter �.

J(�) = � ∫x

u�(x)u
T
�
(x)f 2

�
(x) exp(�f�(x))dx + (1 − �)(� + 1)∫x

u�(x)u
T
�
(x)f

�+1

�
(x)dx,

K(�) = ∫x

u�(x)u
T
�
(x)

{
�f�(x) exp(�f�(x)) + (1 − �)(� + 1)f

�

�
(x)

}2
f�(x)dx,

�(�) = ∫x

u�(x)
{
�f�(x) exp(�f�(x)) + (1 − �)(� + 1)f

�

�
(x)

}
f�(x)dx.
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Fig. 2  The weight function of the MEPDE for different values of � when a � = 1 and � = 1 , b � = −1 
and � = 1 , c � = 1 and � = 0.5 , d � = −1 and � = 0.5
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4.1  Selecting the Optimal Procedure

What we have done so far in our development is that we have created a sophisticated 
Brègman function which is a convex combination of the Brègman functions of the 
DPD and the BED families, and described the related inference procedure. As the DPD 
is widely recognized as the current standard in density-based minimum distance infer-
ence based on divergences of the Brègman type, our main motivation is to show that 
our exploration allows us, in any given real situation, to select a procedure, which pro-
vides a better control in comparison to the procedures restricted to the DPD class.

Be it in the case of parametric estimation based on the density power divergence 
or the exponential-polynomial divergence, these estimation schemes allow millions of 
choices as they are indexed by one or more tuning parameters that are allowed to vary 
over some continuous range. The collection of procedures involves all different kinds 
of methods, ranging from the most efficient to highly robust ones. Yet, in any particular 
real data problem, the experimenter has to provide a single, most appropriate choice 
for the tuning parameter for the specific data at hand, without knowing the amount of 
anomaly that is involved in the data under consideration. In an intuitive sense it is clear 
that such choices should be data-based.

4.2  The Current State of the Art

In robust statistical inference, which depends on one or more tuning parameters, a per-
ennial problem is to choose the tuning parameter(s) appropriately when it has to be 
applied to a given set of numerical data. Such tuning parameters inevitably control the 
trade-off between efficiency and robustness, and depending on what is needed and to 
what extent in a particular situation, the tuning parameter must strike a balance between 
these two conflicting requirements.

With the success of the DPD as a method of choice in robust statistical inference, 
several methods for the selection of the “optimal” DPD tuning parameter has been pro-
posed in the literature. The basic idea is the construction of an empirical measure of 
mean square error (or some other similar objective) as a function of the tuning param-
eter, which can then be minimized over the latter; this generates a minimum mean 
square error criterion for the selection of the tuning parameter. A few variations of this 
technique have been tried out in the literature. Here, we will follow the approach con-
sidered in Warwick and Jones [20].

In the above approach, we will evaluate the performance of the estimator through its 
summed mean square error around �∗ , which may be expressed, asymptotically, as

where �̂�n , the MEPDE, is a function of triplet of tuning parameters (�, �, �) , J and 
K are as in Eq. (13), and tr(⋅) represents the trace of a matrix. Such a formulation 
may be meaningful, for example, when the data are generated by a mixture having 
f�∗ as the dominant component, and �∗ is our target parameter; see the discussion 
in Warwick and Jones [20]. In practice we empirically estimate the quantity on the 

(14)
E
(
(�̂�n − 𝜃∗)T (�̂�n − 𝜃∗)

)
= n−1tr

(
J−1(𝜃g)K(𝜃g)J−1(𝜃g)

)
+ (𝜃g − 𝜃∗)T (𝜃g − 𝜃∗),
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right-hand side of Eq. (14) by replacing the true distribution G, wherever possible, 
by the empirical distribution Gn , �g with the MEPDE �̂�n , and �∗ by a suitable robust 
pilot estimator. In our calculations, following the suggestion of Ghosh and Basu [7], 
we will use the MDPDE at � = 0.5 as the pilot estimator. This gives us an empirical 
mean square error as a function of the tuning parameters (and the pilot estimator), 
which can then be minimized over the tuning parameters to obtain their “optimal” 
estimates.

4.3  Examples

In this section we will look at several well known real data examples, and demon-
strate that suitable members of the MEPDE family provide useful robust fits to these 
data. All of these data sets have one or more large outliers so that robust procedures 
are meaningful in this context.

Example 1 (Telephone Fault Data) We consider the data on telephone line faults pre-
sented and analyzed by Welch [21] and Simpson [17]. The data set is made up of 
the ordered differences between the inverse test rates and the inverse control rates 
in 14 matched pairs of areas. A normal model may otherwise work very well for 
these data, but the first observation is a huge outlier, and estimation by the method 
of maximum likelihood leads to a complete mess. The MLEs of � and � under the 
normal model are 40.3571 and 311.332, respectively. For the outlier deleted data 
these estimates shift to 119.46 and 134.82, respectively, indicating that the single 
outlier suffices to completely destroy the inference based on maximum likelihood. 
The MEPDEs of � and � based on the optimal Warwick Jones tuning parameters 
are 122.205 and 136.962, corresponding to the triplet � = 0.98 , � = 0.367 and 
� = 0.146 . Note that this tuning parameter triplet is somewhat removed from the 
DPD family, which corresponds to � = 0.

Example 2 (Newcomb Data) This is an old data set representing Newcomb’s meas-
urements on the velocity of light over a distance of 3721 meters and back [19]. The 
main cluster of the data is again well modeled by a normal distribution, but two 
individual outliers hinder the estimation based on maximum likelihood. The MLEs 
of � and � for the full data equal 26.2121 and 10.6636, respectively; but with the 
removal of the two outliers they shift to 27.750 and 5.044, with the estimate of � 
taking a huge drop. The MEPDEs of � and � for the optimal Warwick Jones method 
are 27.6036 and 4.99074, respectively, corresponding to the triplet (0.996, 0.422, 
0.297) for (�, �, �) ; it is again somewhat removed from the DPD family.

Example 3 (Darwin Data) Charles Darwin had performed an experiment to deter-
mine whether cross-fertilized plants have higher growth rates compared to self fer-
tilized plants [18]. Pairs of Zea mays plants, one self and the other cross-fertilized, 
were planted in pots, and after a certain time interval the height of each plant was 
measured. The paired differences (cross-fertilized minus self fertilized) of 15 such 
pairs of plants were considered in this example. Once again a normal model appears 
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to be suitable for these data, except for two large outliers in the left tail. For the full 
data, the MLEs of � and � are 20.9333 and 36.4645, respectively, but for the outliers 
deleted data they become 33 and 20.8103, respectively. The optimal Warwick Jones 
method selects a member of the DPD family in this case with � = 0.5353 . The cor-
responding estimates are �̂� = 29.8026 and �̂� = 25.2416.

Example 4 (Insulating Fluid data) This example represents data that may be well 
fitted by an exponential model [14]. It involves tests regarding times to breakdown 
of an insulating fluid between electrodes recorded at seven different voltages. We 
consider the observations corresponding to voltage 34 kV. We are interested in esti-
mating the mean parameter under the exponential model. The data set has 19 obser-
vations, containing four large outliers and one massive outlier. The full data MLE of 
the mean parameter is 14.3589, whereas after deleting the five outliers, the outlier 
deleted MLE is 4.6457. The optimum MEPDE, on the other hand, equals 8.1599, 
and corresponds to the triplet (−33.0234, 1, 0.5878) . In this case it may be seen that 
the optimal solution corresponds to � = 1 , and therefore belongs to the BED family 
with no contribution from the DPD part.

5  Independent Non‑homogeneous Observations

In real life problems we hardly encounter identically distributed data. In paramet-
ric estimation we often deal with the data which is not identical. In this section we 
obtain general method of robust estimation for non-homogeneous data.

5.1  Introduction

In the previous sections, we assumed that the data are independent as well as homo-
geneous. Now we relax the condition of homogeneity (identical distribution) and 
obtain the estimation procedure to be used in such cases. We consider the data 
Y1, Y2,… , Yn , where Yi s are independent but each with a different density gi . Our 
aim is to model gi by a family of distributions Fi,𝜃 = {fi(.;𝜃) ∶ 𝜃 ∈ Θ ⊂ ℝ

p} for 
some � for all i = 1, 2,… , n , where � is a parameter of interest. Thus although the 
Yi s are not identically distributed, their distributions are based on a common param-
eter. Let us consider the Brègman divergence defined in Eq. (1). The MEPDE of � is 
obtained by minimizing the empirical objective function

over � ∈ Θ , where ĝi is an estimate of density gi . Following Eq. (2), it is sufficient to 
minimize

1

n

n∑

1=1

DB(ĝi, fi(.;𝜃)),
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where Vi(., �) is the term within the square brackets in Eq. (15). It leads to the fol-
lowing estimating equation

where ui(y;�) = ∇� log(fi(y;�)) . It can be viewed as a weighted likelihood estimating 
equation similar to Eq. (3). In particular, by taking the B function as given in Eq. (9), 
the estimating equation for the MEPDE is given by

where the weight function w(t) = �t exp(�t) + (1 − �)(1 + �)t� . Ghosh and Basu [6] 
derived the asymptotic distribution of the MDPDE in this setup. We will now gener-
alize it for the EPD measure.

5.2  Asymptotic Properties

Let us define a p × p matrix J(i) whose (k, l)-th element is given by

where ∇kl represents the partial derivative with respect to the k and l-th element of � . 
We also define

Suppose �g is the best fitting parameter as defined in Sect. 3.1. Following Eq. (13), 
we can show that

(15)

Hn(�) =
1

n

n∑

i=1

[

∫y

{
B�(fi(y, �))fi(y, �) − B(fi(y, �))

}
dy − B�(fi(Yi, �))

]

=
1

n

n∑

i=1

Vi(Yi, �),

(16)
n∑

i=1

[
ui(Yi;�)B

��(fi(Yi;�))fi(Yi;�) − ∫y

ui(y;�)B
��(fi(y;�)f

2
i
(y;�)dy

]
= 0,

(17)
n∑

i=1

[
ui(Yi;�)w(fi(Yi;�)) − ∫y

ui(y;�)w(fi(y;�))fi(y;�)dy

]
= 0,

J
(i)

kl
= Egi

(∇klVi(Y;�)), for i = 1, 2,… , n,

Ψn =
1

n

n∑

i=1

J(i), Ωn = n−1
n∑

i=1

Vargi

(
∇Vi(Yi, �)

)
.
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where Ii(y, �g) = −∇ui(y;�
g) and

Theorem  2 Under the conditions (B1)–(B7) given in “Appendix B” the following 
results hold

(a) There exists a consistent sequence of solution �̂�n of Eq. (16).
(b) The asymptotic distribution of Ω−1∕2

n Ψn[
√
n(�̂�n − 𝜃g)] is p-dimensional nor-

mal with mean (vector) 0 and covariance matrix Ip , the p-dimensional identity 
matrix.

Remark The proof of this theorem is similar to that of Theorem 3.1 of Ghosh and 
Basu [6]. Theorem 1 is a special case of Theorem 2 if we assume an IID model, i.e., 
fi(⋅;�) = f (⋅;�) , for all i = 1, 2,… , n . The asymptotic distribution of the MDPDE 
derived by Ghosh and Basu [6] also emerges as a special case of this theorem for 
� = 0.

(18)

J(i) = � ∫y

f 2
i
(y;�g) exp(�fi(y;�

g))ui(y;�
g)uT

i
(y;�g)dy

+ (1 − �)(� + 1)∫y

f
�+1

i
(y;�g)ui(y;�

g)uT
i
(y;�g)dy

+ (1 − �)(� + 1)∫y

(
gi(y) − fi(y;�

g)
){

Ii(y, �
g) − �ui(y;�

g)uT
i
(y;�g)

}
f
�

i
(y;�g)dy

+ � ∫y

(gi(y) − fi(y;�
g))

{
Ii(y, �

g) − ui(y;�
g)uT

i
(y;�g)

}
fi(y;�

g) exp(�fi(y;�
g))dy

− �� ∫y

(
gi(y) − fi(y;�

g)
)
f 2
i
(y;�g) exp(�fi(y;�

g))ui(y;�
g)uT

i
(y;�g)dy,

(19)

Ωn =
1

n

n∑

i=1

[

∫y

ui(y;�
g)uT

i
(y;�g)

{
�fi(y;�

g) exp(�fi(y;�
g))

+ (1 − �)(� + 1)f
�

i
(y;�g)

}2

gi(y)dy − �i�
T
i

]
,

�i = ∫y

ui(y;�
g)
{
�fi(y;�

g) exp(�fi(y;�
g)) + (1 − �)(� + 1)f

�

i
(y;�g)

}
gi(y)dy.
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5.3  Linear Regression

The theory proposed above can be readily applied to the case of linear regression. Con-
sider the linear regression model

where the error �i ’s are IID errors having N(0, �2) distributions. Here, xi ’s are fixed 
design variables and � = (�1, �2,… , �p)

T represents the regression coefficient. The 
parameter of our interest is � = (�T , �2)T . Note that Yi ’s are independent but not 
identically distributed random variables as Yi ∼ fi(.;�) , where fi(.;�) is N(xT

i
� , �2) 

distribution. The score function for the normal model is given by

So, the estimating Eq. (17) simplifies as

To obtain the asymptotic distribution of the MEPDE, for simplicity, we assume that 
the true data generating density gi belongs to the model family of distributions, i.e., 
gi = fi(.;�) for all i = 1, 2,… , n , and � = (�T , �2)T is the true value of the parameter. 
It simplifies J(i) in Eq. (18) to

It gives

where XT = (x1, x2,… , xn)p×n is the transpose of the design matrix and

Yi = xT
i
� + �i, i = 1, 2,… , n,

ui(Yi;�) =

(
(Yi−x

T
i
�)

�2
xi

(Yi−x
T
i
�)2−�2

2�4

)
.

n∑

i=1

xij(Yi − xT
i
�)
[
�fi(Yi;�) exp(�fi(Yi;�)) + (1 − �)(1 + �)f

�

i
(Yi;�)

]
= 0, j = 1, 2,… , p,

n∑

i=1

{
(Yi − xT

i
�)2 − �2

}[
�fi(Yi;�) exp(�fi(Yi;�)) + (1 − �)(1 + �)f

�

i
(Yi;�)

]

=

n∑

i=1
∫y

{
(y − xT

i
�)2 − �2

}[
�f 2

i
(y;�) exp(�fi(y;�)) + (1 − �)(1 + �)f

�+1

i
(y;�)

]
dy.

J(i) = � ∫y

f 2
i
(y;�) exp(�fi(y;�))ui(y;�)u

T
i
(y;�)dy

+ (1 − �)(� + 1)∫y

f
�+1

i
(y;�)ui(y;�)u

T
i
(y;�)dy.

Ψn =

[�1

n
XTX 0

0 �2

]
,
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with �(⋅, �) being the probability density function of N(0, �2) . Similarly, Ωn in Eq. 
(19) simplifies to

where

Under the conditions (B1)–(B7) of “Appendix B”, we conclude from Theorem 2 that 
the MEPDE �̂�n is a consistent estimator of � . Moreover, the asymptotic distribution 
of 

√
nΩ

−1∕2
n Ψn(�̂�n − 𝜃) is multivariate normal with mean (vector) zero and covari-

ance matrix Ip.

5.4  Examples

We will give two examples to demonstrate the application of our proposed method in 
the independent non-homogeneous data. These data sets are also analyzed by Ghosh 
and Basu [6].

Example 5 (Hertzsprung–Russell data of the star cluster) Our first data set contain 
47 observations based on the Hertzsprung–Russell diagram of the star cluster CYG 
OB1 in the direction of Cygnus [16]. We consider a simple linear regression model 
using the logarithm of the effective temperature at the surface of the star (x), and the 
logarithm of its light intensity (y). The scatter plot in Fig. 3 shows that there are two 
groups of stars with four observations on the upper right corner clearly separated 
from others. In astronomy, those four stars are known as giants. The values of dif-
ferent regression estimates are given on Table 1, and the fitted regression lines are 

�1 = ∫y

y2

�4

[
��2(y;�) exp(��(y;�)) + (1 − �)(1 + �)��+1(y;�)

]
dy,

�2 = ∫y

(y2 − �2)2

4�8

[
��2(y;�) exp(��(y;�)) + (1 − �)(1 + �)��+1(y;�)

]
dy,

Ωn =
1

n

n∑

i=1

[

∫y

ui(y;�)u
T
i
(y;�)

{
�fi(y;�) exp(�fi(y;�))

+ (1 − �)(� + 1)f
�

i
(y;�)

}2

fi(y;�)dy − �i�
T
i

]
,

=

[�3

n
XTX 0

0 �4

]
,

�3 = ∫y

y2

�2

{
��(y;�) exp(��(y;�)) + (1 − �)(1 + �)�� (y;�)

}2

�(y;�)dy,

�4 = ∫y

(y2 − �2)2

4�8

{
��(y;�) exp(��(y;�)) + (1 − �)(1 + �)�� (y;�)

}2

�(y;�)dy

−

[

∫y

y2 − �2

2�4

{
��(y;�) exp(��(y;�)) + (1 − �)(1 + �)�� (y;�)

}
�(y;�)dy

]2
.
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added on Fig. 3. Due to four large outliers, the ordinary least squares (OLS) method 
completely fails to fit the data set. But the outliers deleted OLS gives a good fit for 
the rest of the 43 observations. Both the optimum DPD and EPD fits based on the 
Warwick Jones method are also close to that line. Here, the optimum EPD corre-
sponds to the triplet ( −4.8715, 0.9897, 0.7558 ) for ( �, �, � ), whereas the optimum 
DPD parameter is � = 0.75 . So, the optimum MEPDE lies well outside the DPD 
family. Also note that the estimate of � is much sharper in case of the MEPDE com-
pared to the MDPDE, indicating that the former does much better than the latter in 
downweighting the outliers.

Example 6 (Belgium telephone call data) We consider a real data set from the Bel-
gian Statistical Survey published by the Ministry of Economy of Belgium; it is 
also available in Rousseeuw and Leroy [16]. It contains the total number (in tens 
of millions) of international phone calls made in a year from 1950 to 1973. There 
is a heavy contamination in the vertical axis due to the use of a different recording 
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Fig. 3  Plots of different regression lines for the Hertzsprung–Russell data of the star cluster

Table 1  Different regression 
estimates for the Hertzsprung–
Russell data of the star cluster

Methods �̂�0 �̂�1 �̂�2

OLS 6.7935 − 0.4133 0.3188
Optimum DPD − 8.5570 3.0622 0.1616
Optimum EPD − 8.1389 2.9660 0.1035
Outlier Deleted OLS − 4.0565 2.0467 0.1647
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system during 1964 to 1969. The years 1963 and 1970 are also partially affected for 
this reason. Figure 4 and Table 2 contain the different regression estimates for this 
data set. It is clear that the OLS fit is very poor, but all other estimates give excel-
lent fits to the rest of the observations. Although, the optimum EPD regression line 
based on the Warwick Jones method almost coincides with the optimum DPD fit, 
the MEPDE does not belong to the DPD family. The optimum EPD corresponds to 
the triplet ( −4.2416, 0.0543, 0.3205 ) for ( �, �, � ), whereas the optimum DPD param-
eter is � = 0.631 . Once again the MEPDE produces a sharper value of the estimate 
of � compared to the MDPDE.

6  Concluding Remarks

Density-based minimum distance procedures have become popular in recent 
times because of their ability to combine high asymptotic efficiency with strong 
robustness properties. In particular the methods based on the Brègman diver-
gence have the major advantage that they do not involve any intermediate non-
parametric smoothing component. The class of DPD family, which has proved to 
be a popular and useful tool in this area, represents a class of procedures ranging 
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Fig. 4  Plots of different regression lines for the Belgium telephone call data

Table 2  Different regression 
estimates for the Belgium 
telephone call data

Methods �̂�0 �̂�1 �̂�2

OLS 26.006 0.5041 31.6107
Optimum DPD − 5.2811 0.1104 0.01336
Optimum EPD − 5.2278 0.1095 0.0123
Outlier Deleted OLS − 5.1645 0.1085 0.0094
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from highly efficient to strongly robust. In this paper, we have developed a more 
refined class of divergences which subsumes the DPD family providing new 
options which can lead to better compromises between robustness and efficiency.

In this paper, we have demonstrated the above through IID data models as well 
as INH models. The results show that in most cases the optimal solution is out-
side the DPD family. These can, however, be extended to many other data struc-
tures where the EPD can be useful. For example, this technique can be used to 
find the best tuning parameter in estimation with right censored survival data, and 
testing of hypothesis problems, issues that we want to deal with in the future.

We also hope to use a recently developed refinement of the Warwick and Jones 
approach, present in Basak et al. [1], for the “optimal” tuning parameter selection 
problem, which might further enhance the results of our method.

Appendix A Conditions for Theorem 1

For any given values of parameters (�, �, �) , we assume the following conditions 
as an extension of conditions given in Basu et al. [3] for MDPDE(� ) 

 (A1) The distributions F� of X have a common support, such that the set 
𝜒 = {x ∶ f𝜃(x) > 0} is independent of � . The true distribution G is also sup-
ported on � where g is positive.

 (A2) There is an open subset � of the parameter space Ω containing the best fitting 
parameter �g such that for almost all x ∈ � and all � ∈ Θ , the density f�(x) is 
three times differentiable with respect to � and the third partial derivatives are 
continuous with respect to �.

 (A3) For the B function given in Eq. (9), the integrals ∫
x
{f�(x)B

�(f�(x)) − B(f�(x))}dx 
and ∫

x
B�(f�(x))g(x)dx can be differentiated three times with respect to � and the 

derivatives can be taken under the integral sign.
 (A4) For B in Eq. (9) and 

the p × p matrix defined by Jkl(�) = Eg(∇klV�(X)) is positive definite, where 
Eg represents the expectation under the density g. When g is in the model, 
then Jkl(�g) = Jkl(�

g) , where J(�) is as defined in (13).
 (A5) There exists a function Mjkl(x) such that |∇jklV�(X)| ≤ Mjkl(X) for all � ∈ �, and 

Eg[Mjkl(X)] = mjkl < ∞.

V�(X) = ∫x

{
B�(f�(x))f�(x) − B(f�(x))

}
dx − B�(f�(x)),
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Appendix B Conditions for Theorem 2

The following assumptions are required to establish the asymptotic properties of 
the MEPDE for the non-homogeneous case. These are analogous to the assump-
tions given in Ghosh and Basu [6] for the DPD family. 

 (B1) The support 𝜒 = {y ∶ fi(y;𝜃) > 0} is independent of i and � for all i = 1, 2,… , n , 
and the true distribution of Gi is also supported on � for all i.

 (B2) There is an open subset � of the parameter space Ω containing the best fit-
ting parameter �g such that for almost all x ∈ � and all � ∈ Θ , the densities 
fi(y;�), i = 1, 2,… , n , are three times differentiable with respect to � and the 
third partial derivatives are continuous with respect to �.

 (B3) Consider the B function given in Eq. (9). For each i = 1, 2,… , n , the integrals 
∫
y

[
B�(fi(y;�))fi(y;�) − B(fi(y;�)

]
dy and ∫

y
B�(fi(y;�))gi(y)dy can be differentiated 

thrice with respect to � and derivatives can be taken under integral sign.
 (B4) For each i = 1, 2,… , n , the matrix J(i) , defined in Sect. 5.2, is positive definite 

and 

 (B5) There exists a function M(i)

jkl
(Y) such that 

 where Vi(⋅;�) is defined in Eq. (15) and 

 (B6) For all j and k, we have 

 where I(B) denotes the indicator variable of the event B.
 (B7) For all 𝜖 > 0 , we have 

𝜆0 = inf
n
[ min eigenvalue of Ψn] > 0.

|∇jklVi(Y;�)| ≤ M
(i)

jkl
(Y),

1

n

n∑

i=1

Egi
[M

(i)

jkl
(Y)] = O(1) for all j, k, l.

lim
N→∞

sup
n

(
1

n
Egi

[
|∇jkVi(Y;𝜃)|I(|∇jkVi(Y;𝜃)| > N)]

])
= 0,

lim
N→∞

sup
n

(
1

n
Egi

[
|∇jkVi(Y;𝜃) − Egi

(∇jk((Y;𝜃))|

×|I(|∇jkVi(Y;𝜃) − Egi
(∇jk((Y;𝜃))| > N)

])
= 0,

lim
n→∞

�
1

n

n�

i=1

Egi

�
��Ω−1∕2

n
∇Vi(Y;𝜃)��2I(��Ω−1∕2

n
∇Vi(Y;𝜃)�� > 𝜖

√
n)
��

= 0.
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